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Abstract

Background: Volatile organic compounds (VOCs) emitted from exhaled breath from human bodies have been
proven to be a useful source of information for early lung cancer diagnosis. To date, there are still arguable
information on the production and origin of significant VOCs of cancer cells. Thus, this study aims to conduct in-
vitro experiments involving related cell lines to verify the capability of VOCs in providing information of the cells.

Method: The performances of e-nose technology with different statistical methods to determine the best classifier
were conducted and discussed. The gas sensor study has been complemented using solid phase micro-extraction-
gas chromatography mass spectrometry. For this purpose, the lung cancer cells (A549 and Calu-3) and control cell
lines, breast cancer cell (MCF7) and non-cancerous lung cell (WI38VA13) were cultured in growth medium.

Results: This study successfully provided a list of possible volatile organic compounds that can be specific
biomarkers for lung cancer, even at the 24th hour of cell growth. Also, the Linear Discriminant Analysis-based One
versus All-Support Vector Machine classifier, is able to produce high performance in distinguishing lung cancer from
breast cancer cells and normal lung cells.

Conclusion: The findings in this work conclude that the specific VOC released from the cancer cells can act as the
odour signature and potentially to be used as non-invasive screening of lung cancer using gas array sensor devices.
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Background
Cancer is one of the leading causes of mortality among
humans worldwide. These phenomena are mainly be-
cause cancer commonly detected at a very late stage.
The American Cancer Society [1], estimated about
1,685,210 new cases of cancer to be diagnosed and
595,690 cancer related deaths to be reported in the
United States in the year 2016. It is also reported that
lung cancer (LC) is the second most common cancer

affecting men (14%) and women (13%) behind only pros-
tate cancer (21%) and breast cancer (29%) respectively
[1]. In Malaysia, LC has been reported to be the second
most common cancer affecting men and the third most
common cancer affecting females with 2,100 Malaysians
diagnosed each year [2].The diagnosis of lung cancer at
an early stage, particularly when the tumour is discov-
ered at its local site, has been shown to improve the sur-
vival rate of patients [3, 4]. Hence it is critical that high
risk patients are screened. However, the established and
widely used screening techniques, such as chest radiog-
raphy and cytological examination, often give poor re-
sults in detecting small and resectable cancers [5].
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Currently, the application of low dose computed tom-
ography (LDCT) as an early stage lung cancer screening
technique shows reduction in the number of lung
cancer-based deaths [6]. Yet, this method exposed pa-
tients to great risk as the high amount of radiation used
can lead to several complications [4, 7]. Generally, con-
ventional methods are invasive and might delay the ther-
apy if the cancer is found [8, 9]. In addition, only
selected hospital with the right expertise and facilities
can perform such screening tests. Thus, a new screening
approach based on the cell biology theory [4] using the
analysis of volatile organic compounds (VOCs) linked to
lung cancer has been receiving considerable attention
from researchers. This new screening technique is non-
invasive, reliable and inexpensive [10, 11].
The change in metabolic pathways (gene or protein

changes) in cancerous cells during tumour growth may
lead to peroxidation of the cell membrane and production
of certain VOCs [12, 13]. These VOCs can be detected
directly on the headspace of the cancer cells [8, 14], or ex-
haled breath of cancer patients [10, 15, 16]. In the case of
exhaled breath air, VOCs generated by the cancer cells are
released by blood and exchanged through the alveolus in
the lung [17]. The potential of detection of VOCs in the
breath of lung cancer patients to be used as diagnostic or
screening tools have been extensively analysed and studied
for several years [18]. However, in order to provide cellular
and biochemical origin information of VOCs to clinicians
for the decision on the specific treatment for the cancer,
the analysis should also be compared with cancer cells
(0either in-vivo or in-vitro) [19, 20].
Many studies of in-vitro cultured cells as a model sys-

tem to demonstrate the discrimination between tumour
and normal cells using spectrometric technique have
been reported [21–32]. However, the results are some-
what equivocal and more studies are essential to identify
VOC biomarkers of lung cancer [32]. There are only few
studies conducted using an array of sensors to distin-
guish types of lung cancer cells based on in-vitro cul-
tured cell lines samples [8, 33, 34] as shown in Table 1.
These reports show substantial results in term of per-
formance of the sensors. However, the use of the right

classification algorithms for e-nose performance with
the aid of SPME-GCMS analysis is crucial to strengthen
the findings and progress the aim of non-invasively can-
cer diagnosis [35, 36].
In this study, the VOCs signature of the two types of

lung cancer cell lines which are A549 and Calu3 will be
investigated. The normal lung cell line and the breast
cancer cell line are used as control samples to differenti-
ate the lung cancer-related VOCs. As to date, no known
reported work investigating VOC patterns released by
both lung and breast cancer cultured cell lines under the
same conditions, environment and at different growth
stages.
This paper presents new results distinguishing the

VOCs generated by two types of cancer cell lines,
namely lung cancer (A549 and Calu-3) and breast cancer
(MCF7), as well as normal lung (WI38VA13) cell lines at
different proliferation stages using the Cyranose320 e-
nose device. Also presented are results of five different
classifiers for the e-nose to perform the VOCs classifica-
tion. To the best of author knowledge, this paper also
presents a novel work by investigating the use of Naïve
Bayes (NB) and One versus All-Support Vector Machine
(OVA-SVM) to classify the VOCs emitted by the in-vitro
cell lines using e-nose. Table 2 shows the parameters
used in this study.
The Cyranose320 is an array of 32 conducting polymer

coated carbon black sensor-based e-nose and the pattern
of change in the resistance of the sensor array is used to
identify smells [37]. This feature can assist to detect
even the slightest difference in headspace or complex
volatile organic compounds (VOCs) emitted by the ex-
haled breath [38] or in vitro cultured cells [34, 39–41].
The Cyranose320 was used to detect and discriminate
the volatiles collected from the different cell lines with
the aid of pattern recognition methods.
The VOCs collected were classified using different

multiclass classifiers that best utilise the effectiveness of
Cyranose 320 in distinguishing the lung cancer cells
from control samples. GCMS-SPME analysis also per-
formed for each sample. This pre-concentrated volatile
compound extraction method was able to determine the

Table 1 List of sensor array used, cell lines, cell growth time considered for measurement (incubated period) and type of matrix
used in in-vitro studies aiming to distinguish type of lung cancer by previous studies

Sensor
Type

Cell lines Control Incubation
(hours)

Matrix Type Statistical Approach Reference

GNP NSCLC: A549, Calu-3, H1650,
H4006, H1435, H820 and H1975

Pure
medium

- Culture medium
with cells

PCA [8]

GNP NSCLC: A549, Calu-3, H1650, H4006, H1435, H820, H1975,
H2009, HCC95, HCC15, H226 and NE18
SCLC: H774, H69, H187, and H526

IBE, pure
medium

68 Culture medium
with cells

Linear nu-SVC-SVM;
cross validation

[33]

C320 NSCLC: L55, L65, A549, H460, M51 and REN NHDF and
HASM

- Cells in saline
solution

MD [34]
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specific compound emitted by each type of cells. The
compounds were identified using NIST library and com-
pared with e-nose data. Thus, the significance of this
preliminary results and its support in the application in
lung cancer clinical screening are discussed.

