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Abstract

RNA profiles.

Background: Amplicon sequencing methods targeting the 16S rRNA gene have been used extensively to investigate
microbial community composition and dynamics in anaerobic digestion. These methods successfully characterize
amplicons but do not distinguish micro-organisms that are actually responsible for the process. In this research, the
archaeal and bacterial community of 48 full-scale anaerobic digestion plants were evaluated on DNA (total cormmunity)
and RNA (active community) level via 16S rRNA (gene) amplicon sequencing.

Results: A significantly higher diversity on DNA compared with the RNA level was observed for archaea, but not for
bacteria. Beta diversity analysis showed a significant difference in community composition between the DNA and RNA
of both bacteria and archaea. This related with 25.5 and 42.3% of total OTUs for bacteria and archaea, respectively,

that showed a significant difference in their DNA and RNA profiles. Similar operational parameters affected the bacterial
and archaeal community, yet the differentiating effect between DNA and RNA was much stronger for archaea.
Co-occurrence networks and functional prediction profiling confirmed the clear differentiation between DNA and

Conclusions: In conclusion, a clear difference in active (RNA) and total (DNA) community profiles was observed,
implying the need for a combined approach to estimate community stability in anaerobic digestion.
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Background

Anaerobic digestion (AD) relies on complex microbial
communities for the conversion of organic waste
streams into biogas. The application of online monitor-
ing strategies via conventional operational parameters,
such as pH, volatile fatty acid (VFA) concentration, gas
composition and alkalinity [1-4], resulted in the expan-
sion of high-rate AD systems to industrial scales. These
physico-chemical parameters reflect the current state of
the process and do not accurately reflect the microbial
community composition, dynamics, or activity [5, 6], nor
do they allow future process performance prediction.
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Attempts to relate molecular and operational parameters
have resulted in significantly different outcomes with re-
spect to the relation between diversity and process per-
formance [7-10]. Hence, we are to implement microbial
process control of AD or microbial community function
in general [11], as also postulated in the microbial re-
source management concept [12—15]. Then, we need to
extend our knowledge of the interaction between the
temporal trajectories of microbial community structure
and operational parameters.

The advent of high-throughput sequencing techniques in
AD research resulted in a significant increase in our under-
standing of the (active) microbial community [16]. Ampli-
con sequencing helped to identify the Actinobacteria,
Bacteroidetes, Chloroflexi, Firmicutes and Proteobacteria as
dominant bacterial phyla and helped reveal several
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acetoclastic and hydrogenotrophic methanogens [17-19].
Acetoclastic Methanosaeta mainly have been observed at
stable process conditions [20], while a transition to hydro-
genotrophic methanogenesis often took place at deteriorat-
ing conditions, related to an increase in salinity, total
ammonia nitrogen (TAN) concentration, or other com-
pounds that negatively affect Methanosaeta [21]. Applica-
tion of ‘omics’ techniques has helped elucidate the
important genes involved in carbohydrate, lipid and pro-
tein metabolism in AD [22-26]. Carbon isotope analysis
methods made the determination of the dominant meth-
anogenic pathway possible [27, 28] and clarified whether
or not it is coupled with syntrophic acetate oxidation [29].
The combination of carbon-based stable isotope probing
coupled with amplicon has helped identify microorganisms
involved with specific pathways in the process of methano-
genesis [30, 31].

The DNA-based techniques have delivered significant
insights, but they do exhibit important shortcomings in
their ability to reveal the active microbial community in
AD. The ‘omics’ techniques suffer from two main issues.
First, reference databases (although this is only an issue
for reference-based assembly, not for de novo assembly)
are often incomplete [32], which leads to a limited
degree of reads assignment [33], which results in a sub-
stantial lack of data interpretation. Second, often contra-
dictory results are obtained when comparing different
‘omics’ techniques [23, 34] or when comparing ‘omics’
techniques with alternative methods [33]. Carbon
isotope-based methods are restricted by the fact that the
metabolic pathway and/or the micro-organisms involved
in the degradation of only a single and known substrate
can be monitored. Collaboration between micro-organisms
is a crucial aspect in AD, which is not addressed by any of
the abovementioned techniques. Hence, an alternative
approach is needed to bridge the knowledge gap on active
microbial communities, (potential) collaboration and
complete functionality prediction.

