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Abstract

Background: KDM lysine demethylase family members are related to lung cancer clinical outcomes and are
potential biomarkers for chemotherapeutics. However, little is known about epigenetic alterations in KDM genes
and their roles in lung cancer survival.

Methods: Tumor tissue samples of 1230 early-stage non-small cell lung cancer (NSCLC) patients were collected
from the five independent cohorts. The 393 methylation sites in KDM genes were extracted from epigenome-wide
datasets and analyzed by weighted random forest (Ranger) in discovery phase and validation dataset, respectively.
The variable importance scores (VIS) for the sites in top 5% of both discovery and validation sets were carried
forward for Cox regression to further evaluate the association with patient’s overall survival. TCGA transcriptomic
data were used to evaluate the correlation with the corresponding DNA methylation.

Results: DNA methylation at sites cg11637544 in KDM2A and cg26662347 in KDM1A were in the top 5% of VIS in both
discovery phase and validation for squamous cell carcinomas (SCC), which were also significantly associated with SCC
survival (HRcg11637544 = 1.32, 95%CI, 1.16–1.50, P = 1.1 × 10−4; HRcg26662347 = 1.88, 95%CI, 1.37–2.60, P = 3.7 × 10−3), and
correlated with corresponding gene expression (cg11637544 for KDM2A, P = 1.3 × 10−10; cg26662347 for KDM1A
P = 1.5 × 10−5). In addition, by using flexible criteria for Ranger analysis followed by survival classification tree
analysis, we identified four clusters for adenocarcinomas and five clusters for squamous cell carcinomas which
showed a considerable difference of clinical outcomes with statistical significance.

Conclusions: These findings highlight the association between somatic DNA methylation in KDM genes and
early-stage NSCLC patient survival, which may reveal potential epigenetic therapeutic targets.
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Background
Lung cancer, a highly invasive, rapidly metastasizing
cancer, accounting for more than one million deaths
each year, has been the leading cause of cancer deaths
worldwide for decades [1]. Rapidly developing radio-
logical techniques and strengthened consciousness of

health screening result in an increased numbers of lung
cancer patients diagnosed at early stage. Early-stage lung
cancer patients are expected to have a better prognosis
compared with those at late stage [2]. However, signifi-
cant heterogeneity has been observed for clinical out-
comes among the early-stage patients, which may have
molecular mechanisms not well understood yet [3].
Epigenetic alterations—particularly methylation in target
organ tissues—is a potential causation of this
phenomenon [4].
Of particular interest, methylation changes at histone

demethylase KDM gene family are broadly involved in
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cancer development [5, 6]. Because methylation is re-
versible, it provides a source of potential biomarkers and
therapeutic targets in cancer [7, 8]. Most recent publica-
tions show a great potential of epigenetic modifiable
agencies in cancer therapy [9, 10]. HumanN6-methyllysine
residue demethylation is catalyzed by two distinct subfam-
ilies of demethylases—the flavin-dependent KDM1 subfam-
ily and the JmjC-domain containing KDM2-8 subfamily,
which regulate the chromatin state at specific loci, and im-
pact gene expression, DNA repair, DNA replication, and
genome stability [6]. Emerging evidence connects KDMs to
cancers, including lung cancer [11–17]. DNA methylation

is an important gene regulator that provides epigenetic
therapeutic targets in cancer. However, to date, no studies
have examined the role of DNA methylation in KDM
demethylase genes and its relationship to clinical outcomes
of lung cancer patients.
Therefore, we performed a large-scale association ana-

lysis between somatic DNA methylation in KDM gene
family members and overall survival of non-small cell
lung cancer (NSCLC) patients. The study was performed
in a discovery set combining four independent Cauca-
sian populations, followed by an independent replication
in the data from The Cancer Genome Atlas (TCGA).