Methods
Cell culture preparation
Cancerous lung cell lines A549 (ATCC ® CCL-185™) and
Calu-3(ATCC® HTB-55™), normal lung cell line
WI38VA13 (ATCC® CCL75.1™) and breast cancer cell
line MCF7 (ATCC® HTB-22™) were obtained from the
American Type Culture Collection and being maintained
at the Cell and Tissue Culture Engineering Lab (CTEL),
Department of Biotechnology Engineering, IIUM. Table 3
shows the characteristics of the cell lines used in this
project. Based on the Table 3, the A549 and Calu3 are
representing same histology which is adenocarcinoma
but claimed to be from different origin. Thus, the VOCs
signature of both A549 and Calu3 will be also covered
in this work.
The A549, WI38VA13 and MCF7 cells were revived

and cultivated in DMEM (Dulbecco’s Modified Eagles
Medium) supplemented with 10% (v/v) FBS (Fetal Bo-
vine Serum). Meanwhile, the Calu-3 cell line was grown
in Eagle’s Minimum Essential Medium (EMEM) with
10% (v/v) FBS. The cells were grown in 25cm2 T-flasks
and incubated in a carbon dioxide (CO2) incubator at
37°C/5% CO2 [22, 23, 36].
Upon reaching 70-90% confluence, the cells were har-

vested and then seeded into new flasks with an initial
density of 1×105 cells/ml in 5ml media for each cell
line respectively. The culture condition was as reported
in our previous work [39]. The blank mediums, DMEM
(without cells) and EMEM (without cells) samples were
also triplicates respectively as control samples and
incubated together with A549, Calu-3, MCF7 and

WI38VA13. Same cell culture preparation and env-
ironmental conditions were maintained for both e-nose
and SPME-GCMS measurement. The odour samplings
were taken after 24 h of incubation using SPME fiber
(Divinylbenzene/Carbonexen/Polydimethylsiloxane),
while for Cyranose320, the measurement commenced
at 24th, 48th and 72nd hours of incubation.

E-nose headspace sampling
The prepared samples in fully sealed T-flasks were
placed in the biosafety cabinet. Then the flasks were
connected to the inlet of Cyranose 320 for data collec-
tion. The sampling setup using e-nose is shown in Fig. 1.
Table 4 shows the configuration of the data collection
process using Cyranose 320. The baseline purge was set
to be at 10 s before data collection. The odour samples
were drawn for 180 s to allow it to cover all the 32 sen-
sors. This duration will enable all the sensors inside the
Cyranose320 to detect the VOCs in the odour. The sniff-
ing process was set to be repeated for 5 times.

Data analysis
The collected data were then analysed using SPSS 17.0
and MATLAB R2012a to evaluate the e-nose perform-
ance. Each individual sample was described by a unique
set of measurement known as features. The Cyranose 320
used in the work contains 32 conducting polymer sensors,
and hence creates 32 features for each odour sample. Each
feature forms a dimension in a space known as feature
space. For each sample including the blank mediums, the
experiments were replicated 3 times and each sniffing was
repeated for 5 times at 24th, 48th and 72th hours respect-
ively. For the e-nose analysis, each sample including blank
mediums were replicated into three flasks, with datasets
of two flasks used for training and the final one for testing.
The sample datasets were divided into two parts and
assigned as training and testing sets with a 2:1 ratio

Table 2 List of sensor array used, cancer cell lines, cell growth time considered for measurement (incubated period) and type of
matrix used in this work

Sensor Type Cell lines Control Incubations (hours) Matrix Type Statistical Approach

C320 NSCLC: A459 and Calu-3 WI38VA13, MCF7
and pure medium

24, 48, 72 Culture medium
with cells

Savitsky Golay filtering;
LDA,PCA, PNN, KNN,
OVA-SVM, NB; 10-k-fold cross validation

Table 3 Characteristic of the cell lines

Cell Lines Oncogene Histology Patient Type Tissue Type Growth Medium

A549 K-Ras mutation Adeno-carcinoma Male, 58 years Caucasian Lung (epithelial cell) DMEM

Calu-3 EGFR, K-Ras, TP53 and CDKNA genes mutation Adeno-carcinoma Male, 25 years, Caucasian Lung (epithelial cell)
from pleural effusion

EMEM

MCF-7 WNT7B mutation Adeno-carcinoma Female, 68 years Mammary gland
(epithelial cell) from
pleural effusion

DMEM

WI38VA13 - Normal cell Female,Caucasian,3 months Lung (Fibroblast) DMEM
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respectively. This study uses 18 different classes for classi-
fication purposes (total of six (6) classes multiplied by
three varying incubation times).
Figure 2 shows an example of five complete cycles of

feature space from sensor 12 of the Cyranose 320. Figure 3
shows the block diagram of the summary of data analysis
conducted in this study.

Signal pre-processing
The Savitzky-Golay filter was selected to remove noise from
the gas sensor signal while preserving the height, width,
amplitude and overall profile of the response [37, 39].
The datasets were normalized using fractional differ-
ence method as in Eq. (1) [42]:

dR ¼ R–Roð Þ=R ð1Þ

Where Ro is the baseline and the R is the steady
state of the sensor response to the gas sample of the

system. This fractional method helps to reduce the
signal drift problem [43]. All data were further
normalized using sensor auto scaling global method,
scaled to zero mean and standard deviation of one
[42, 44].

Fig. 1 The Cyranose 320 Setup for Data Collection: Snout of
Cyranose 320 was inserted into the T-25cm2 flask containing
cell cultures

Table 4 Parameter settings of the Cyranose 320 for data
collection procedure [85]

Parameters Time (s) Pump Speed (cc/min)

Baseline Purge 10 160

Sample Draw 180 120

Snout Removal 3 -

1stAir Intake Purge 40 180

Filter: ON - -

The e-nose was set to be at 37°C (optimum temperature for culture growth)

Fig. 2 Example of five complete cycles of the feature space
extracted from sensor 12 of the e -nose using A549 sample at
24th hour

Fig. 3 The block diagram of data analysis conducted using
Cyranose 320
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Feature extraction
The consideration of features extraction is essential to
point out the discriminating information that would aid
the improvement of classification performance [38].
Principal component analysis (PCA) and linear dis-

criminant analysis (LDA) are two commonly used fea-
ture extraction techniques [45, 46]. In this present study,
both techniques were conducted to evaluate the best
method for reducing dimensionality by preserving the
minimum information about the dataset. Hence the
component and discriminants from PCA and LDA re-
spectively were used for class separability visualisation.
The PCA provides unbiased projection, which gives bet-
ter information on the clustering behaviour of each
class, while LDA maximizes the intergroup variance and
minimizes within group variance. Further, the LDA data
was considered as the input for different classifiers. This
LDA data able to provide the highest possible discrimin-
ation between different classes of data and help to clas-
sify the data accurately [47–50].