In this research, the microbial community in full-scale
AD plants was evaluated through amplicon sequencing of
the 16S rRNA gene and the 16S rRNA transcripts to dir-
ectly compare the total and active microbial community.
This is in contrast to most other approaches that make
use of different techniques to make an estimation of the
difference between the active and total microbial commu-
nities. The bacterial and archaeal (methanogenic) differen-
tial abundance and activity patterns were identified and
related to the sensitivity of the methanogenic community
to variations in operational parameters in AD. Co-
occurrence patterns were created to estimate the
difference between mere occurrence and activity to propose
potential collaborative associations. Functional prediction
profiles were generated to relate potential differences in the
DNA and RNA profiles with predicted functionality.
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Methods

Sample and data collection

Digestate samples were collected from 48 full-scale AD
plants in Belgium in 1-L air-tight containers and trans-
ported to the laboratory immediately. Upon arrival in
the laboratory, samples were homogenized and three
replicate 1.5 mL subsamples were taken and stored at —
80 °C until DNA and RNA extraction. Another 10 mL
subsample was stored at — 20 °C for VFA analysis. A 50-mL
sample was stored at 4 °C for TAN, conductivity, volatile
solids (VS), total solids (TS) and cation analysis. Sample pH
was measured directly upon arrival in the laboratory. Infor-
mation concerning the sludge retention time (SRT) and
temperature were obtained directly from the operator.

Simultaneous DNA and RNA extraction

Total DNA and RNA were co-extracted from the same
sample to avoid biases related to variable cell lysis effi-
ciency. The RNA PowerSoil® Total RNA Isolation Kit in
combination with the RNA PowerSoil® DNA Elution
Accessory Kit (Mobio Laboratories Inc., Carlsbad, CA,
USA) was used for simultaneous RNA and DNA extrac-
tion. Samples were transferred immediately from the -
80 °C freezer to liquid N, to prevent RNA from degrading
during thawing. Next, 1.0 g of frozen digestate sample was
transferred to the Bead Tubes, which were also main-
tained in liquid nitrogen. After removing the Bead Tubes
with samples from the liquid N,, buffer solutions (Bead
Solution and solutions SR1 and SR2) were added immedi-
ately to minimize RNA degradation. The remaining steps
in the protocol were identical to the recommendations of
the manufacturer.

The RNA extracts were subjected to DNase treatment
using the DNase I Kit for Purified RNA in Solution
(Mobio Laboratories Inc.) for removal of residual DNA.
Efficiency of DNA removal was tested according to Boon
et al. [35], which involved PCR amplification of the bac-
terial 16S rRNA genes using primers P338f and P518r
[36], followed by visualization of the PCR production on 1%
agarose gel electrophoresis to confirm the absence of DNA.
The RNA was subsequently converted to cDNA using the
qScriber™ ¢cDNA Synthesis Kit (Mobio Laboratories Inc.).
The final quality of the cDNA and DNA was validated by
1% agarose gel electrophoresis and PCR analysis, as
described earlier.

Amplicon sequencing and data processing

The c¢DNA and DNA extracts were sent to LGC
Genomics GmbH (Berlin, Germany) for sequencing on
the Illumina Miseq platform. Sequencing was performed
by targeting the V3-V4 hypervariable region of the 16S
rRNA (gene) using bacterial primers 341F and 785R
(Additional file 1: Table S1) [37], with an additional wob-
ble position in the reverse primer to make it more
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universal. A nested approach was used for the archaea, with
the archaea specific primers 340F and 1000R for the first
PCR run [38], followed by universal primers 341F and 806R
[18] for the second PCR run (Additional file 1: Table S1).
The PCR protocol was carried out as described in SI (S1).
The PCR products were pooled and purified with
Agencourt AMPure XP beads (Beckman Coulter, Brea,
CA). An additional purification was carried out using the
MinElute PCR Purification Kit (Qiagen, Venlo, The
Netherlands). The purified amplicon pools were used to
generate Illumina compatible libraries by adaptor ligation,
using the Ovation Rapid DR Multiplex System 1-96
(NuGEN, San Carlos, CA). Illumina compatible libraries
were pooled, and size was selected by preparative gel
electrophoresis.