Table 1 Demographic and clinic pathological descriptions for study populations

Variables Discovery set Validation set

Harvard
(N = 151)

Spain
(N = 226)

Norway
(N = 133)

Sweden
(N = 103)

All
(N = 613)

TCGA
(N = 617)

Age (years), mean ± SD 67.67 ± 9.92 65.67 ± 10.58 65.52 ± 9.34 67.54 ± 9.99 66.44 ± 10.08 66.51 ± 9.47

Gender, n (%) *

Female 67 (44.37) 105 (46.46) 71 (53.38) 54 (52.43) 297 (48.45) 255 (41.33)

Male 84 (55.63) 121 (53.54) 62 (46.62) 49 (47.57) 316 (51.55) 362 (58.67)

Smoking status, n (%) *

Never 18 (11.92) 30 (13.57) 17 (12.78) 18 (17.48) 83 (13.65) 55 (9.18)

Former 81 (53.64) 120 (54.30) 74 (55.64) 54 (52.43) 329 (54.11) 376 (62.77)

Current 52 (34.44) 71 (32.13) 42 (31.58) 31 (30.10) 196 (32.24) 168 (28.05)

Unknown 0 5 0 0 5 18

TNM stage, n (%) *

I 104 (68.87) 183 (80.97) 93 (69.92) 95 (92.23) 475 (77.49) 393 (63.70)

II 47 (31.13) 43 (19.03) 40 (30.08) 8 (7.77) 138 (22.51) 224 (36.30)

Histology, n (%) *

Adenocarcinoma (AC) 96 (63.58) 183 (80.97) 133 (100.00) 80 (77.67) 492 (80.26) 332 (53.81)

Squamous cell carcinoma (SCC) 55 (36.42) 43 (19.03) 0 (0.00) 23 (22.33) 121 (19.74) 285 (46.19)

Chemotherapy, n (%) *

No 142 (94.04) 177 (90.77) 102 (76.69) 67 (90.54) 488 (88.25) 194 (76.98)

Yes 9 (5.96) 18 (9.23) 31 (23.31) 7 (9.46) 65 (11.75) 58 (23.02)

Unknown 0 31 0 29 60 365

Radiotherapy, n (%)

No 132 (87.42) 184 (94.36) 132 (99.25) 74 (100.00) 522 (94.39) 239 (94.84)

Yes 19 (12.58) 11 (5.64) 1 (0.75) 0 (0.00) 31 (5.61) 13 (5.16)

Unknown 0 31 0 29 60 365

Adjuvant therapy, n (%) *

No 127 (84.11) 168 (86.15) 101 (75.94) 67 (90.54) 463 (83.73) 187 (74.21)

Yes 24 (15.89) 27 (13.85) 32 (24.06) 7 (9.46) 90 (16.27) 65 (25.79)

Unknown 0 31 0 29 60 365

Survival year, month

Median (95%CI) 6.66 (5.41–7.87) 7.12 (5.06–9.63) 7.36 (6.77–7.95)* 7.39 (4.98–9.12) 7.39 (6.50–8.23) 4.54 (3.68–5.41)

Dead, n (%) 122 (80.79) 101 (44.69) 42 (31.58) 58 (31.58) 323 (52.69) 142 (23.01)

*Statistically significant difference (P ≤ 0.05) was observed between combined discovery set and validation set (TCGA)
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Methods
Lung cancer study populations
Harvard
The Harvard Lung Cancer Study cohort was described
previously [18]. Briefly, all cases were recruited at
Massachusetts General Hospital (MGH) since 1992 and
were newly diagnosed, histologically confirmed primary
NSCLC. Snap-frozen tumor samples were collected from
NSCLC patients during curative surgery with complete
resection. There were151 early-stage (TNM stage I, II)
cases selected for this study which had complete survival
information. Tumor DNA was extracted from 5-μm-
thick histopathologic sections. Each specimen was
evaluated by an MGH pathologist for amount (tumor
cellularity > 70%) and quality of tumor cells and histo-
logically classified using WHO criteria.

Spain
Study population was reported previously [19]. In brief, tu-
mors were collected by surgical resection from patients who
provided consent and under approval by the institutional re-
view boards. The median clinical follow-up was 7.2 years.

Norway
As described previously [20], participants were patients
with operable lung cancer tumors who were seen at Oslo
University Hospital-Riks hospitalet, Norway, from 2006
to 2011. Only early-stage (stage I, II) patients were
selected for the current study.