Proposed classification algorithms
To date, various classification algorithms are proposed
for cancer detection particularly those related to e-nose.
In this study, the effectiveness and robustness of e-nose
in distinguishing lung cancer cell lines were tested using
several classification algorithms namely LDA with fisher
criterion, K-Neighbour Neural Network (KNN), Prob-
abilistic Neural Network (PNN), Naïve Bayes (NB) and
Multi-class Support Vector Machine (SVM). The statis-
tical significance of all 32 independent sensors was eval-
uated by comparing the mean score of 18 different
groups using the Wilk’s Lamda method. A multi-class
odour classification model (LDA-based classifier) was
later proposed to evaluate the robustness of an e-nose
system in classifying cancerous cell samples.
The LDA classification was conducted using leave-

one-out approach for the error estimation. The fisher
criteria was reported to be able to overcome the non-
normally distributed data [51], hence being employed in
this work.
PNN, which is defined as an implementation of Kernel

discriminant analysis contains operations, which are or-
ganized into multi-layered feed forward network with
four layers [52]. Although PNN algorithm required a
large memory for training, it requires less training time
[52, 53]. The spread value (σ) was determined using 10-
fold cross validation and a value of 0.1 were obtained as
appropriate for the dataset with acceptable classification
accuracy [54].
On the other hand, KNN classification is known as the

simplest classification which uses neighbour characteris-
tics to determine the class of the data samples. This clas-
sifier is able to rapidly evaluate the unknown inputs by

calculating the distance between a new sample and mean
of training data samples in each class weight by their co-
variance matrices [23]. By considering the theoretical
method the best k-value (one; 1) and the distance metric
of Euclidean were selected as maximum accuracy ob-
tained using these parameters [24].
Meanwhile, naïve Bayesian (NB) is a simple probabilis-

tic classifier which applies Bayes’s theorem with naïve in-
dependence assumption. It is known as an efficient and
effective classification technique to create models with
predictive capabilities [55]as the algorithm does not have
several free parameter settings, does not require large
amounts of data for training and computationally fast in
decision making [56, 57]. In this study, the NB classifica-
tion with normal (Gaussian) was chosen and the prior
probabilities for the classes specified to empirical.
Finally, SVM analysis is a linear classifier which is able

to find the best separating line between two classes in
higher dimensions [58]. However, the SVM can be dir-
ectly used for binary classes only. For cases with more
than two classes, the multi-class SVM can be imple-
mented by dividing the single multiclass problem into
multiple binary classification problems. There are three
type of multi-class SVM, namely one versus all (OVA),
one versus one (OVO) and Direct Acyclic Graph
(DAG)-SVM [59]. The OVA based SVM was used in this
work to classify the 18 classes. This classification was
trained with RBF kernel functions which were obtained
from optimization method [60]. Various pairs of box
constraint (C) and sigma (σ) were tested for each dataset
and the final obtained values were: C: 210 and σ: 2-3for
this dataset.

Performance evaluation
The performance of each of the classifiers are presented
using the accuracy (ACC) achieved. This is defined as the
percentage (%) of correct classification over the total cases
presented. However, since the accuracy alone might not
give the best classification performance; sensitivity (SEN),
specificity (SPE), precision (PREC) and Matthews Correl-
ation Coefficient (MCC) measurements for each class
were calculated to provide more relevant and interpretable
information about the results [61, 62]. There are a few
terms that are commonly used to measure the perform-
ance rate, namely, true positive (TP), true negative (TN),
false positive (FP) and false positive (FP) [63].
The application of MCC in the multiclass case was ori-

ginally reported in [64] which was used to measure the
classification correlation. The value of MCC varies between
-1 and 1 (where 1 is perfect prediction quality, while -1 is
in the extreme misclassification of a confusion matrix and
0 specify random correlation) [62, 65]. This paper will re-
port the accuracy, sensitivity, specificity, precision and
MCC measures as well for all 18 classes for the best results.

Thriumani et al. BMC Cancer  (2018) 18:362 Page 5 of 17



Gas chromatography mass spectrometry- solid phase
micro extraction (GCMS-SPME)
GCMS-SPME headspace sampling
The SPME-GCMS was used to identify the headspace
VOCs that were released by each type of cultured cell
lines (A549, Calu-3, WI38VA13 and MCF7) and blank
mediums. Preheated solid phase micro extraction
(SPME) was used to collect the VOCs released from the
cells. The inner needle, which is the fiber of SPME or
known as Divinylbenzene/Carbonexen/Polydimethylsi-
loxane (DVB/CAR/PDMS), was used in this work. The
DVB/CAR/PDMS coated fiber was chosen as it has been
optimized to extract a wide range of molecular range of
molecular weight of both volatile and semi volatile mole-
cules [66]. The needle was exposed to headspaces of cell
cultured in the 25cm2 T-flask for 15 min as shown in
Fig. 4. At the end of the VOCs extraction time, the fiber
was immediately inserted into GCMS Agilent 7890 sam-
ple point.
The DB-WAX capillary column (30 m x 250 μm x 0.

25 μm) was used with the injector temperature of 250 °
C to allow desorption of VOCs thermally. The oven
temperature was initially set to be 50°C and held for 0.5
min, then ramped 10°C/minutes up to 180°C for 1 min
and then again ramped 15°C per minute until it reached
250°C and held for 5 min. The carrier gas Helium flow
rate was 1ml/min. The total analysis took 24.17 min to
obtain the results. The MS analyses were done in full
scan mode (TIC mode) with the scan range between 40
to 200 a.m.u and the electron impact ionization was
done at 70eV to separate the compounds [30].

Identification of VOCs
The potential VOCs were only identified by using the
spectral match in this study [29, 64]. The identity of
each compound was determined using the Agilent Chem

Station Software by searching on the “NIST” Mass Spec-
tral Library 11 which provides the use of retention time
and m/z of VOCs of interest. Each chromatograph was
integrated and the peaks were matched and aligned in
order to obtain a matrix that contains all peaks found in
the whole set of measurements. The peaks or com-
pounds that are missing in other replicate samples were
eliminated. In this analysis, peaks less than 80% of the
matching percentage to the NIST library (Qualitative)
and peak area less than 3000 were excluded [27]. Those
peaks identified as arising from column, empty flask and
fiber (siloxanes) were excluded in this study [19, 29].
The significant differences on the relative abundances of
identified VOCS were conducted using the t-test and
considered significant at P < 0.05.

Results
E-nose performance
Table 5 shows a representative result of Wilk’s Lambda
test of day 1 dataset to show the contribution of vari-
ation in the discriminant function (df ). The functions
with p-value less than 0.05 (p < 0.05) were chosen, as
this corresponds to the ability of the function to discrim-
inate the groups.
Figures 5 and 6 show 3D scatter plots to visualize the

variability between VOCs of cell lines detected by e-nose
using LDA and PCA analysis respectively.
Based on Fig. 5, the result shows that the samples of

A549, Calu-3, MCF7, WI38VA13 and blank mediums
were well separated with 100% discriminant function.
The test data samples were matched closely with the dis-
tribution of different groups of cell lines in the training
data. A significant clustering between lung cancer cell,
breast cancer and the control samples was observed.
This indicates that the different cell lines are emitting
different profile of VOCs and that the e-nose is able to