Amplicon sequences were trimmed and quality-
filtered using Sickle v1.200 [39] with a sliding window
approach, removing reads with an average quality score
below 20. The BayesHammer error correction tool [40]
coupled with the Spades v2.5.0 assembler was used for
error correction of the paired-end reads. PANDAseq v2.
4 [41] was applied to assemble the paired-end reads,
using a minimum overlap of 20. These three steps re-
duce the substitution error rates significantly (~90%)
[42]. The UPARSE (v7.0.1001) pipeline [43] was used for
operational taxonomic unit (OTU) construction. Briefly,
the reads were dereplicated and sorted by decreasing abun-
dance, and singletons were discarded after which simultan-
eous chimera filtering and OTU clustering was performed,
based on 97% similarity. An additional chimera removal
step was carried out by means of a reference-based chimera
filtering step using the ‘gold’ database (http://drive5.com/
uchime/gold.fa), derived from the ChimeraSlayer refer-
ence database in the Broad Microbiome Ultilities
(http://microbiomeutil.sourceforge.net). Representative
sequences from OTUs were taxonomically classified
against the Ribosomal Database Project (RDP) database,
using the standalone RDP Classifier v2.6 [44]. Phylogen-
etic distances between OTUs were determined using
MAFFT v7.040 [45], followed by the construction of an
approximately maximum-likelihood phylogenetic tree by
means of FastTree v2.1.7 [46]. Functional profiles were
predicted based on the 16S rRNA data using Tax4Fun
[47] by blasting the OTUs against the SILVA seed v115
and KEGG database release 64.0. After normalizing the
data for 16S rRNA gene copy numbers, using the copy
numbers obtained from the NCBI genome annotations
[47], functional profiles were generated by means of the
ultrafast protein classification (UProC) tool [48].

Statistical analysis

A table with the abundance of OTUs and their
taxonomic assignments in each sample was generated
(Additional files 2 and 3). Statistical analyses were
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performed in R Studio version 3.2.3. (http://www.r-pro-
ject.org) [49] using the packages vegan [50] and phyloseq
[51] for community analysis. Heatmaps on different
phylogenetic levels were constructed using the pheat-
map function (pheatmap package). Diversity parameters
of the DNA and RNA community profiles were com-
pared using analysis of variance (ANOVA, aov function).
Non-metric distance scaling (NMDS) plots of commu-
nity data were generated using the Bray-Curtis, weighted
and unweighted UniFrac distance measures. Multivariate
homogeneity of dispersion (variance) between DNA and
RNA profiles were calculated using the betadisper function
(vegan), a multivariate analogue of Levene’s test for homo-
geneity of variances. The original distance matrices were
reduced to principal coordinates after which ANOVA was
performed. This information was also used to determine
the phylogenetic distance between the DNA and the RNA
profiles of each sample using ANOVA and linear models
(Im function). Permutational ANOVA (PERMANOVA)
was carried out to evaluate the effect of operational param-
eters on both DNA and RNA profiles using the adonis
function (vegan), and the significant parameters were used
for canonical correspondence analysis (CCA) plotting. The
OTUs that showed a significant difference in terms of
DNA and RNA were identified with the DESeqDataSet-
FromMatrix function from the DESeq2 package [52], and
correlations with operational data were determined with
the Kendall rank coefficient correlation with P values ad-
justed for multiple comparisons using the Benjamini-
Hochberg correction [53]. Co-occurrence networks con-
struction and subcommunity analysis were carried out
based on the recommendations of Williams et al. [54]. The
samples were rarefied, followed by estimation of the
Spearman’s rank correlation between each pair of OTUs.
The P values were corrected for multiple comparisons
using the Benjamini-Hochberg correction. Only OTU pairs
with a corrected highly significant (P <0.001) correlation
were incorporated in the co-occurrence networks. Sub-
communities of OTUs with a correlation coefficient > 0.5
were identified [55]. The network statistics Degree,
Betweenness, Closeness and Eigenvector centrality were
calculated to identify potential keystone species based on
their central role in the co-occurrence network [56, 57].
Co-occurrence networks were constructed with the igraph
(http://igraph.org), sna [58] and network [59] packages.
The KEGG Orthology (K) numbers that showed a signifi-
cant difference between the DNA and RNA microbial com-
munity profiles were identified with the Kruskal-Wallis
rank sum test with Benjamini-Hochberg correction. The
pathways were visualized with the pathview package [60].

