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Abstract

Emerging evidence from human and animal studies suggest that consumption of palatable foods 

rich in fat and/or carbohydrates may produce deleterious influences on brain function 

independently of body weight or metabolic disease. Here we consider two mechanisms by which 

diet can impact striatal circuits to amplify food cue reactivity and impair inhibitory control. First, 

we review findings demonstrating that the energetic properties of foods regulate nucleus 

accumbens food cue reactivity, a demonstrated predictor of weight gain susceptibility, which is 

then sensitized by chronic consumption of an energy dense diet. Second, we consider evidence for 

diet-induced adaptations in dorsal striatal dopamine signaling that is associated with impaired 

inhibitory control and negative outcome learning.
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Introduction

There has been considerable effort over the past two decades to identify and characterize 

behaviors and their underlying neural circuits that confer vulnerability for overeating in the 

modern “obesogenic” food environment. A general thesis to emerge is that enhanced 

reactivity to food-associated cues coupled with diminished inhibitory control produces 

susceptibility for overeating [1,2], particularly in an environment where salient food cues are 
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pervasive and palatable, energy dense foods are cheap and easily obtainable. In this review 

we argue that the relationship between the brain and the food environment is bi-directional. 

In particular, there is mounting evidence that consumption of palatable foods high in fat and 

refined carbohydrates produces deleterious effects on neural circuits, thereby contributing to 

cognitive alterations permissive of overeating. Here we outline two ways in which dietary 

factors might negatively impact striatal circuits to produce hyper-reactivity to food cues and 

diminished inhibitory control.

Metabolic control of food cue reactivity in the nucleus accumbens

“Food cue reactivity”, defined as the extent to which an individual is prone to eat in the 

presence of food cues, has long been associated with susceptibility for weight gain [3–6]. 

Food cues acquire reinforcing properties via Pavlovian conditioning [7], in which a once 

neutral cue is associated with nutrient ingestion. Once this association is formed, food cues 

gain access to reward [8] and homeostatic circuits [9], thereby acquiring the ability to elicit 

reflexive responses such as cephalic phase responses [10], food seeking [11], and craving 

[6].

The nucleus accumbens (NAc) is critically involved in the formation of learned Pavlovian 

associations between the unconditioned rewarding properties of nutrient ingestion and 

conditioned cues such as the sight or flavor of the foods containing nutrients [12]. 

Accordingly, human neuroimaging studies have shown that NAc response to calorie-

predictive food cues is associated with genetic risk for obesity [13], eating in the absence of 

hunger [14], poor outcomes on weight loss trials [15], unhealthy food choice [16] and 

weight gain susceptibility [17–19], among other factors. This raises the possibility that 

individual variations in NAc learning circuits mediating food cue reactivity may increase 

susceptibility to obesity in a food cue-laden environment.

Conditioning food cue reactivity

Work in rodents suggests that post-ingestive effects following nutrient consumption provide 

critical signals driving reinforcement and hence food cue reactivity. Infusing glucose directly 

into the gut, concomitantly to exposure to a non-caloric flavored liquid, results in lasting 

preferences for that flavor [20–22]. In contrast, sweetness perception in the absence of 

calories (or caffeine) is neither necessary nor sufficient for animals to form flavor 

preferences [23,24]. This flavor-nutrient conditioning occurs rapidly, even within the course 

of a single meal [25], demonstrating the potency with which post-oral signals transform 

flavors into conditioned cues.

Although it is well established that flavor-nutrient conditioning depends upon brain 

dopamine signaling [8], the identity of the post-oral signal supporting this learning remains a 

subject for debate. Direct infusion of nutrients into the gut stimulates dopamine release in 

the NAc and dorsal striatum (DS) [23] in a calorie-dependent manner [26]. Moreover, this 

effect is sensitive to glucose utilization rate, and inhibition of glucose oxidation suppresses 

striatal dopamine levels and reduces glucose intake [23,27]. This suggests that the post-oral 

