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Abstract

Deducing the scapular positions of extinct tetrapod skeletons remains difficult, because the scapulae and rib

cage are connected with each other not directly by skeletal joint, but by thoracic muscles. In extant non-

testudine quadrupedal tetrapods, the top positions of the scapulae/suprascapulae occur at the anterior portion

of the rib cage, above the vertebral column and near the median plane. The adequacy of this position was

tested using three-dimensional mechanical models of Felis, Rattus and Chamaeleo that assumed stances on a

forelimb on a single side and the hindlimbs. The net moment about the acetabulum generated by the gravity

force and the contractive forces of the anti-gravity thoracic muscles, and the resistance of the rib to vertical

compression between the downward gravity and upward lifting force from the anti-gravity thoracic muscle

depend on the scapular position. The scapular position common among quadrupeds corresponds to the place

at which the roll and yaw moments of the uplifted portion of the body are negligible, where the pitch

moment is large enough to lift the body, and above the ribs having high strength against vertical compression.

These relationships between scapular position and rib cage morphology should allow reliable reconstruction of

limb postures of extinct taxa.
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Introduction

The scapula and rib cage in tetrapods are connected by tho-

racic muscles, but have no direct skeletal linkages (Fig. 1;

Fujiwara et al. 2009). Therefore, deducing the scapular posi-

tion in relation to the trunk is one of the most challenging

issues in reconstructing the postures of extinct tetrapod

taxa, including prehistoric mammals and dinosaurs, whose

soft tissues decompose post mortem (Fujiwara et al. 2009).

The difficulty of reconstructing the forelimb positions is not

the case for the more ancestral state, whose pectoral girdle

is directly connected to the skull (e.g. Panderichthys, the

basal elpistostegalian sarcopterygians; McGonnell, 2001;

Daeschler et al. 2006). However, the accuracy of the scapu-

lar position in the skeletal reconstruction of extinct taxa has

rarely been considered (Thompson & Holmes, 2007; Witton

& Naish, 2008; Sellers et al. 2009), and the scapulae have

been randomly positioned in their skeletal mounts (Figs S1

and S2).

Some studies have estimated the scapular positions in

extinct tetrapods using fossils in which the skeletal connec-

tions were largely preserved (Senter, 2006; Schwarz et al.

2007; Senter & Robins, 2015), although the approach is

based on an unsolid assumption that the scapulae are

retained in the life positions relative to the trunks in fossil

remains. For more mechanical approaches, the bending

moments of the vertebral column (Christian & Preuschoft,

1996) and the bending strengths of the rib against vertical

compression (Fujiwara et al. 2009) have been used as the

indices of the cranio-caudal scapular position in quadrupe-

dal amniote tetrapods, although the dorso-ventral and

medio-lateral scapular positions remain unresolved. In

another study, stress analysis of simple structural models

synthesized from polyhedral finite elements assuming the

trunk is supported on a forelimb was conducted for croco-

dile and sauropod dinosaur models to estimate the appro-

priate scapular angle to the rib cage (Hohn, 2011), although

the approach was not developed for deducing the scapular

position to the trunk.

As mentioned above, the scapular position to the trunk

remains uncertain. However, irrespective of whether the

scapulae are flexible in terms of the orientation to the

trunk (English, 1978), the top positions of the scapulae/

suprascapulae in extant non-testudine quadrupedal
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tetrapods seem to be retained in a limited range of position

to the trunk – near the median plane and above the ante-

rior-most portion of the rib cage during the stance phases

(Table 1; Figs 2a and S3).

The scapular position described above, which is shared by

the non-testudine quadrupedal tetrapods (Fig. 2a), is also

shared by taxa that use their forelimbs for body support to a

greater or lesser extent, such as birds (Aves) with flying abil-

ity (e.g. Columba; Fig. S4a; Baier et al. 2013), and semi-aqua-

tic quadrupedal tetrapods, such as otariid pinnipeds (e.g.