Sweden
Tumor tissue specimens were collected from patient’s
early-stage lung cancer who underwent operation at the
Skane University Hospital, Lund, Sweden [21].

TCGA
We used The Cancer Genome Atlas (TCGA) resources
for validation, including 332 early-stage lung adenocar-
cinomas (AC) and 285 early-stage squamous cell carcin-
omas (SCC) which had survival information and
common covariates. Level-1 HumanMethylation450
DNA methylation data (image data) of each patient were
downloaded on October 01, 2015.

Quality control process for DNA methylation data
DNA methylation was assessed using Illumina Infinium
HumanMethylation450 BeadChips (Illumina Inc., San
Diego, CA, USA). Raw image data were imported into
Genome Studio Methylation ModuleV1.8 (Illumina Inc.) to
calculate methylation signals and to perform normalization,
background subtraction, and quality control. Unqualified
probes were excluded, if they fit the following quality con-
trol (QC) criteria: (i) failed detection (P > 0.05) in ≥ 5% sam-
ples, (ii) coefficient of variance (CV) < 5%, (iii) methylated

or unmethylated in all samples, (iv) common single nucleo-
tide polymorphisms located in probe sequence or in 10-bp
flanking regions, (v) or cross-reactive probes [22]. Samples
with > 5% undetectable probes were excluded. Methylation
signals were further processed for quantile normalization,
type I and II correction, and batch effects adjustment using
ComBat correction [23, 24]. Those QC and normalization
processes were performed at each site separately using the
same R code with identical settings. In addition, the site
information was included as one of the covariates in the
following models to control for potential site heterogeneity.
Details of QC processes are described in Additional file 1:
Figure S1.

Gene expression data
In the TCGA cohort, all 332 AC and 285 SCC early-stage
patients had complete mRNA sequencing data. TCGA
mRNA sequencing data processing and quality control
was done by the TCGA workgroup. Raw counts were
normalized using RNA Sequencing by Expectation
Maximization (RSEM). Level-3 (gene level) gene quantifi-
cation data were downloaded from TCGA data portal and
were further checked for quality. Expression of KDM
genes was extracted and log2 transformed before analysis.

Fig. 1 Analysis work flow. Adenocarcinoma and squamous cell
carcinoma samples from Harvard, Spain, Norway, and Sweden
cohorts were used for the discovery phase of analysis. Data from
The Cancer Genome Atlas (TCGA) were used for validation. Ranger is
a weighted version of random forest for controlling for the
covariates including age, gender, smoking status, and histological
stage. Variable importance score (VIS) was estimated for each CpG
site and was ranked in descending order. CpG sites ranked in top
5% in both discovery and validation sets were selected for further
evaluation by Cox regression. Multiple testing correction by false
discovery rate (FDR) method was used if necessary
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Statistical analysis
Continuous variables were summarized as mean ± stand-
ard deviation (SD); categorical variables were described
as n (%). Ranger, a weighted version of random forest for
controlling for the potential confounders, was employed
in discovery and validation set, respectively, to evaluate
the importance of each individual methylation CpG site
[25, 26]. A weight of 100% was given to each covariate
to ensure a 100% chance to be selected into each tree.
Variable importance score (VIS) for each methylation
site was estimated and ranked in a descending order.
CpG sites that were in top 5% in both discovery and
validation set were identified as candidates and carried
forward for traditional Cox regression.
The candidate methylation probes were further evalu-

ated by Cox regression with adjustment for covariates
including age, gender, smoking status, and stage. Results
were described as hazard ratio (HR) and 95% confidence
interval (95%CI) per 1% increment of methylation.
Multiple testing corrections were performed using false
discovery rate method (FDR; measured by FDR-q value)
among results from discovery set. The sites with FDR-
q ≤ 0.05 in discovery set were, in turn, validated in
TCGA samples, with a statistical significance level of 0.