Fig. 4 The GCMS-SPME odour sampling procedure. SPME coated needle was exposed to the headspace of cultured cell. The experiment was
conducted in an incubator (37°C/5% CO2)
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detect these variations. Both of the non-small lung can-
cer cells, A549 and Calu-3 ,were observed to be very
close together but with a distinct separation. The scores
of other samples were well distributed within each
group, respectively with visible separation for the com-
bination of all days.
PCA was performed on the data and the eigenvectors

and eigenvalues were calculated using correlation
matrix. The eigenvectors of eigenvalue higher than 1.0
can be selected as principal components (PC) and value
lower than 1.0 can be considered to be excluded, in this
study, the first three PCs with eigenvalue higher than 1.
0, were selected for dataset at 24th, 48th and 72nd
hours. Based on Fig. 6a, the samples were observed to

be well separated. The total percentage of principal com-
ponents (PC1, PC2, and PC3) in the PCA analysis as
shown in Fig. 6a is 93.56%, which indicates that the each
of the cell lines are separable. In order to emphasise the
ability of sensors to distinguish the different lung cancer
type, the PCA plot for Calu-3 and A549 were enlarged
in Fig. 6b. The sensors managed to distinguish the 2
types of lung cancer each other might be due to the spe-
cific VOCs emitted from the cell lines since the origin of
the A549 and Calu-3 cells are from epithelium and
pleural effusion, respectively.
However, based on the PCA grouping behavior, it is

observed that the features within the group were sepa-
rated spatially compared to the LDA. The clustering of
A459 and Calu-3 (lung cancer cells) observed to be sig-
nificantly separated from the MCF7 (breast cancer cell)
and WI38VA13 (normal cell) clusters. Overall, the ex-
tracted feature by LDA indicates good separability of dif-
ferent samples. Thus the LDA-based features were used
to test the four different classifiers.

Classification results
The LDA-based features were used to test the four clas-
sifiers (LDA, PNN, KNN, NB and OVA-SVM) using 10-

Table 5 The Significant test using Wilk’s Lambda for LDA

Test of Function(s) Wilks' Lambda Chi-square df Sig.

1 through 5 .000 8432.165 75 .000

2 through 5 .000 3116.215 56 .000

3 through 5 .033 1214.302 39 .000

4 through 5 .246 496.519 24 .000

5 .911 32.974 11 .001

Df different function, Sig significant value

Fig. 5 LDA plot of volatile compounds from cultured cells (combination of all 3 days). The separability of 4 types of cell lines and two different
blank medium shows the effectiveness of the e-nose
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fold cross validation. The performance of these classi-
fiers was measured by their accuracy, sensitivity, specifi-
city, precision and MCC of training and testing data.
The performances of the e-nose and the classifiers on
differentiating the VOCs emitted by lung cancer from
the control samples were evaluated by comparing of the
performance each classifier.
Tables 6, 7, 8, 9, 10 show the of the classification re-

sults of five different classifiers performance in detecting

each type of cell lines samples at three different times of
incubation.
Tables 6, 7, 8, 9, 10 shows that three out of five LDA-

based classifiers (SVM, PNN, KNN and NB) were able
to achieve accuracy, sensitivity, specificity and precision
of 90% while MCC has the value of 1 (high prediction
quality). However, the OVA-SVM classifier gives the best
results as compared to the other classifiers for classifying
lung cancer cell lines volatile data. This algorithm shows

a b

Fig. 6 a PCA plot of volatile compounds of cultured cells (combination of all 3 days). The separability of 4 types of cell lines and two different
blank medium shows the effectiveness of the e-nose. b PCA plot of volatile compounds of lung cancer cultured cells (combination of all 3 days).
The separability of 2 types of lung cancer cell lines shows the effectiveness of the e-nose

Table 6 Performance rate of Fisher-Linear Discriminant Analysis

Time
(h)

Classes Performance rate of LDA (%)

Train and Validate Test

ACC SEN SPEC PREC MCC ACC SEN SPEC PREC MCC

24 A549 90.86 98.41 98.93 98.41 0.91 96.89 98.61 98.88 98.44 0.94

Calu3 94.84 94.38 95.50 98.52 0.75 95.15 95.26 96.18 97.52 0.74

MCF7 94.32 94.92 95.50 88.89 0.80 95.01 94.72 96.30 90.32 0.82

WI38VA13 94.73 93.20 95.72 92.86 0.89 95.56 94.50 94.53 92.99 0.89

DMEM 93.25 93.33 95.18 87.69 0.75 92.96 92.63 95.75 93.17 0.78

EMEM 90.22 92.25 91.33 84.39 0.70 90.96 89.84 95.65 83.01 0.67

48 A549 94.89 98.45 98.94 98.50 0.98 96.90 99.47 99.87 98.51 0.98

Calu3 92.99 98.21 95.81 98.64 0.78 96.75 94.18 98.17 97.88 0.82

MCF7 95.32 96.86 95.78 90.38 0.85 96.51 91.30 97.64 95.45 0.90

WI38VA13 95.32 96.30 96.07 94.11 0.88 95.90 96.51 95.20 94.14 0.92

DMEM 93.65 80.00 55.58 92.86 0.50 93.89 50.00 93.00 97.13 0.53

EMEM 94.11 91.38 92.38 89.74 0.45 94.09 93.10 97.36 90.19 0.86

72 A549 94.91 98.62 98.97 98.50 0.98 96.92 99.54 99.89 98.63 0.96

Calu3 94.04 98.67 94.52 98.34 0.86 97.41 95.33 98.04 97.71 0.85

MCF7 95.95 96.98 96.00 92.32 0.92 97.12 92.91 97.76 95.71 0.95

WI38VA13 95.59 97.05 96.57 94.23 0.93 96.34 96.54 97.30 94.70 0.88

DMEM 93.52 83.08 96.00 94.30 0.65 93.68 52.31 93.21 97.25 0.71

EMEM 94.44 88.89 94.80 73.85 0.52 91.85 88.89 95.21 90.75 0.37
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Table 7 Performance rate of Naïve Bayes classifier

Time
(h)

Classes Performance rate of NB (%)

Train and Validate Test

ACC SEN SPEC PREC MCC ACC SEN SPEC PREC MCC

24 A549 96.87 97.00 99.32 99.45 0.97 99.39 99.27 99.68 99.47 0.95

Calu3 97.56 96.13 98.41 99.35 0.95 99.34 96.25 99.54 99.49 0.94

MCF7 98.70 97.44 97.68 95.79 0.93 99.23 98.31 99.29 90.63 0.84

WI38VA13 98.83 94.91 95.67 99.22 0.96 99.34 94.23 99.65 94.23 0.88

DMEM 92.86 61.52 98.09 70.59 0.38 97.10 73.68 98.63 77.78 0.53

EMEM 91.71 60.22 96.77 56.12 0.33 92.81 73.02 94.18 46.46 0.87

48 A549 99.93 97.00 99.92 98.80 0.98 99.96 97.35 99.94 99.93 0.94

Calu3 96.72 97.48 99.54 83.00 0.47 96.27 97.18 98.74 79.63 0.52

MCF7 99.50 95.06 99.89 99.87 0.97 99.23 91.30 99.88 98.44 0.93

WI38VA13 99.33 95.81 99.61 93.59 0.87 99.12 94.52 99.52 94.52 0.89

DMEM 93.72 84.80 97.11 64.29 0.74 93.58 85.52 98.57 60.91 0.77

EMEM 98.60 83.96 99.45 91.95 0.81 99.01 88.28 99.06 87.69 0.79

72 A549 99.93 97.00 99.92 98.99 0.98 100.00 100.00 100.00 100.00 1.00

Calu3 96.41 95.90 96.24 64.75 0.36 96.78 90.00 97.25 69.23 0.43

MCF7 99.75 97.00 100.00 100.00 1.00 100.00 100.00 100.00 100.00 1.00

WI38VA13 99.70 97.00 99.68 96.19 0.94 99.78 97.96 99.88 97.96 0.96

DMEM 92.56 87.53 96.85 91.75 0.66 93.19 80.00 97.01 91.23 0.67

EMEM 97.25 90.75 97.51 73.77 0.59 98.47 94.44 98.73 82.26 0.69

Table 8 Performance rate of K-Nearest Neighbour classifier

Time
(h)