Callorhinus; Fig. S5a; Dennison et al. 2009). On the other

hand, these positions are not applicable to turtles (Testudi-

nes) whose scapulae are positioned inside the rib cage

(Figs 2d and S6; Walker, 1971; Nagashima et al. 2013), and

other tetrapods that do not use their forelimbs for terrestrial

support, including obligate bipedal tetrapods such as the

casuariiform birds, whose forelimbs are extremely reduced

(e.g. Casuarius; Fig. S4b; Beale, 1985; Wagner & Kirberger,

2001), and obligate aquatic tetrapods, such as cetaceans

(e.g. Tursiops; Fig. S5b; Moran et al. 2015). The scapulae of

these non-forelimb-users are located on the lateral aspect of

the rib cage, away from the median plane (Fig. 2b,c).

Given these observations, the positions of the dorsal mar-

gin of the scapula shared among non-testudine quadrupe-

dal tetrapods are expected to be appropriate for stable

body support during quadrupedal gait. If the adequacy of

the scapular position shared among the extant quadrupedal

taxa is clarified from the biomechanical point of view, it

would provide strong evidence for the appropriate recon-

struction of these positions in extinct quadrupedal taxa.

Mechanical models and hypotheses

In this study, mechanical models of a phase during slow

quadrupedal walk with a symmetric gait were considered,

because this gait is employed by many terrestrial quadrupe-

dal tetrapods (Gray, 1968; Gambaryan, 1974; Jenkins, 1974;

Cohen & Gans, 1975; Hildebrand, 1989; Schutt et al. 1997;
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Fig. 1 Positional relationships among body

skeletons in vivo of Felis shown in the dorsal

view. Note that the hindlimb skeletons are

directly connected to the vertebral column via

the pelvic girdle, whereas the forelimb

skeletons have no direct skeletal connection

to the rib cage.

Table 1 Cineradiographies that indicate the positional relationship between the scapulae and rib cage taken for quadrupedal locomotion on the

ground in tetrapods.

Taxa Order Genera References

Anura Ranidae Rana Jenkins & Shubin (1998)

Lepidosauromorpha Varanidae Varanus Jenkins & Goslow (1983)

Chamaeleonidae Chamaeleo Fischer et al. (2010)

Crocodylia Alligatoridae Alligator Baier & Gatesy (2013)

Monotremata Tachyglossidae Tachyglossus Jenkins (1970), Pridmore (1985)

Ornithorhynchidae Ornithorhynchus Pridmore (1985)

Didelphiomorphia Didelphidae Didelphis Jenkins (1971), Jenkins & Weijs (1979)

Monodelphis Pridmore (1992)

Soricomorpha Soricidae Blarina Riskin et al. (2016)

Hyracoidea Procaviidae Procavia Fischer (1994)

Carnivora Canidae Canis Fischer & Lilje (2012)

Felidae Felis Macpherson & Ye (1998)

Artiodactyla Bovidae Capra Carroll & Biewener (2009)

Scandentia Tupaiidae Tupaia Schilling & Fischer (1999), Schilling (2005a)

Primates Lemuridae Eulemur Schmidt & Fischer (2000)

Cebidae Saimiri Schmidt (2005)

Lagomorpha Ochotonidae Ochotona Fischer & Lehmann (1998), Schilling (2005b)

Rodentia Caviidae Cavia Rocha-Barbosa et al. (2005)

Cricetidae Microtus Riskin et al. (2016)

Spalacidae Spalax Gambaryan et al. (2005)

Muridae Rattus Jenkins (1974), Schmidt & Fischer (2011), Vidal et al. (2004),

Schilling (2005a,b), Alaverdashvili et al. (2008), Bonnan et al. (2016)
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Fischer, 1999; Vidal et al. 2004; Wada et al. 2006; Biknevi-

cius & Reilly, 2007; Fischer et al. 2010; Schmidt & Fischer,

2011). The limbs make contact with the ground in a specific

order during this gait, and the quadrupedal animal requires

support on either side of the forelimbs and hindlimbs at a

certain phase of the slow walk sequence (Gray, 1968; Cart-

mill et al. 2002; Farrell et al. 2014). In the phase during

which the animal stands on its hindlimbs and one forelimb,

the rest of the body (the head, axial skeleton and contralat-

eral forelimb) is uplifted by these limbs (Fig. 3). An asym-

metric gait employed by many quadrupedal animals, such

as some crocodilians, kangaroos, lagomorphs, vampire bats,

horses and many other mammals (Gray, 1968; Gambaryan,

1974; Schutt et al. 1997; Renous et al. 2002), was not con-

sidered, because both sides of the forelimb share much of

the timing of their stance phase.