“reward” signal is linked to the utilization of the nutrient as fuel.
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In humans, response in the NAc to a calorie-predictive flavor is directly proportional to the 

magnitude of change in blood glucose that occurs when the flavor is consumed with the 

calorie source [28]. Since glucose availability is a requirement for its utilization this finding 

provides indirect support for metabolic response contributing to the reinforcing effects of 

nutrients in humans. Intriguingly, although pairing the flavor with calories increases the 

rated liking of that flavor, this change in liking does not correlate with NAc response or the 

change in blood glucose. This suggests that the energetic properties of foods might influence 

behaviors independently of perceptions of liking. Consistent with this possibility, 

willingness to pay for food items in an auction task correlates with NAc response and is 

driven by energy density independently of explicit knowledge of caloric content or rated 

food liking [29]. Bidding behavior was also associated with the generation of value signals 

in the ventromedial prefrontal cortex that were associated with actual, but not estimated 

energy density. Thus, NAc involvement in Pavlovian conditioning and in food choice 

appears to reflect the energetic characteristics of food independently of explicit awareness or 

liking, a notion consistent with separate substrates for explicit and implicit components of 

liking and incentive motivation [30–32]. If so, energy dense foods that produce large glucose 

excursions may well condition NAc hyper-reactivity, especially in individuals with 

compromised glucose metabolism. Moreover, this hyper-reactivity, which is associated with 

weight gain susceptibility [15,17], likely influences intake via implicit processes that may be 

less amenable to goal-directed behaviors such as dieting.

Effects of energy-dense diets on conditioning food cue reactivity

Emerging evidence suggests that chronic consumption of an unhealthy diet contributes to 

alterations in NAc-dependent learning. In humans, objectively measured energy intake was 

associated with greater BOLD response to anticipated food intake in the striatum 

independent of basal energy needs and adiposity, raising the possibility that excess caloric 

intake may enhance NAc food cue reactivity [33]. Accordingly, Wald and Meyers assessed 

flavor-glucose learning in rats that had been exposed to a high-fat, high-carbohydrate 

(HFHC) choice diet [34]. Learning rapidity and strength (measured by intake) was greater in 

HFHC-fed rats that became obese compared to chow-fed rats and HFHC-fed rats that were 

relatively obesity-resistant [34]. This finding points to an association between diet-induced 

obesity (DIO) and enhanced sensitivity to flavor-nutrient learning, though the directionality 

of this relationship remains unclear.

To dissociate diet-induced from pre-existing differences associated with obesity, Robinson 

and colleagues examined cue reactivity in rats before and after chronic exposure to a 

palatable “junk-food” diet [35]. Rats subsequently identified as susceptible to diet-induced 

obesity (DIO-prone) displayed enhanced conditioned approach to sucrose-predicting food 

cues prior to diet exposure and independent of initial body weight. Following diet exposure, 

both DIO-prone and DIO-resistant rats displayed cross-sensitization to amphetamine and 

down-regulation of striatal dopamine D2 receptors (D2Rs). Thus, while enhanced food cue 

reactivity precedes obesity and may confer vulnerability to overeating and diet-induced 

weight gain, other adaptations in dopamine function may occur as a direct consequence of 

palatable diet consumption, regardless of weight gain [36].

Burke and Small Page 3

Curr Opin Behav Sci. Author manuscript; available in PMC 2018 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Further support comes from a recent study showing that NAc insulin modulates flavor-

nutrient learning and enhances dopamine release, an effect that is abolished by HFHC diet 

[37]. Given that insulin also acts in the hypothalamus to promote satiety [38], this suggests a 

potential mechanism by which diet may influence circuits important for reward learning and 

homeostasis. Indeed, a number of nutritionally-regulated hormones involved in 

hypothalamic control of feeding and glucose homeostasis—including glucagon-like peptide 

1 [39], amylin [40], leptin [41], and ghrelin [42]—also modulate mesocorticolimbic 

dopamine signaling. Accordingly, recent data suggest that hypothalamic feeding circuits are 

regulated by sensory input [9], and may integrate information from reward circuits about 

nutritional and hedonic properties of food to direct metabolic learning and memory [43]. 

This metabolic learning regulates food choice and is susceptible to genetic and 

environmental factors, such as overnutrition [43].