Classes Performance rate of KNN (%)

Train and Validate Test

ACC SEN SPEC PREC MCC ACC SEN SPEC PREC MCC

24 A549 99.08 97.67 99.17 99.50 0.91 99.47 97.97 99.20 99.60 0.91

Calu3 99.87 99.98 99.86 97.75 0.96 92.70 99.84 99.07 99.57 0.98

MCF7 99.01 99.77 99.54 99.65 0.97 99.04 99.87 99.92 99.80 0.97

WI38VA13 99.41 99.48 99.37 99.33 0.95 98.80 99.40 98.80 92.30 0.89

DMEM 99.54 92.47 97.32 96.35 0.92 93.80 87.50 97.38 96.45 0.94

EMEM 99.93 98.85 96.37 91.02 0.88 87.10 71.40 98.40 85.20 0.92

48 A549 99.89 99.01 99.78 96.39 0.94 99.00 99.23 99.81 96.85 0.95

Calu3 99.60 98.81 99.65 94.32 0.91 99.71 99.05 99.50 94.29 0.93

MCF7 99.87 98.02 100.00 100.00 0.99 100.00 100.00 100.00 100.00 1.00

WI38VA13 99.86 97.47 100.00 95.62 0.95 99.37 99.59 99.60 95.36 0.94

DMEM 94.73 58.67 96.51 45.36 0.32 92.20 50.80 96.10 54.10 0.39

EMEM 94.53 89.02 97.86 80.98 0.79 93.70 97.20 97.00 89.00 0.72

72 A549 99.94 98.98 99.93 98.98 0.93 99.90 99.89 99.83 99.93 0.96

Calu3 99.60 96.41 98.98 98.79 0.96 99.75 99.58 99.55 95.20 0.95

MCF7 100.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 100.00 1.00

WI38VA13 100.00 100.00 100.00 100.00 1.00 99.80 99.67 100.00 100.00 0.97

DMEM 96.46 78.04 95.72 86.34 0.63 86.80 100.00 85.80 86.36 0.66

EMEM 99.60 100.00 99.58 94.12 0.91 94.20 18.50 100.00 100.00 0.40
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Table 9 Performance rate of Probabilistic Neural Network classifier

Time
(h)

Classes Performance rate of PNN (%)

Train and Validate Test

ACC SEN SPEC PREC MCC ACC SEN SPEC PREC MCC

24 A549 99.62 98.77 99.22 99.59 0.92 99.65 99.08 99.39 99.69 0.94

Calu3 99.89 99.98 99.89 98.05 0.97 99.87 99.89 98.70 98.91 0.96

MCF7 99.11 99.80 99.58 99.69 0.98 99.04 99.87 99.92 99.80 0.97

WI38VA13 99.50 99.57 99.43 99.44 0.94 99.61 99.62 99.47 99.49 0.96

DMEM 99.57 95.97 99.31 97.33 0.93 99.80 95.99 99.48 97.75 0.95

EMEM 99.90 98.93 96.47 91.02 0.89 99.93 97.14 95.14 91.22 0.89

48 A549 99.91 99.75 99.93 98.80 0.97 99.90 98.51 97.02 98.87 0.96

Calu3 99.93 98.93 99.75 99.86 0.98 99.94 98.51 100.00 100.00 0.99

MCF7 99.90 96.43 99.86 97.59 0.94 99.95 97.00 99.92 98.57 0.95

WI38VA13 99.90 98.00 100.00 100.00 1.00 100.00 100.00 100.00 100.00 1.00

DMEM 95.24 94.43 94.93 96.67 0.92 91.57 81.03 95.05 62.47 0.79

EMEM 96.93 98.22 98.66 90.87 0.82 96.97 98.36 98.78 92.39 0.84

72 A549 99.93 100.00 99.93 98.99 0.97 100.00 100.00 100.00 100.00 1.00

Calu3 99.94 98.90 100.00 100.00 0.99 99.69 100.00 99.67 95.24 0.93

MCF7 99.92 97.00 99.91 97.73 0.93 99.97 97.54 99.68 94.23 0.92

WI38VA13 100.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 100.00 1.00

DMEM 91.24 94.41 95.80 88.11 0.70 91.66 94.62 96.01 88.57 0.68

EMEM 97.73 58.53 98.90 94.82 0.67 97.99 58.99 98.97 95.63 0.69

Table 10 Performance rate of Support Vector Machine classifier

Time
(h)

Classes Performance rate of SVM (%)

Train and Validate Test

ACC SEN SPEC PREC MCC ACC SEN SPEC PREC MCC

24 A549 99.69 99.24 99.93 99.67 0.98 99.86 99.65 99.96 99.82 0.98

Calu3 99.93 99.81 99.92 99.89 0.98 99.84 99.87 99.72 99.76 0.98

MCF7 99.98 99.87 99.97 99.92 0.96 99.94 99.95 99.98 99.89 0.98

WI38VA13 99.72 99.80 99.72 99.84 0.97 99.71 99.82 99.83 99.87 0.97

DMEM 99.46 96.77 99.65 98.32 0.94 99.85 96.99 99.69 98.75 0.96

EMEM 99.86 100.00 99.85 97.75 0.97 96.38 96.19 97.83 91.64 0.87

48 A549 99.82 99.72 99.94 99.30 0.97 99.97 99.79 99.97 99.76 0.97

Calu3 99.79 99.70 100.00 100.00 0.98 99.47 99.64 99.88 99.89 0.98

MCF7 99.99 99.45 100.00 100.00 0.99 100.00 100.00 100.00 100.00 1.00

WI38VA13 99.86 99.89 100.00 100.00 0.99 100.00 100.00 100.00 100.00 1.00

DMEM 97.52 97.83 97.49 92.00 0.81 92.62 76.07 94.55 41.86 0.78

EMEM 100.00 100.00 100.00 100.00 1.00 99.12 100.00 99.06 87.88 0.80

72 A549 99.98 99.71 99.93 99.82 0.90 100.00 100.00 100.00 100.00 1.00

Calu3 100.00 100.00 100.00 100.00 1.00 99.96 99.93 99.88 99.83 0.98

MCF7 100.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 100.00 1.00

WI38VA13 99.64 80.20 100.00 100.00 0.89 100.00 100.00 100.00 100.00 1.00

DMEM 97.52 88.82 99.86 96.15 0.71 95.36 82.31 100.00 100.00 0.85

EMEM 97.84 100.00 91.31 82.67 0.81 95.76 81.85 98.43 86.67 0.84
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high accuracy, sensitivity, specificity, precision and MCC
in the testing phase. On the contrary, the LDA classifier
has the least performance achieved and many samples
were wrongly classified.
Although LDA-based OVA-SVM showed the best per-

formance, the percentage of accuracy, sensitivity, specifi-
city, precision and MCC values using PNN algorithm
shows consistently high for every class. The prediction
quality value (MCC) of DMEM using LDA-based PNN
algorithm shows only 0.3 lesser than the SVM. To sup-
port this fact, a study conducted by F.Moderasi (2014),
suggested that the PNN algorithm can be used as an ap-
propriate alternative for SVM as the training process of
the PNN algorithm is easier than SVM algorithm [67].
The performance of NB was observed to be less than