The posterior portion of the axial skeleton is directly con-

nected to the hindlimb skeletons by acetabular joints, and

the lifting force from the hindlimbs during the stance is

transmitted directly to the axial skeleton (Fig. 3; Christian &

Preuschoft, 1996). In contrast, the scapulae and trunk are

connected not by skeletal joints directly (Fig. 3), but by tho-

racic muscles, including the musculus serratus ventralis and

m. rhomboideus. The former originates from the transverse

processes of the cervical vertebrae and the lateral aspects of

the thoracic ribs, and the latter originates from the neural

spines of the thoracic vertebrae; both muscles insert into the

medial surface at the top position of the scapula (Fig. S7;

Nickel et al. 1986; Russell & Bauer, 2008). Electromyographic

analyses of the quadrupedal gait in various tetrapod taxa

(Tokuriki, 1973, 1974; English, 1978; Tuttle & Basmajian,

1978; Jenkins & Weijs, 1979; Jenkins & Goslow, 1983; Yam-

aguchi, 1992; Fischer et al. 2010) have shown that both

m. serratus ventralis and m. rhomboideus are activated dur-

ing the stance phase of the forelimb. In this phase, the tho-

racic skeleton is subjected to an uplifting force at the origins

of these anti-gravity muscles (Preuschoft et al. 2007;

Fujiwara et al. 2009).

In nature, the stance on one forelimb, together with the

hindlimb(s), causes torsion of the axial skeleton along the

longitudinal axis (Preuschoft et al. 2007; Hohn, 2011).

However, to simplify the model, the uplifted body element

is assumed to be a rigid body in this study that is allowed to

rotate three-dimensionally about the three rotational axes

through the acetabular joint(s) – the roll, yaw and pitch

axes (Fig. 3). The uplifted elements of the body accelerate

downward at the centre of mass (COM) under gravity, and

are subjected to a negative pitch moment caused by the

force of gravity. The forces activated by the thoracic muscles

on the forelimb in the stance lift up the anterior portion of

the trunk, and the uplifted body element is subjected to a

positive pitch moment against gravity to stabilize the pos-

ture (Fig. 3). However, the uplifted body element is simulta-

neously subjected to roll and yaw moments by the muscle

activities, and is destabilized (Fig. 3).

In stable posture, the uplifted body element of the quad-

rupedal tetrapod should be subjected to negligible net

pitch, roll and yaw moments by gravity and muscle activi-

ties. Assuming the presence of static equilibrium during the

stance, the uplifted body is balanced between the net

moment of the contractile force of the muscle fascicles and

the moment of the gravitational force. The orientations

and paths of the anti-gravity muscle fascicles connecting

the rib cage and scapula (m. serratus ventralis andm. rhom-

boideus) depend on the position of the scapula relative to

the rib cage (Fig. S8). Therefore, the pitch, yaw and roll

moments of the uplifted body element about the acetabu-

lum vary according to the scapular position and the contrac-

tive force of each anti-gravity muscle fascicle.

Other muscles connecting the forelimb and rib cage, such

as m. pectoralis, m. brachiocephalicus and m. latissimus

dorsi, may also contribute to sustain the body during the

stance (Tokuriki, 1973, 1974; English, 1978; Tuttle & Basma-

jian, 1978; Jenkins & Weijs, 1979; Jenkins & Goslow, 1983;

Yamaguchi, 1992; Fischer et al. 2010). However, unlike the

serratus and rhomboideus muscles that insert at the top

position of the scapula, these muscles insert at a different

position far from the top position of the scapula and, there-

fore, the fascicle orientations of these muscles depend not

only on the scapular position to the rib cage, but also on
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Fig. 2 Diagrams showing the difference of

the scapular positions to the trunk in right

lateral and cranial views. The scapulae are on

(a) cranio-dorso-medial, (b) cranio-ventro-

lateral and (c) caudo-lateral positions, and (d)

inside the ribcage. The dorsal portion of the

scapular blade (double-lined circle) and the

glenoid (gl) were marked for each scapular

position.
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the scapular orientation and shoulder joint angle. To sim-

plify the mechanical model that focuses on the positional

relationship between the scapula and rib cage, these mus-

cles were not considered in this study.