In the modern environment, humans are presented with a daily barrage of food-associated 

cues in the form of advertisements, most of which promote energy-dense foods high in fat 

and sugar [44]. Emerging evidence supports the possibility that energy-dense foods and 

beverages, which produce larger glucose and insulin excursions, will be more effective at 

driving NAc food cue reactivity and cue-potentiated feeding. Chronic consumption of foods 

high in fat and carbohydrates may in turn alter this learning by disrupting glucose 

metabolism and insulin sensitivity, or by directly altering dopamine signaling. Thus, an 

environment in which palatable foods are readily available and food cues are pervasive may 

propel a vicious cycle whereby energy-dense foods, via their effect on the NAc, turn neutral 

cues into powerful conditioned stimuli that drive excessive intake. Excessive intake may in 

turn alter NAc-mediated learning and behavior, culminating in even greater susceptibility to 

overeating (FIGURE 1).

Neural adaptations in the dorsal striatum

The nigrostriatal pathway is critically involved in reward-seeking behaviors, including 

feeding [45,46]. Dopamine release is observed in the DS during food consumption in 

rodents and humans [47–49], and intact DS dopamine signaling is required for the 

expression of normal ingestive behavior [50]. Evidence from preclinical studies in rodents 

consistently report alterations in DS dopamine function in diet-induced obese rodents, 

including diminished dopamine D2 receptor expression [51,52] and dopamine release [53]. 

Interestingly, administration of the gastrointestinal messenger oleoylethanolamide restores 

nutrient-stimulated dopamine release in high-fat fed mice, while simultaneously eliminating 

motivational deficits during flavorless intragastric feeding and increasing oral intake of low-

fat emulsions [53]. These findings suggest that DS dopamine acts as a critical sensor of the 

nutritional value of ingested calories, and provide support for the notion that excess intake of 

high-calorie foods may represent a compensatory response to diminished nutrient sensitivity.

The relationship between human obesity and DS circuitry is less clear. Positron emission 

tomography (PET) and single photon emission computed tomography (SPECT) studies 

assessing baseline binding potential (BP) for dopamine ligands report decreased receptor 

availability [54,55] and evoked dopamine release [56] in morbid obesity, and increased 

receptor availability [57–59] and evoked dopamine release [60] in overweight and mild 
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obesity. One interpretation of these findings is that there is a non-linear relationship between 

obesity and dopaminergic tone: decreased dopamine tone (increased receptor availability) is 

associated with enhanced phasic responses in overweight/mild obesity, while in severe 

obesity, increased tone (decreased receptor availability) is associated with blunted phasic 

responses [61]. This is consistent with evidence of a non-linear relationship between 

dopamine-dependent functions, such as reward sensitivity, and BMI [62]. However, this 

interpretation is complicated by conflicting reports of increased [60] and decreased [63] 

striatal dopamine release in mildly obese subjects with similar BMI range, which suggests 

that other factors likely contribute to inter-study discrepancies, such as differences in 

radiotracer characteristics, heterogeneity between studies with respect to nutritional status, 

genetic variation, metabolic disturbances, and diet.

FMRI studies have also demonstrated alterations in DS function in association with obesity. 

Cross-sectional studies consistently report enhanced blood oxygen level-dependent (BOLD) 

response in the DS in response to calorie-predictive cues in overweight/mild obesity [64–

67]. In contrast, DS BOLD response to the receipt of a predicted food is decreased in 

association with overweight/obesity [57,67–71], and is predictive of future weight gain 

[72,73].

Although the BOLD signal is not a direct measure of neurotransmitter release, there is 

evidence that these differences in DS responsivity are related to alterations in dopaminergic 

function. First, the relationship between BMI and BOLD DS response is stronger in 

individuals who are at genetic risk for reduced D2R signaling capacity by virtue of 

possessing the A1 allele of the Taq1A polymorphism [72–74]. Furthermore, while studies 

consistently report a negative association between BMI/weight gain DS response to the 

receipt of a predicted palatable food [57,67,68,71], when receipt is unpredicted, this 

association is positive [75]. According to animal literature, dopamine neurons produce bursts 

of action potentials in response to unexpected food rewards [76]. After repeated pairings 

with a neutral cue, dopamine neurons begin to fire in response to the reward-predictive cue 

and cease responding to the receipt of food [77]. Thus, DS BOLD responses to expected and 

unexpected reward receipt may reflect distinct temporal aspects of dopamine dynamics.