Analytical techniques
Total solids (TS), volatile solids (VS) and TAN were de-
termined according to standard methods [61]. The pH
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and conductivity were measured with a C532 pH and
C833 conductivity meter (Consort, Turnhout, Belgium),
respectively. The free ammonia (NH3) concentration
was calculated based on the TAN concentration, pH and
temperature in the digester. The concentrations of the
cations Na*, K*, Ca®* and Mg”* were determined via
ion chromatography (IC, Metrohm IC 761, Herisau,
Switzerland) with a Metrosep C6 e 250/4 column and
Metrosep C4 Guard/4.0 guard column. The eluent
contained 1.7 mM HNOj; and 1.7 mM dipicolinic acid.
Sample preparation was carried out by centrifugation at
10,000g for 10 min, followed by filtration over a 0.45-um
filter (type PA-45/25, Macherey-Nagel, Germany) to re-
move all solids, and dilution with milli-Q water. The con-
centrations of the different VFA were analysed by means
of gas chromatography, as described in SI (S2).

Results

Full-scale digester operational characteristics

Operational data and samples were collected from both
mesophilic and thermophilic continuous stirred tank re-
actor (CSTR) and dry anaerobic composting (DRANCO)
AD plants at a specific time point during a period of
constant biogas production. The operational parameters
differed considerably between the different digesters
(Additional file 1: Table S2). The pH ranged between 7.3
and 8.5, while TAN and free ammonia concentrations
showed values between 605 and 5971 and 37 and
1585 mg N L%, The overall salinity was represented by the
conductivity, with values between 10.3 and 64.6 mS cm ™,
which mainly related to the Na* (0.1-8.8 g L"), K*
(0.6-69 g LY and TAN concentrations, as Ca®* and
Mg** concentrations did not exceed 0.5 and 0.2 g L™,
respectively. Total VFA concentration ranged between
0.08 and 275 g COD L' and mainly consisted of
acetate (57.1 £ 31.4%) and propionate (28.8 + 28.8%).

Microbial composition and diversity in the total (DNA)
and active (RNA) community

Separate amplicon sequence data analysis of the bacterial
and archaeal community (both DNA and RNA samples)
resulted in 795 and 137 OTUs, respectively, and an aver-
age of 4242 + 1791 reads for bacteria and 6427 + 4950
reads for archaea.

The archaeal community contained OTUs classified as
acetoclastic and hydrogenotrophic methanogens, with 20
OTUs classified as Candidatus Methanomethylophilus,
14 as Methanoculleus, 10 as Methanosaeta, 8 as
Methanobrevibacter and 7 as Methanosarcina. An over-
all dominance of Methanoculleus (52.2 +26.0%) and
Candidatus Methanomethylophilus (22.2 + 26.7%) was
observed, while Methanosaeta was much less abundant
(2.6 £ 8.9%) (Fig. 1a). In total, 58 archaeal OTUs (42.3%),
both acetoclastic and hydrogenotrophic methanogens,
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showed a significant (P<0.05) difference in relative
abundance between DNA- and RNA-derived data
(Additional file 1: Figure S1). For 17 OTUs, a higher
relative abundance was observed on RNA level, which
included 3 OTUs classified as Methanosarcina. The
bacterial community mainly contained OTUs in the
Firmicutes (45.7 + 21.8%), Bacteroidetes (16.4 + 10.8%),
Proteobacteria (15.5 + 24.6%), Thermotogae (9.3 £ 17.2%)
and Spirochaetae (5.5 +7.1%) phyla (Fig. 1b). A signifi-
cant difference (P < 0.05) between DNA and RNA pro-
files was observed for 203 bacterial OTUs (25.5%) of
which 121 and 82 were significantly higher in relative
abundance at the DNA level and RNA level, respectively
(Additional file 1: Figure S2). The 17 OTUs classified in
the Pseudomonas genus had a significantly higher relative
abundance in RNA, as compared with the DNA data,
which was also the case for the 4 OTUs classified as Tepi-
danaerobacter genus. In contrast, the 16 OTUs classified
as Fastidiosipila genus, the 10 OTUs classified as Caldico-
probacter genus, the 7 OTUs classified as Caldilineaceae
family and the 3 OTUs classified as Syntrophaceticus
schinkii showed a significantly higher relative abundance
at the DNA level as compared with the RNA level.