In addition, the origins of the m. serratus ventralis on the

thoracic ribs are subjected to the uplift force of the muscle,

whereas the vertebral column is also subjected to the

downward gravity force, so the rib cage is subjected to

dorso-ventral compression during the stance phase (Fuji-

wara et al. 2009). The distortion of the rib cage must be

minimized to avoid the risk of bone fracture. Therefore, the

rib beneath the scapula is expected to be strengthened

against dorso-ventral compression.

For reasons described above, it can be hypothesized that

the scapulae on the side of the supporting forelimbs in

quadrupedal tetrapods is located: (i) where the net roll,

yaw and roll moments of the uplifted body element pro-

duced by the muscles and body acceleration are almost neg-

ligible; and (ii) above the rib that has relatively enhanced

strength against vertical compression. In this study, these

hypotheses were tested using two different mechanical

models – the rotation and distortion models.

Materials and methods

Three-dimensional (3D) imaging of the specimens

The carcasses of a cat (Felis silvestris catus, Carnivora, Mammalia), a

rat (Rattus norvegicus, Rodentia, Mammalia) and a Meller’s chame-

leon (Chamaeleo melleri, Lepidosauria) were used to test the

hypotheses (Table S1). These animals were selected because they

use relatively little lateral undulation or vertebral torsion during

walking, and the scapular positions during their stance phases are

known from cineradiographic studies (Jenkins, 1974; English, 1978;

Peterson, 1984; Boczek-Funcke et al. 1996; Macpherson & Ye, 1998;

Alaverdashvili et al. 2008; Fischer et al. 2010; Bonnan et al. 2016).

The carcasses were positioned in a posture of the walking phase,

in which they were standing on the right forelimb and hindlimbs

(Fig. S9). The cineradiographic studies of them walking (Jenkins,

1974; English, 1978; Peterson, 1984; Boczek-Funcke et al. 1996;

Macpherson & Ye, 1998; Alaverdashvili et al. 2008; Fischer et al.

2010; Bonnan et al. 2016) were used to estimate the angle of the

trunk to the ground. The carcasses were scanned with X-ray com-

puted tomography (CT; Table S1; Fig. S9). The CT images were

imported into 3D imaging software (Avizo 8.1, FEI Visualization

Science Group, Burlington, USA). The following elements were then

segmented, and exported as 3D polygons in STL file format: the

uplifted body element (UB), including the head, trunk and the left

forelimb (in the swing phase); the thoracic skeleton (TS); and the

right scapula (RS; Fig. S9).

The left acetabulum was defined as the common pivot (P) of the

UB and TS, because the left hindlimb supports more weight for a

longer time than the right hindlimb during the swing phase of the

left forelimb in the studied taxa (Manter, 1938; Peterson, 1984;

Webb & Muir, 2002). The resolution of the CT scans was insufficient

to detect local densities of bones and soft tissues. The outlier vol-

umes of the bony elements [densities of the hard tissues (e.g. corti-

cal bones: 2.06 g mm�3) and soft tissues (e.g. muscle: 1.06 g mm�3;

Gans, 1982; Vogel, 2003) were small relative to the whole-body vol-

umes (Felis, 7.06%; Rattus, 2.72%; Chamaeleo, 7.67%). Therefore,

the COM of the UB was estimated based on the assumption that

the specific weights within the body were uniform (Figs 4 and S9).