SVM, KNN and PNN classifier because it is a generative
classifier, and generally this classifier is not as accurate
as the discriminative classifiers [68]. However, the NB is
still preferred to be used for the medical diagnosis appli-
cation because of it is simple to build, easy to train and
able to deal with the missing information [56, 57]. Ac-
cording to K. Huang (2005), the NB performance can be
improved by training the NB classifier in a discrimina-
tive way [68] .Thus, this method can be considered in
future work to obtain excellent results from NB
classifier.
When the LDA-based OVA-SVM performance rate

was investigated according to samples at different incu-
bation time, it was found that the classification accuracy
rate improved significantly, achieving approximately 99%
for the growth features of 24th-hour incubation period.
The performance rate was observed to also improve for
samples at 48th and 72nd-hour of cell growth. These
may indicate that the VOCs of each sample increased
with prolonged incubation periods.
The low performance of OVA-SVM for the 24th-hour

compared to the 2nd day data may due to the insuffi-
cient time for the metabolites or compounds to be re-
leased by the cells to into the headspace. This may also
happen due to relatively low cell numbers which cause
the lower production of VOCs compared to the 48th
and 72nd-hour of incubations. This corresponds to a
previous study on in-vitro lung cancer cells by Smith. D
(2003), where a number of compounds in the headspace
are directly proportional to number of cells. This prob-
lem can be overcome using more concentrated cell seed-
ing that might also help the differentiation between the
other cell lines at an early stage of growth [69].

Identification of the VOCs of lung cancer cell lines and
normal cell lines by SPME-GCMS analysis
The VOCs related to lung cancer cell metabolism were
investigated using SPME-GCMS analysis. The head-
spaces of cultured lung cells have been compared to the

headspace of medium with breast cancer cells, the normal
lung cells and without cells, respectively. The complete list
of identified VOCs, based on the average peak of total
chromatograms of three replicates of each sample is tabu-
lated in Table 11. These 32 selected compounds are sup-
posed to emitted from the both background culture media
and the metabolic activity of the cells.
Statistical significance of the relative abundances of

the VOCs released from the lung cancer cell lines and
the blank mediums have been evaluated using the t-test
by considering p value less than 0.05 as statistically sig-
nificant. This analysis conducted to eliminate confound-
ing VOCs which are due to the different substrates
rather than to the cell metabolism. The results were
shown in Table 12. The same analysis also has been con-
ducted on the VOCs released by the different cancer cell
(MCF7) and the normal lung cancer (WI38VA13). The
compounds and their significant differences have been
tabulated in Table 13.
Among the 32 VOC compounds detected, 20 are re-

lated to the lung cancer cell lines. Out of these, 18 are
observed to be significantly more in the headspace of
lung cancer samples compared to the blank medium
(Table 12). Out of those 18, nine were observed to be
absent from the blank samples. This indicates that these
nine VOC compounds have specific association with the
lung cancer cell metabolism.
In order to eliminate the influence of VOCs of culture

media on the VOCs of lung cancer, the VOCs that found
exclusively in the blank medium (statistically not signifi-
cant) have been removed in the further analysis aimed at
studying the properties of cancer cell lines. Furthermore,
the aromatic compounds such as styrene, dimethyl sila-
nediol, benzene and ethylbenzene are more linked to the
contaminants [19, 50, 70, 71], thus these compounds are
also eliminated for further analysis.
Overall, the 11 VOCs identified as statistically signifi-

cant in previous analysis for the discrimination between
normal lung cell and breast cancer cell line. The abun-
dances of each VOC related to lung cancer cells was
compared to both lung cells and breast cancer samples
and tabulated in Table 13.
As seen in Table 13, four VOCs, namely dodecane, de-

canal 2-ethyldodecanol and heneicosane, are specific to
lung cancer cells. They are absent from the control sam-
ples. The VOC whose abundance significantly decreases
in the lung cancer cells are propylbenzene, nonanal, 3,
4-dimethylheptane, 2, 4-dimethylundecane and 2-
ethylhexanol. The decane was observed to be increases
significantly in the cancer related cell samples compared
to normal lung cell line, indicating this compound more
related to cancerous volatile. These results indicated that
the headspaces of lung cancer cell lines are characterized
by a specific VOCs signature.
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Discussion
The VOCs analysis in the medical field offered a great
alternative approach to cancer diagnosis. However, till
date the use of VOCs analysis in the clinical approach is
still limited due to the lack of validation of cancer re-
lated metabolites and sensing performance of VOCs sen-
sors. In this work, the VOCs emitted by the 2 different
lung cancer cell lines and the controlled cell lines, both
breast cancer cell and normal lung cell lines were ana-
lyzed using the commercialized CP gas sensors (Cyra-
nose 320) and GSMS-SPME. This work is highlighting

the potential of these analysis techniques in providing
meaningful information in the clinical application of
lung cancer diagnosis. The Cyranose 320 e-nose used to
analyze the headspace of conditioned culture cell lines
(in-vitro) in the proliferative conditions for 3 days to dis-
criminate the VOCs patterns released in the headspace
of the cell lines during normal and proliferation stage.
Results from the e-nose analysis highlighted that the
cancer cell lines are able to classified with high accuracy
using the VOCs patterns even at the early stage of cell
proliferation (24th hours of incubation time).

Table 11 Compounds detected from the headspace of in vitro cultured cell lines (>80% of the NIST matching percentage)

Retention
Time
(min)