Basic alpha diversity analysis showed a significantly higher
richness (P <0.0001) and overall diversity (P < 0.0001),
based on the Shannon, Simpson and Fisher alpha, for DNA-
based data as compared with the RNA data for archaea,
while Pielou’s evenness was similar at both levels (Fig. 2). In
contrast, none of the diversity indices showed a significant
difference (P> 0.05) between DNA and RNA for bacteria.

Beta diversity analysis revealed a highly significant
(P=0.0001) differentiation pattern between DNA and
RNA for archaea using the unweighted UniFrac distance
measure (Fig. 3), which calculates distances between sam-
ples based on phylogenetic relatedness of the observed
OTUs in the samples without taking into account their
abundance. This difference was less pronounced for bac-
teria, with a significant (P = 0.025) difference between DNA
and RNA. Bray-Curtis dissimilarity and weighted UniFrac
(phylogenetic relatedness weighted by abundance) distance
measures showed a highly significant difference between
DNA and RNA, both for archaea (P =0.0003 and 0.0059,
respectively) and bacteria (P=0.0001 and 0.0001, respect-
ively) (Additional file 1: Figure S3). A significantly (P <0.
0001) higher degree of variance was observed for DNA-
based data for archaea compared with the RNA data using
the unweighted UniFrac distance metric, while the opposite
was true based on the weighted UniFrac analysis (P = 0.023),
though less pronounced (Additional file 1: Figure S4).

Associations between operational conditions on the total
and active microbial community

The archaeal and bacterial OTUs that were identified as
being significantly different in relative abundance between
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DNA and RNA were evaluated for their correlation with
operational parameters. From the 58 archaeal OTUs with
a significant difference in relative abundance between
DNA and RNA, 38 archaeal OTUs significantly (P < 0.05)
correlated with total VFA and acetate at the RNA level,
while on only two OTUs showed a significant positive cor-
relation with acetate at the DNA level (Fig. 4). Several
OTUs also showed a significant correlation with TAN (20
positive and 6 negative) and conductivity (15 positive and
3 negative) at the DNA level, while no significant correla-
tions were present at the RNA level. All OTUs with a
significant positive correlation with TAN and conductivity
at the DNA level were hydrogenotrophic methanogens,
while the OTUs with a significant negative correlation
with total VFA and acetate were both acetoclastic and
hydrogenotrophic methanogens.

Both significant positive and negative correlations were
present for the 203 bacterial OTUs that exhibited a signifi-
cant difference in relative abundance between DNA and
RNA, mainly with pH, temperature, TAN, free ammonia,
conductivity and Na* (Table 1, Additional file 1: Figure S5).
Almost no significant correlations between bacterial OTUs

and total VFA or acetate were observed, in contrast to
the archaea.

The overall archaeal community was primarily shaped
by temperature, pH, TAN, free ammonia, conductivity, VS
and TS (P=0.001). The Na" (P=0.006), K" (P=0.002),
propionate (P =0.003) and total VFA (P =0.002) also had
a strong impact on the archaeal community (Fig. 5).
A similar observation was made for the bacterial
community, with temperature, pH, TAN, free ammonia,
conductivity, Na*, K*, VS and propionate (P<0.001) as
main factors, with a strong effect of TS (P = 0.006), Mg**
(P=0.010), acetate (P=0.005), butyrate (P=0.005) and
total VFA (P =0.007) as well. The significant (P <0.001)
difference between DNA and RNA profiles, as observed
based on beta diversity analysis, was confirmed for the
archaeal and bacterial community.