05. Further, correlations between the DNA methylation
of the validated sites and corresponding gene expression
level was evaluated by linear regression using TCGA
data. Only TCGA samples had both epigenome and
transcriptome data, so the methylation-expression ana-
lysis was only performed in TCGA cohort.
In addition, flexible criteria were hired for further

exploration: (1) CpG sites that were in top 10% in both
discovery and validation set were identified as candidates,
(2) candidates with FDR-q ≤ 0.1 in discovery set, and (3) P
value ≤ 0.05 in validate set. Classification and regression
tree (CART) was used to identify clusters with heteroge-
neous survival outcome. Kaplan-Meier method was used
to illustrate the survival curves of different clusters.
All analyses were performed in R Version 3.2.4 (The R

Foundation).

Results
We analyzed 393DNAmethylation probes (Additional file 2:
Table S1) in 17 KDM gene family members located on
autosomal chromosomes (Additional file 3: Table S2). Ana-
lysis was performed on 1230 tumor DNA samples from
early-stage NSCLC patients recruited from five lung cancer
study cohorts. Demographics and clinical characteristics are

a b

Fig. 2 Ranger in discovery (a) or validation (b) in adenocarcinomas. Weighted random forest (Ranger, where confounders like age, gender,
smoking status, and stage are adjusted with given 100% weight) was employed in discovery phase (a) and validation set (b) to evaluate the
importance of variables. Ranger provides VIS (variable importance score) for each methylation sites. Variables that were in top 5% (red lollipop) or
top 10% (yellow lollipop, a flexible criterion) in both discovery phase (a) and validation (b) would be carried forward
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described in Table 1. Figure 1 shows a flow chart for overall
analysis. Samples from the Harvard, Spain, Norway, and
Sweden studies were combined together for discovery.
Among AC samples, only one common CpG site,

cg07584494 in KDM4B, was identified of which the im-
portance ranked in the top 5% both in discovery and valid-
ation sets (Fig. 2). This CpG was further evaluated by Cox
regression, meanwhile, did not reach the stringent criteria
of P value ≤ 0.05 in both discovery and validation sets.
For SCC samples, the two common probes, cg11637544

within the first exon of KDM2A and cg26662347 at
TSS200 region of KDM1A, were ranked in the top 5% in
both discovery and validation sets (Fig. 3). These two CpG
sites were further evaluated by Cox regression in discovery
set and showed a significant association with SCC
patients’ survival [cg11637544KDM2A, hazard ratio (HR)
per 1% methylation increment = 1.38, 95% confidence
interval (95%CI) 1.15–1.66, P = 0.0006, FDR-q = 0.0011;
cg26662347KDM1A, HR = 2.12, 95%CI 1.26–3.57, P = 0.
0045, FDR-q = 0.0090]. Both CpG sites were replicated
with statistical significance in validation set from TCGA
(HRcg11637544 = 1.26, 95%CI 1.05–1.52, P = 0.0136;
HRcg26662347 = 1.75, 95%CI 1.16–2.64, P = 0.007). Meta-
analysis combining the evidences from the discovery and
validation sets further showed a stronger association

between worse SCC patient’s survival and hyper-
methylation at cg11637544KDM2A (HR = 1.32, 95%CI, 1.
16–1.50, P = 1.1 × 10−4; Fig. 4a) and at cg26662347KDM1A

(HR = 1.88, 95%CI, 1.37–2.60, P = 3.7 × 10−3; Fig. 4b).
Furthermore, altered DNA methylation at sites
cg11637544KDM2A (r = 0.37, P = 1.3 × 10−10) (Fig. 4c) and
cg26662347KDM1A (r = 0.25, P = 1.5 × 10−5) (Fig. 4d) were
positively correlated with the corresponding gene
expression.
In addition to the stringent criteria, we also compre-

hensively explored the data using Ranger with relatively
flexible criteria, followed by survival classification tree
analysis which can consider both linear and non-linear
patterns, and both individual and interaction effects of
CpG sites simultaneously (Additional file 4: Figure S2).
CpG sites of which the variable importance score ranked
in the top 10% in both discovery and validation set were
selected, including seven CpG sites for AC samples
(Fig. 2) and five for SCC samples (Fig. 3). Among AC
cases, seven CpG sites as well as covariates were used
to build a survival classification tree using the merged
data of discovery and validation sets (Fig. 5a). Four
clusters were identified with significantly different
survival curves (Fig. 5b) and outcome (Fig. 5c).
Among these seven CpG sites, none showed a