Consistent with this possibility, a recent study by Burger and Stice [78] found that during 

exposure to repeated pairings of palatable food receipt and cues that predict palatable food 

receipt, striatal BOLD responses to cues increased, while responses to food receipt 

decreased. Additionally, the slopes of increases and decreases in striatal response to cues and 

food receipt observed across learning trials predicted future weight gain, and heightened 

responsivity to initial receipt accounted for a substantial proportion of variance in future 

weight gain.

Collectively then, extant data from neuroimaging studies is consistent with the model that 

overweight and mild obesity is characterized by DS hyper-reactivity to food cues and hypo-

reactivity to food receipt, which may reflect greater propensity for cue-reward learning and 

food reward habituation, respectively.
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Considerable evidence suggests that dietary factors contribute to dopamine dysregulation by 

producing neuroadaptations in DS, which may potentiate overeating by impairing dopamine-

dependent learning and cognition; a proposal that very much parallels models of vicious 

cycles observed in drug addiction [79]. First, decreased DS response to food receipt appears 

to be consequential rather than causal as it is associated with weight gain over time [71], but 

not risk for obesity by virtue of parental obesity [80]. Second, the effect is driven primarily 

by individuals who are at genetic risk for decreased D2R density [72,73]. The single-

nucleotide polymorphism that gives rise to this risk (SNP; rs1800497; Accession Number: 

NP_848605.1) is located 9.5 kb downstream from D2R in exon 9 of the ANKK1 gene 

(ankyrin repeats and kinase domain containing 1 gene) and causes an amino acid 

substitution within the C-terminal [81]. The encoded protein, ANKK1, belongs to a family 

of receptor-interacting protein (RIP) serine/threonine kinases. RIP kinases are of interest 

because they have emerged as essential sensors of cellular stress, initiating responses to 

various environmental factors, including nutrient ingestion, by activating transcription 

factors such as NF-κB and AP-1 [82]. NF-κB response elements exist in the D2R promoter 

region and NF-κB is a necessary and sufficient signal to induce DRD2 expression [83,84]. 

Though much remains to be understood about the relationship between the Taq1A 

polymorphism, ANKK1, and dopaminergic function, these findings suggest a potential 

mechanism whereby diet-induced interactions between ANKK1 and NF-κB could enhance 

risk for adaptations in the dopamine system, particularly in individuals with the A1 allele.

DS adaptations have important functional implications. The DS plays a key role in 

instrumental learning [12,85,86], as well a number of other cognitive functions including 

habit formation [45,87–89], working memory [90,91], inhibitory control [92,93] and 

negative outcome learning [94,95], raising the possibility that diet-induced alterations in 

dopamine function lead to cognitive and behavioral deficits. Accordingly, DS response to 

milkshake receipt is inversely associated with self-reported impulsivity in overweight/obese 

but not healthy-weight individuals [68]. In contrast, patients with anorexia nervosa, who 

exert excessive inhibitory control over feeding, engage the DS more than healthy controls 

when making food choices, and fronto-striatal connectivity in these patients correlates with 

food intake [96]. Obese individuals also show impaired working memory [97], as well as 

negative, but not positive outcome learning [97,98]. This latter finding is of particular 

interest because negative outcome learning has been specifically associated with striatal D2 

signaling [99]. Accordingly, rats with extended access to a palatable high-fat diet display 

down-regulated DS D2Rs accompanied by reward deficits and compulsive-like food-seeking 

characterized by insensitivity to negative outcomes [52]. Moreover, lentivirus-mediated 

knockdown of DS D2Rs rapidly accelerated the development of these behavioral deficits, 

suggesting a direct link between diet, DS dopamine adaptations, and impulsive, inflexible 

behavioral patterns.

Revealingly, many of these dopamine-dependent cognitive functions have been identified as 

risk factors for overeating [100–102], and even targets for behavioral interventions for 

obesity [103,104]. As such, pre-existing and/or diet-induced alterations in dopamine 

signaling may produce impairments in executive function, which may increase susceptibility 

for overeating and weight gain. Consistently, A1 carriers display greater behavioral 

inflexibility, working memory deficits, and impaired negative outcome learning [98,105–
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107], and are at greater risk for developing a variety of psychiatric disorders related to 

impaired striatal dopamine function including smoking [108], alcoholism [109], and obesity 

[110,111].