Co-occurrence and subcommunities between bacteria
and archaea

The combined co-occurrence profile of bacteria and
archaea contained only OTUs that correlated (P < 0.001)
with at least one other OTU, which resulted in 128 (93.4%)
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archaeal and 639 (80.4%) bacterial OTUs on DNA level
and 82 (59.9%) archaeal and 698 (87.8%) bacterial OTUs
on RNA level. In total, 6311 and 6391 significant correla-
tions were observed on DNA and RNA levels, respectively,
of which 1414 were present both in the DNA and RNA co-
occurrence profiles. On the DNA level, one central sub-
community was identified, containing 251 OTUs, alongside
four other subcommunities with 128, 101, 95 and 82
OTUs, respectively (Additional file 1: Figure S6). The RNA
co-occurrence profile contained five major subcommu-
nities of 188, 166, 124, 124 and 77 OTUs, respectively
(Additional file 1: Figure S7). The network statistics De-
gree, Betweenness, Closeness and Eigenvector centrality
did not entail the identification of specific keystone species
at the OTU level, due to the presence of multiple different
OTUs in the network. At the genus level, however, the
archaeon Candidatus Methanomethylophilus held a central
role at the RNA level based on Betweenness and Degree
statistics. In contrast, the bacterium Fastidiosipila held a

more central role in the network at the DNA level, also
based on Betweenness and Degree statistics.

A significantly (P<0.001) higher average closeness
centrality was detected in the co-occurrence profile on
the OTU level of both the bacterial and archaeal com-
munities at the RNA level compared with the DNA level
(Table 2). The archaeal and bacterial community signifi-
cantly differed on RNA level in terms of average degree
centrality (P=0.0010) and on DNA level in terms of
average betweenness centrality (P = 0.049).

Functional prediction based on 16S rRNA (gene) data

An estimation of the metabolic potential of the archaea
and bacteria, both at the DNA and RNA levels, based on
the KEGG pathway database resulted in the identifica-
tion of 3067 and 6404 KO numbers for archaea and bac-
teria, respectively. The average KO number per sample
was significantly higher for DNA than for RNA for
archaea (P <0.0001), while this was not the case for
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Table 1 Overview of the number of bacterial OTUs that show a
significant (P < 0.05) correlation with the operational parameters,
based on the Kendall rank correlation coefficient. Only bacterial
OTUs with a significant (P < 0.05) difference between DNA and
RNA (203 OTUs in total) were considered

Parameter DNA RNA
pH 5 7
Temperature 44 29
TAN 40 62
Free ammonia 8 16
Conductivity 35 43
Na* 41 7
K* 0 0
Total VFA 1 2
Acetate 0 0
Propionate 0 0
Butyrate 0 0
SRT 1 0

TAN total ammonia nitrogen, VFA volatile fatty acids, SRT sludge retention time

bacteria (P =0.30) (Table 3). For the archaea, 986 KO
numbers had a significantly (P <0.001) different relative
abundance between DNA and RNA, while for the
bacteria, 3155 significantly different KO numbers were
identified. A separate KEGG-based visualization of the
main pathways by bacteria and archaea in the AD
process indicated similar coverage of the metabolic path-
ways on DNA and RNA levels, which was especially the
case for methanogenesis in the general methane metab-
olism (Additional file 1: Figure S8).
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Discussion

A clear difference between the total (DNA) and active
(RNA) microbial community was detected at the individ-
ual OTU level as well as alpha and beta diversity of the
bacterial and archaeal communities. Nonetheless, these
differences were significantly more pronounced for
archaea as compared with bacteria. Though similar oper-
ational parameters affected the overall archaeal and bac-
terial community, at the OTU level, a clear difference
was detected for the DNA and RNA data response be-
tween bacteria and archaea. Both co-occurrence and
functional prediction profiles also showed a clear differ-
ence between DNA and RNA, but this did not affect
metabolic pathway structure prediction.

The archaeal active community profile reflects
specialization and organization

Microbial community diversity has been postulated to re-
flect functional stability in AD and other similar ecosys-
tems in several studies, whether or not taking only richness
or evenness into account [62—65]. However, this apparent
relation was not observed in other studies [9, 10, 66],
which leads one to question to which extent functionality
really depends on diversity [67]. In our study, a significantly
lower alpha diversity was observed for the active compared
with the total archaeal community, mainly through the dif-
ference in richness. This contrast indicates a high degree of
functional specialization, despite the high metabolic
potential through a high archaeal diversity. Lin et al. [68]
observed a clear centralization of functionality for
methanogenesis, based on functional pathway prediction,
despite a high alpha diversity. This was also observed in
our study, as a significantly lower KO number (based on
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Table 2 Overview of the average network statistics Degree, Betweenness, Closeness, and Eigenvector centrality, determined
separately for the bacterial and archaeal community and the DNA and RNA profiles. Significant (P < 0.05) differences, as determined
by a t test, between bacteria and archaea or between DNA and RNA are indicated by different letters (a—d)