Library/ID Summary of All Substances Identified by Spectral Match CAS number

A549 Calu-3 MCF7 WI38VA13 DMEM EMEM

3.33 Amphetamine - - - + - - 300-62-9

3.44 Decane + + + - - - 124-18-5

4.25 Ethylbenzene + + + + + - 100-41-4

4.95 O-Xylene - - - + - - 95-47-6

5.30 Propylbenzene + + + + + - 103-65-1

5.51 1-Ethyl-2-methylbenzene + + + + - - 611-14-3

5.74 Styrene + ++ ++ ++ ++ - 100-42-5

6.18 Dodecane - + + - - - 112-40-3

6.28 1,2,4-Trimethyl-benzene - - - + - - 95-63-6

6.57 Trimethyl[4(trimethylsilyl)butoxy]silane + + + + + - 7140-91-2

7.52 Cyclohexanol + + + + + - 108-93-097

7.64 Decanal + - - - - - 112-31-2

7.68 Nonanal + - - + - - 124-19-6

7.69 3,4-Dimethylheptane - - + - - - 922-28-1

8.02 2,4-DimethylUndecane - - - + - - 17312-80-0

8.33 1,3-Bis(1,1-dimethylethyl)benzene + + + + + - 1014-60-4

8.67 Tetradecane + - + + + - 629-59-4

8.74 2-Ethyldodecanol - + - - - - 19780-33-7

8.75 2-Ethylhexanol - + - + - - 104-76-7

9.00 Benzaldehyde + - + + + - 100-52-7

10.25 Dimethylsilanediol + + + + + + 1066-42-8

10.55 Acetophenone + - + + + - 98-86-2

10.60 Ethanedioic acid, bis(trimethylsilyl)ester + + + + + - 18294-04-7

10.88 2-Ethyl-1,3-dimethyl-benzene - + + - - - 2870-04-4

10.92 1-Methyl-2-Pyrrolidinone + - + - + - 872-50-4

11.30 Heptadecane - - - + - - 629-78-7

11.22 Heneicosane + + - - - - 629-94-7

11.30 Hexadecane - - + - - - 544-76-3

11.37 2-(Aminooxy)-Propanoic acid - - - - - + 2786-22-3

11.48 3-Methyl-3-Hexanol - - - - - + 597-96-6

11.55 Methoxyphenyl_Oxime + + + + + + 1000222-86-6

12.96 2-Phenyl-2-Butanone - - + - - - 2550-26-7-97

++: Percentage of peak area more than 50%; +: percentage of peak area less than 50%; - : not detected (peak area < 1%)
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The ability for the Cyranose320 to be able to discrim-
inate the VOCs of the cell samples with high accuracy
even at the 24th hour of incubation provides a motiv-
ation to perform GCMS-SPME analysis. This allows the
identification of the specific VOCs that are associated
with the cancer cell growth. This was achieved by com-
paring the VOCs from lung and breast cancer cells to
those of the blank mediums. Comparison of the chro-
matograms indicated that there were significant differ-
ences between the cell culture samples based on several
compounds. There are total four specific VOCs identi-
fied as lung cancer related volatile, namely, heneicosane,
dodecane, 2-ethyldodecanol and decanal.
The GCMS result also shows that higher alkanes

group; heneicosane was found in both lung cancer cell
lines, A549 and Calu-3, statistically significant from the
controlled samples. This indicates that the heneicosane
has high potential to be the lung cancer related bio-
marker. There are studies claimed the heneicosane as a
candidate of the biomarker from lung cancer patients
breath [28, 72, 73]. However, the origin of heneicosane
in lung cancer cell remains unclear.
Another compound with a higher alkane group known

as dodecane was observed to increases significantly in
Calu-3 during the incubation period. There are few stud-
ies on lung cancer biomarker suggested n-dodecane to
be associated with lung cancer in adenocarcinoma tis-
sues [29], patient’s breath, especially in EGRF mutated
adenocarcinoma patient’s breath [74]. Dodecane also
found to be related to breast cancer [75].
Among the detected VOCs, one specific compound,

namely decane, which is also from the high alkanes
group, was observed to be emitted by all of the three
cancer cells. Similar results were obtained by Yishan. W
and B G.Hyun. the decane is found in the lung cancer

Table 12 VOCs discriminating the headspace of lung cancer
cell lines and blank mediums. Analysis of abundances of VOCS
in the headspace of lung cancer cell lines using GCMS-SPME.
VOCs increased (emitted) and or decreases (consumed) by lung
cancer are reported with respect to blank medium. A p-value <
0.05 has been considered statistically significant

Trend Library/ID P-value

Increase Decane 1.50E-5

Ethylbenzene 0.052

Propylbenzene 0.011

1-Ethyl-2-methylbenzene 0.037

Styrene 0.135

Dodecane 0.033

Cyclohexanol 0.102

Decanal 0.001

Nonanal 0.002

1,3-Bis(1,1-dimethylethyl)benzene 0.084

Tetradecane 0.506

2-Ethyldodecanol 3.88E-5

2-Ethylhexanol 3.52E-5

Benzaldehyde 0.590

Acetophenone 0.750

2-Ethyl-1,3-dimethyl-benzene 0.036

1-Methyl-2-Pyrrolidinone 0.319

Heneicosane 3.35E-6

Decrease Trimethyl[4(trimethylsilyl)butoxy]silane 0.101

Ethanedioic acid, bis(trimethylsilyl)ester 0.107

Table 13 VOCs discriminating the headspace of lung cancer cell lines and control cell lines. Analysis of abundances of VOCS in the
headspace of lung cancer, breast cancer and normal lung cell lines using GCMS-SPME. A p-value < 0.05 has been considered statistically
significant

Compounds P-values

A549/Calu3 A549/MCF7 A549/WI38VA13 Calu3/MCF7 Calu3/WI38VA13

Decane 0.326 (↑) 0.154 (↑) 1.04E-4 (↑) 0.127 (↓) 0.016 (↑)

Propylbenzene 0.507 (↑) 0.533 (↑) 0.104 (↓) 0.988 (↓) 0.071 (↓)

Dodecane 1.67E-6 (↓) 2.23E-5 (↓) - 0.011 (↑) 1.67E-6 (↑)

Decanal 0.001 (↑) 0.001 (↑) 0.001 (↑) - -

Nonanal 0.002 (↑) 0.002 (↑) 1.17E-4 (↓) - 2.21E-4 (↓)

3, 4-Dimethylheptane - 2.75E-4 (↓) - 2.75E-4 (↓) -

2, 4-DimethylUndecane - - 0.017 (↓) 0.017 (↓) -

2-Ethyldodecanol 3.88E-5 (↓) - - 3.88E-5 (↑) 3.88E-5 (↑)

2-Ethylhexanol 3.53E-5 (↓) - 2.47E-7 (↓) 3.53E-5 (↑) 9.40E-5 (↑)

Heneicosane 0.334 (↓) 0.002 (↑) 0.002 (↑) 3.40E-4 (↑) 3.40E-4 (↑)

The (↑) and (↓) shows the trend of abundances increases and decreases in lung cancer cell line samples respectively
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tissue of patients [29, 72]. Another study by Chen. X,
using different lung cancer cells also found that decane
to be one of the 11 compounds with higher concentra-
tions compared to those of normal cells [76]. Decane
also considered as a lung cancer biomarker in a patient’s
breath [77, 78]. A significant difference found in the
concentrations of decane in the patient’s breath before
and after surgery [79]. Still, the origin of decane in
breast cancer cell has never been reported in any previ-
ous studies.
According to a study by Meggie. H (2010), representa-

tive of hydrocarbon is reported as potential biomarker of
lung cancer and suggested that these compounds are
probably the outcome of oxidative stress [80]. The alkanes
are mostly produced from lipid peroxidation by reactive
oxygen species (ROS) supported by few studies stating
that alkanes and methylated alkanes are found in lung
cancer [50, 70, 71, 80] and breast cancer [31, 34, 81].
A specific VOC released by A549 cell lines distin-

guished this cell line from other cell lines and blank
medium which is decanal. A study in 2011 reported that
decanal was used as a biomarker to detect non-small
lung cancer using electronic nose with 95% sensitivity
and 70% specificity [82]. Decanal was used as one of the
primary contributors to separate non-small cell lung
cancer and small cell lung cancer as well, with 100% sen-
sitivity and 75% specificity by Barash. O in a study con-
ducted in 2012 [33]. Whereas, there is only one specific
VOC, 2-ethyldodecanol has been emitted by Calu-3.
The obvious VOCs emitted by MCF7 cell in this study