ba

Fig. 3 Ranger in discovery (a) or validation (b) in squamous cell carcinomas. Weighted random forest (Ranger, where confounders like age,
gender, smoking status, and stage are adjusted with given 100% weight) was employed in discovery phase (a) and validation set (b) to evaluate
the importance of variables. Ranger provides VIS (variable importance score) for each methylation sites. Variables that were in top 5% (red
lollipop) or top 10% (yellow lollipop, a flexible criterion) in both discovery phase (a) and validation (b) would be carried forward
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correlation with corresponding gene’s expression.
Similarly, among SCC cases, five CpG sites, three of
which were newly identified, and covariates were
used to build the classification tree (Fig. 6a), which
identified five clusters and statistically distinguished
patient’s survival (Fig. 6b, c). Among the three newly
identified CpG sites for SCC samples (Additional file 4:
Figure S2), two of which were correlated with their
corresponding gene expression with statistical significance
(rcg00121158 = 0.24, Pcg00121158 = 4.38 × 10−5; rcg06615743 = −
0.17, Pcg06615743 = 0.004; Additional file 5: Figure S3A-B).

Discussion
Several non-hypothesis-based epigenome-wide studies
have analyzed lung cancer prognosis [19–21] and have
identified several potential epigenetic biomarkers to help
better understand the etiology of NSCLC. To the best of
our knowledge, this is the first population-based study in-
tegrating five independent cohorts that suggested the rela-
tionship between tumor DNA methylation alterations at
the KDM gene family members and NSCLC overall sur-
vival. The results expand our current understanding of the
KDM gene family in lung cancer etiology.

a

b

c d

Fig. 4 Association between DNA methylation at sites cg11637544 in KDM2A and cg26662347 in KDM1A with overall survival of squamous cell
carcinomas and correlation between these two sites and their corresponding gene expression. Fixed-effects meta-analysis was used to combine
the results from discovery and validation sets for squamous cell carcinomas (SCC) (a cg11637544KDM2A; b cg26662347KDM1A). I

2and corresponding
P value were used to evaluate heterogeneity across studies. DNA methylation level was categorized to six quantiles, and box plot for gene
expression was drawn for each quantile. Pearson correlation was used to estimate the correlation coefficient (r) and the P value; gene expression
was log2 transformed before analysis (c cg11637544KDM2A; d cg26662347KDM1A)
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DNA methylation surrounding the transcriptional start
site (TSS) has been investigated extensively [27]; gener-
ally, hyper-methylation blocks transcription initiation
and reduces gene expression [27, 28]. However, DNA
methylation at cg11637544 in the first exon of KDM2A
and at cg26662347 in the 200-kb TSS region of KDM1A
elevates corresponding expression in tumor tissues. The
function of gene body methylation remains unclear.
However, functional elements could be in the gene body
and could modulate expression through enhancers, tran-
scription factor binding sites, and repetitive elements
[29]. Gene body DNA methylation may maintain

nucleosome stabilization in transcribed regions and in-
crease transcriptional efficiency either by elongation or
by splicing, which, in turn, leads to altered outcomes
[30]. Although promoter-associated hyper-methylation
mostly downregulates gene expression, a small part of
methylation surrounding TSS region upregulates expres-
sion [31]. This phenomenon may be mediated by affect-
ing the binding activity of upstream transcription factors
[32], which warrants further well-designed functional
studies.
As previously reported, overexpression of KDM1A