Centrality parameter DNA RNA

Bacteria Archaea Bacteria Archaea
Degree 1594153 1914195 157+13.1° 220+160°
Betweenness 1095 + 1507° 1473 + 2048° 1138+ 1581 1271 +1786
Closeness 88x107°+81x10°° 88x107°+81x 107 12x107 +1.1%x107% 12x107+11x 107
Eigenvector 0.034+0.167 0.054 +0.197 0.035+0.159 0.046 +0.196

the KEGG database) was observed at the RNA compared
with the DNA level for archaea, indicating a predicted
higher degree of functional specialization. This relates with
the fact that, in general, only two major pathways are re-
sponsible for methane production in AD, ie., hydrogeno-
trophic and acetoclastic methanogenesis, which do not
require a diverse archaeal community. Most digesters in
our study were dominated by hydrogenotrophic methano-
gens, both on DNA and RNA levels, and this points to an
even higher degree of functional specialization. The high
archaeal diversity at the DNA compared with the RNA
level can be considered a pool of ‘reserve players’ that are
not active but are able to take over when digester condi-
tions change, related to the susceptibility and narrow
optimal operational parameter range of most methanogens
[20, 69]. Overall, the clear differentiation between the
DNA and the RNA profiles, based on alpha and beta diver-
sity measures but related with operational data, reflects a
well-organized methanogenic community.

The active and total bacterial community have a similar
structure but different composition

The differentiation between the DNA and the RNA
profiles in terms of alpha diversity that was observed for
the archaeal community was not observed for the
bacterial community. This indicates a similar structural
organization of the total and active bacterial community.
Beta diversity analysis, however, revealed a significant
differentiation between the total and active community,
which shows a difference in community composition.
The high degree of variance between DNA and RNA
based on the unweighted UniFrac measure confirms that
the presence/absence of different OTUs and not their
relative abundance is responsible for the difference

Table 3 Overview of the KO number statistics

between the bacterial DNA and RNA profiles [70], yet
this strongly depends on sequencing depth, which was
in this case similar for the RNA and DNA data.

The similarity of the structural organization of the
bacterial community on DNA and RNA level is the con-
sequence of the inherent different involvement and
properties of the bacterial and archaeal community in
the AD process. While archaea only have to perform
two methanogenic pathways in AD, the bacterial com-
munity carries out numerous pathways, which requires a
higher active community diversity. This is also reflected
in the higher total KO number for the bacterial com-
pared with the archaeal community. The bacterial
community, in general, has a higher resilience [71] in
contrast with the sensitivity of the methanogenic archaea
[72, 73], which coincides with a more diverse active bac-
terial community. In our study, almost all archaeal
OTUs with a significant difference in relative abundance
between DNA and RNA levels have a significant negative
correlation with VFA on the RNA level, which confirms
their sensitivity, and this is not observed for the bacterial
OTUs. The on average higher growth rate of bacteria
compared with archaea, especially acetoclastic methano-
gens [73, 74], is another important factor that emphasizes
the active bacterial community, relative to the active
archaeal community, especially following disturbances.

The difference in community composition between the
total and active bacterial communities can be considered
the result of two factors. First, multiple bacterial species
are able to occupy the same niche, as is the case for syn-
trophic acetate oxidation [75] and glucose fermentation
[76]. Second, often the same species is able to engage in
multiple pathways, such as Clostridium kluyveri that can
perform chain elongation on ethanol and VFA [77, 78].

DNA RNA

Bacteria Archaea Bacteria Archaea
Average KO numbers 5721 £ 546 2927 +152° 5839 + 564 2511+ 3307
Significant higher KO numbers 663 630 2522 338

Significant (P < 0.001) differences, as determined by a t test, between bacteria and archaea or between DNA and RNA are indicated by letter “*”. Significant higher
KO numbers were determined based on a significant higher relative abundance on DNA or RNA level
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The importance of deterministic factors to shape the mi-
crobial community composition has been demonstrated
extensively [79, 80], and also, in our study, the significant
effect of several operational factors, including temperature,
pH and (free) ammonia, on the total and active microbial
community was confirmed. However, the similar bacterial
community structure (alpha diversity) but different
community composition (beta diversity) on DNA and
RNA level indicates that stochastic processes play a major
role in determining which of the bacterial species actually
become actively involved in the AD process [81].