were 3, 4-dimethylheptane, hexadecane and 2-phenyl-2-
butanone. This finding is in line with one study which
found hexadecane in the breath of a breast cancer pa-
tient [31]. However, no previous published studies on
volatiles from breast cancer have reported the existence
of 3, 4-dimethylheptane and 2-phenyl-2-butanone. The

normal cell WI38VA13 emitted four different VOCs which
were Amphetamine, Xylene, 2, 4-dimethylundecane and
heptadecane. The 2-ethydodecanal, 3, 4-dimethylheptane,
2-phenyl-2-butanone, Amphetamine, Xylene, 2-4-dimeth
ylundecane and heptadecane have not reported to date as
biomarker in any in-vitro studies. Thus, the significance of
these compounds remains unclear. Besides, the measure-
ment time for VOCs collection used was in contrast with
previous studies, where the VOCs collected after 24 h of
cell growth. This is to ensure the compounds were col-
lected at proliferation stage.
Nonanal and 2-ethylhexanol from WI38VA13 cells were

found to be significantly more than that from A549 and
Calu-3. In contrast to results observed in this study, it has
been reported that the detection of nonanal is significant
[83, 84] and used to separate adenocarcinoma and squa-
mous cell carcinoma [74]. As for 2-ethylhexanol, the re-
sults here corresponds to other previous studies on lung
cancer detection, and was never found to be one of the
biomarkers. This indicates that these compounds might
have a specific association related to cell metabolism. The
WI38VA13 cells also share aromatic compounds with
DMEM, which might be the reason for the overlapping of
DMEM group in the WI38VA13 in the PCA and LDA
analysis as shown in Figs. 5 and 6a.
In summary, the VOCs that exist in lung cancer cell

lines but not in the control samples and those which ex-
ists in higher concentrations in the former may be con-
sidered as possible biomarkers as shown in Table 14.
Decanal, dodecane, 2-ethyldodecanal and heneicosane
may potentially be used to discriminate lung cancer cells
from other type of cancer or normal cell lines. Decane
on the other hand can potentially be used as a specific
biomarker for cancer. These findings suggested that the
identified VOCs are able to offer more information re-
garding in-vitro cultured cell line metabolism and aid

Table 14 The potential lung cancer biomarkers detected in this study were compared to the in-vitro and in vivo results of previous
studies which were found in Scopus database

Class Specific compounds
(In this study)

Origin Comparison with Literature

Cell
lines

aTissues Breath References

Alkanes
Straight chain

Dodecane
Heneicosane

Endogenous- lipid peroxidation by reactive oxygen species (ROS) s ✓ ✓ ✓✓ [28, 29, 72,
76, 78–80]

- ✓ ✓ [29, 74, 80]

- - ✓ [28, 72, 73]

Aldehydes Decanal Endogenous- peroxidation of omega3 and omega6 fatty acids (PUFAs),
components of cell membrane phospholipids

✓ ✓ - [33, 80, 82,
86]

Nonanal

Alcohol 2-
Ethyldodecanol

Endogenous- Hydroxylation of the lipid peroxidation biomarkers via
cytochrome p450 enzymes

- - - [80]

aPatient’s tissue
✓Compounds that were detected as lung cancer biomarkers in previous studies
- Compounds that have not been detected in the previous study
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the determination of lung cancer using the electronic
nose technology. In order to reduce the possibility of
false positive results, it is crucial to creating libraries of
biomarkers for each of cancer cells and normal cells.
This can be achieved by performing various chemomet-
ric or multivariate analysis to validate the biomarkers of
the cancerous and normal cells of interest.

Conclusion
This study presents the possibility of using VOCs as bio-
markers for cancer cells. Specific VOCs are verified to
be specific to cancer cells compared to of the normal
samples. The headspace of in-vitro cultured cell lines
were analyzed using a Cyranose320 e-nose consisting of
an array of sensors and GCMS coupled with SPME. Sev-
eral classifiers were used to validate the ability of the e-
nose to discriminate the cancer cells to that of the nor-
mal samples and blank mediums, namely the LDA, NB,
KNN, PNN and OVA-SVM. The investigation was car-
ried out to identify cell lines VOCs at three different
proliferation stages under a normal laboratory condition.
The results from this study shows that the Cyra-

nose320 was able to discriminate the VOCs released by
the various cancer and healthy cells as well as the blank
mediums. The classifiers tested were able to perform
high levels of accuracy. The LDA based OVA-SVM re-
cords the best performance with 100% successful classifi-
cation, even at the early stage of cell growth (24th hours
of incubation) and managed to maintain this perform-
ance at 48th and 72nd hours.
The VOCs pattern collected from e-nose results were

validated by the GCMS-SPME. The results show that
particular cell lines produced specific VOCs. This study
provides a list of possible VOCs, which is believed, can
be specific biomarkers for lung cancer, even at the 24th
hour of cell growth. The potential list of VOCs obtained
from this study was compared with the previous studies
as shown in Table 14. This also concludes that the e-
nose in conjunction with GCMS-SPME is able to be a
non-invasive screening tool at an early stage. This is par-
ticularly useful for the clinician to understand in the
event any occurrences of overlapping groups in the e-
nose results.
Besides, this study also shows that the use of existing

tools such as GCMS-SPME and e-nose-based gas sensor
array system promises the potentials to improve the can-
cerous VOCs detection system by optimizing the sensor
selections. The sensors with higher selectivity and sensi-
tivity are essential in order to capture the specific bio-
markers. Therefore, further studies on optimizing the
sensor system and using in-vivo studies (e.g. using
breath samples) are underway with the ultimate goal to
develop a complementary tool for clinical testing.

Abbreviation
A549: Lung cancer cell line; ACC: Accuracy; ANN: Artificial neural networks;
Calu3: Lung cancer cell line; DMEM: Dulbecco’s modification of Eagle
medium; EMEM: Eagle’s minimum essential medium; E-Nose: Electronic nose;
FN: False negative; FP: False positive; GCMS: Gas chromatography mass
spectrometry; GNP: Gold nanoparticles; HASM: Human airway smooth
muscle; IBE: Immortal bronchial epithelium; KNN: K-Neural network;
LDA: Linear discriminant analysis; LDCT: Low dose computed tomography;
MCC: Matthews correlation coefficient; MCF7: Breast cancer cell line;
MD: Mahalanobis distances; NB: Naïve bayes; NHDF: Normal human diploid
fibroblast; NSCLC: Non-small cell lung cancer; OVA: One versus all; OVO: One
versus one; PC: Principal component; PCA: Principal component analysis;
PDMS: Polydimethylsiloxane; PNN: Probabilistic neural network;
PREC: Precision; Rmax: Maximum value of response; Rms: Root mean square
roughness; Rs: Steady state of response; SCLC: Small cell lung cancer;
SEN: Sensitivity; SGF: Savitzky-Golay smoothing filter; SPE: Specificity;
SPME: Solid phase micro extraction; SVM: Support vector machine; TIC: Total
ion chromatogram; TN: True negative; TP: True positive; VOCs: Volatile
organic compounds; WI38VA13: Normal lung cell line
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