Collectively then, accumulating data suggests that A1 carriers, who constitute 30–40% of 

the population, possess an increased genetic vulnerability to diet-induced dopamine 

adaptions, and these adaptations are associated with cognitive impairments that may increase 

predisposition to obesity (FIGURE 2). Unfortunately, verification of this hypothesis is 

complicated by the fact that all rodents are A1 homozygotes. Therefore, development of a 

transgenic “non-carrier” mouse would be of interest to rigorously test this hypothesis and 

determine the mechanisms by which ANKK1 variants influence D2R expression.

Conclusions

The power of energy dense foods, via their effects on mesoaccumbens and nigrostriatal 

circuits, to condition cue-reward associations and motivate appetitive behavior is adaptive 

when food is scarce or its availability unpredictable. In modern societies where energy dense 

foods and food cues are abundant, these mechanisms can become a liability, promoting 

energy intake that far exceeds metabolic needs. Indeed, evidence from preclinical and 

clinical studies suggest that obesity is associated with distinct alterations in ventral (NAc) 

and DS dopamine signaling, and in behaviors and cognitive functions governed by these 

circuits. In particular, heightened food cue reactivity and cue-induced dopamine signaling in 

the NAc have been reported in relation to obesity. In addition, obesity is associated with 

diminished DS dopamine signaling in response to food receipt and greater DS response to 

anticipated food reward, in parallel with reward hyposensitivity and impulsive, inflexible 

behavior. Revealingly, while NAc reactivity to food cues was found to predict subsequent 

snacking, NAc response was associated with increased BMI only in individuals reporting 

low self-control [14]. Taken together, the findings presented here are consistent with a model 

of obesity that is characterized by hypersensitivity to conditioned food cues in combination 

with hyposensitivity to reward receipt and weakened inhibitory control over appetitive 

behaviors. Moreover, there is now clear evidence that at least some of the differential brain 

effects observed in obesity occur as a consequence of high-fat/high-carbohydrate diet 

consumption, and that some of these adaptations exacerbate behaviors that confer initial 

vulnerability for overeating and weight gain. It is therefore critical to determine the precise 

mechanisms underlying these diet-induced adaptations and to evaluate methods for their 

reversal.
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Highlights

• Striatal circuits involved in associative learning are altered in obesity

• Differences in neural reactivity to food cues and reward confer risk for 

overeating

• Excess intake of dietary fat and sugar alters striatal dopamine function

• Diet-induced adaptations lead to cognitive impairments that may potentiate 

risk
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Figure 1. Diet-induced alterations in NAc-mediated learning drive a vicious cycle of overeating
In healthy individuals (green arrows), feeding is regulated by homeostatic and hedonic 

processes. The NAc facilitates associative learning and promotes adaptive behavioral 

responses to procure nutrient-rich foods during energy deficit. Energy-dense foods (blue 

arrows) promote supranormal metabolic responses and DA release in the NAc, thereby 

strengthening the incentive salience of these foods. Chronic consumption (red arrows) leads 

to metabolic disturbances (e.g. insulin insensitivity) and neural adaptations (e.g. down-

regulated D2Rs), which reduce sensitivity to homeostatic signals and impair NAc-mediated 

associative learning. Thus, consumption of energy-dense foods promotes the formation of 

strong cue associations which drive reflexive food seeking irrespective of metabolic 

outcomes and homeostatic need.
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Figure 2. Genetic and dietary factors influence DS function to increase risk for overeating and 
obesity
Chronic intake of a diet high in fat and sugar leads to neuroadaptations that disrupt striatal 

DA signaling. These adaptations are associated with cognitive impairments that perpetuate 

impulsive and inflexible feeding habits (purple). Genetic variants affecting DA signaling 

capacity (e.g. TaqIA polymorphism) enhance risk for diet-induced DA adaptations 

associated with overeating and the development of dopamine-dependent cognitive 

impairments.
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