The future of 16S rRNA (gene) analysis: does combination
of DNA and RNA profile provide a broad overview for
more detailed analysis?

Microbial community analysis via the 16S rRNA gene is a
common practice and serves as the basis for several mo-
lecular techniques. In this research, this was supplemented
with the analysis of the 16S rRNA gene transcripts to
make an estimation if there is a difference between the ac-
tive and total microbial community, which was unambigu-
ously confirmed with our results. The difference between
the DNA and the RNA profiles, however, also has a poten-
tial temporal and spatial character. First, there is a high
degree of natural community variation, even at stable con-
ditions, in AD [5, 8, 82], mainly related to biological inter-
actions [83], as observed in the co-occurrence parameters.
Second, shifts in the key operational parameters, i.e., pH
and (free) ammonia, related to the feedstock composition
[84], may provoke a diverging effect between the DNA
and the RNA community profiles [85]. Third, spatial vari-
ation, related to mixing or heating [86], might also lead to
a divergence in the DNA and RNA community profiles,
which may affect B-diversity [87]. Hence, considering the
natural temporal variations, a divergence between the
DNA and the RNA community profiles, related to for
example operational parameter variation, could be used as
a proxy of ‘real’ community stability. The suitability of the
16S rRNA (gene) to characterize mixed microbial commu-
nities is, however, becoming more and more questionable.
This is related to the difference in 16S rRNA gene copy
numbers between species, yet this also accounts for other
(marker) genes [88, 89]. Normalization of the 16S rRNA
gene copy number was applied for the Tax4Fun analysis,
as this is inherent to this software package [47]. How-
ever, no additional normalization to the copy number
was applied, given the high variation in 16S rRNA gene
copy number between species, which can vary from one
to 15 [90], and the fact that species level classification
was not possible, due to the limited amplicon length.
The ‘omics’ techniques have been postulated as posses-
sing a higher resolution and sensitivity [91] and also
suffer from other issues, as mentioned earlier.
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The strength of the combined analysis of the microbial
community based on the 16S rRNA and its transcripts,
in our opinion, is related to potential to gain a quick and
broad overview changes not only in the total and
active community, but also even into potential collab-
oration and competition between micro-organisms
and overall functionality.

Co-occurrence analysis of the combined archaeal and
bacterial community revealed a globally similar pattern
between DNA and RNA, related to the comparable
amount of correlations and organization in subcommu-
nities. On the OTU level, however, there is a clear differ-
entiation between the DNA and the RNA profiles that is
related to the difference in bacterial and archaeal com-
munity composition, as determined by beta diversity
analysis. Co-occurrence analysis is a suitable tool to
estimate potential interactions between micro-organisms
[54, 92]. In this study, Candidatus Methanomethylophilus
was identified as a potential keystone species in the active
community, based on the co-occurrence network statis-
tics. In line with the co-occurrence analysis, pathway pre-
diction via the KEGG database could be used to make an
estimation of the metabolic potential of the microbial
community. However, functional prediction based on the
16S rRNA gene should be considered with great care,
given (1) the fact that taxonomic identification does not
necessarily relate with the presence of functional genes
and (2) the high degree of variation in the 16S rRNA gene
copy number between species [90]. In this study, the
specialization of the active archaeal community compared
with the total archaeal community was confirmed with
the pathway prediction results, which is in line with the
results of Lin et al. [68].

Hence, a 16S rRNA (gene)-based approach can pro-
vide a broad overview of community presence, activity
and potential performance, which could serve as a
valuable overview and basis to engage in more detailed
community profiling via alternative techniques.

Conclusions

Alpha and beta diversity, co-occurrence and functional
prediction profiles indicated an increased level of
specialization in the active archaeal community. In con-
trast, the total and active bacterial community showed a
similar community structure; however, community com-
position also more strongly differed between the total
and active communities. The clear difference between
RNA- and DNA-based community screening confirms
the importance of this combined approach to obtain a
broad general overview, not only on the total and active
community, but also in terms of potential collaboration
and competition and predicted functionality. These
results then serve as a basis for further integrated
process engineering of the anaerobic digestion process.
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