and KDM2A in NSCLC cells increases cell

b

a

c

Fig. 5 Survival classification tree for adenocarcinomas. Survival classification tree was built with seven CpG sites as well as covariates using the
merged data of discovery and validation sets among adenocarcinoma cases (a), which identified five clusters with significantly different survival
curves (b). Cox regression was used to compare the outcomes among clusters (cluster 4 as reference) and represented by hazard ratio (HR), 95%
confidence interval (95%CI), and the P value (c)
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proliferation and invasiveness and promotes cancer
metastasis [12, 13]. Here, we provided further evi-
dence that those associations appear to be
generalizable to patient population. However, func-
tional studies are needed to evaluate the mecha-
nisms that underlie the associations between
methylation alterations and survival and the mediat-
ing pathway affecting gene transcription. Neverthe-
less, no promising individual CpG site was
identified for adenocarcinoma patients following the
stringent criteria, which may due to underlying epi-
genetic heterogeneity between adenocarcinomas and
squamous cell carcinomas [33, 34].

In addition, a comprehensive survival classification
tree analysis were also performed to further explore the
data by including more potentially associated CpG sites,
which identified clusters with significantly different clin-
ical outcome for both adenocarcinomas and squamous
cell carcinomas. More KDM genes, including KDM4B,
KDM2B, and KDM4A for adenocarcinomas and
KDM2B, KDM4C, and KDM4B for squamous cell car-
cinomas, appear to be associated with patients’ survival.
So far, KDM2B has been involved in mechanisms, inde-
pendently or interactively with microRNAs, for cancers
of the blood [35], pancreas [36], breast [37], or stomach
[38]. However, the direct impact of KDM2B DNA

b

a

c

Fig. 6 Survival classification tree for squamous cell carcinomas. Survival classification tree was built with five CpG sites as well as covariates using
the merged data of discovery and validation sets among adenocarcinoma cases (a), which identified four clusters with significantly different
survival curves (b). Cox regression was used to compare the outcomes among clusters (cluster 4 as reference) and represented by hazard ratio
(HR), 95% confidence interval (95%CI), and the P value (c)
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methylation on SCC survival is not well understood and
therefore is an area that needs further exploration.
KDM4 histone demethylases is emerging as key regula-
tory modifiers to histone trimethylated residues that
have an important role in cancer development and as a
potential therapeutic targets [39]. KDM4A is related to
mTOR inhibitor sensitivity in SCC patients and impacts
copy gains of drug-resistant regions in the genome
[17, 40]. KDM4B encodes a DNA damage response
protein that confers a survival advantage following γ-
irradiation [41]. KDM4C inhibition by curcuminoids
is an adjuvant therapy that can benefit colon cancer
patients [42]. However, methylation signals in KDM4
family members are not individually associated with
NSCLC survival, which indicates that there may have
interactions of KDM4 and the other elements.
A major strength of this study is that we used

weighted random forest (Ranger) to filter DNA methyla-
tion signals. Random forest (RF) is powerful in handling
high-dimensional genetic data, but false positive or
spurious association may occur if confounding factors
are not corrected [43]. In Ranger, there is a parameter
from 0 to 1 that represents the probability of variables
selected for splitting the tree [26]. If the weight of covar-
iate is given a value of 1, this covariate would be
involved in each tree with 100% chance, and thus be
controlled. In addition, survival classification tree, a
nonparametric and decision-tree-based data mining ap-
proach, was used which can improve statistical power
and indicate potential interactions between the CpG
sites in this study [44, 45]. However, further studies need
to be done to validate authenticity and how they inter-
act, which is another area that needs further exploration.
We acknowledge some limitations in our study. First,

the positive association between methylation and corre-
sponding gene expression lacks biological evidence. The
association should be interpreted with caution, and thus
warrants further functional experiments. Second, the
censored rate of TCGA cohort is relatively high. Early-
stage NSCLC patients could be followed longer to obtain
more precise estimates in future. In addition, clinical
therapy information after surgery is under informative
and not included in this study. Finally, our study did not
include other races rather than Caucasian. The findings
of this study should be interpreted with caution among
other populations. Further studies are needed to investi-
gate their possible differences among multiple ethnicities.

Conclusions
In conclusion, this study highlights the role of somatic
epigenetic alterations of KDM gene family members on
NSCLC overall survival. The findings indicate potential
dynamic and reversible therapeutic targets for lung

cancer patients and may suggest a high-risk early-stage
NSCLC population for adjuvant therapies.
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