The origins and insertions of the thoracic muscle fascicles

(Table S2) were determined by dissection conducted after the CT
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Fig. 3 3D rotation model of Felis constructed in this study shown in right lateral and cranial views. The model assumes a stance on the right fore-

limb, and the body is supported via thoracic muscles (RHc, m. rhomboideus cervicis; RHt, m. rhomboideus thoracis; SVc, m. serratus ventralis cervi-

cis; SVt, m. serratus ventralis thoracis). The roll, yaw and pitch axes through the acetabulum (point P) are perpendicular with each other. A plane

parallel to the roll and yaw axes is defined as the ‘reference plane’. The uplifted body elements are allowed to rotate about the point P. The

uplifted body elements are subjected to the downward force (FCOM) at the centre of mass (COM) generated by acceleration, and to the contractile

forces of the thoracic muscles (RHc, RHt, SVc and SVt). Moment analyses were conducted under different orientations of the COM acceleration:

(a) vertical; (b) 15° anterior; (c) 15° posterior; (d) 15° rightward; and (e) 15° leftward accelerations (see Table S3).
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Fig. 4 The appropriate scapular positions estimated for (a, b) Felis, (c, d) Rattus and (e, f) Chamaeleo in rotation models with the centre of mass

(COM) accelerated vertically. (a, c, e) The scapular positions at which the net roll (SPR) and yaw (SPY) moments generated by the contractive forces

of the thoracic muscle fascicles (Fmax) and the downward gravity forces (n 9 FCOM: n = 1, 2, 3, 4) applied to the fascicle origins and the centre of

mass (COM), respectively, become zero; (b, d, f) The scapular positions at which the net pitch moment generated by the Fmax and n 9 FCOM
(SPP�n: n = 1, 2, 3, 4) become zero. The results are shown in the oblique views in orthographic projection. COM, centre of mass of the uplifted

body element (UB); P, a common pivot of the UB and TS about roll, yaw and pitch axes; TS, thoracic skeleton.
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scan. The maximum contractive force of each fascicle of the thoracic

muscles was estimated using the mean values for the length [l

(mm)] and mass [m (g)]. The pennation angle (h) of the muscle

fibres was assumed to be zero because the muscle fibres were

nearly parallel to the fascicle orientations. The physiological cross-

section area (PCSA) was then calculated for each muscle fascicle

based on the equation (Table S2; Gans, 1982):

PCSA ¼ ðm� cos hÞ=ðq� lÞ½mm2�;

where q (g mm�3) is the density of the muscle.

3D rotation model

Three-dimensional polygons of the UB, TS and RS were imported

into a virtual xyz-coordinate space (x, longitudinal; y, vertical; z,

transverse) in software that constructs 3D musculo-skeletal models

(SIMM 6.0.3, Musculographics, Santa Rosa, USA). The common pivot

(P) of UB and TS at the acetabulum was set on the y-axis (Figs 3, S10

and S11). The SIMMmodels constructed for this study, which can be

opened with SIMM 6.0.3, are available online as Appendices S1, S2

and S3.

A plane through point P parallel to the COM acceleration was

defined as the reference plane of the body axis, and three rota-

tional axes through point P were defined for the UB and TS – the

axis on the reference plane through COM was defined as the roll

axis of the UB and TS; the axis perpendicular to the roll axis on

the reference plane was defined as the yaw axis; and the axis per-

pendicular to the reference plane was defined as the pitch axis

(Fig. 3). If the COM acceleration vector directed ventrally, the ref-

erence plane corresponded to the median plane (Fig. 3a). The UB

and TS were allowed to rotate about the roll, yaw and pitch axes

in order in SIMM 6.0.3 (Fig. S10; Delp & Loan, 2000). These defini-

tions of the common rotational axes of the UB and TS simplify

the model, because the moment inertia of an object about an

axis parallel to a certain orientation is minimized if the axis goes

through COM (Paul, 1979), and also because the COM accelera-

tion vector is on the plane through the roll and yaw axes. There-

fore, the roll and yaw moments of the UB caused by the

acceleration parallel to the reference plane on the COM can be

neglected. The pitch angles of UB and TS about the horizontal

(x–z) plane were taken from the posture during the stance phase

determined from the cineradiographic records for these taxa

(Fig. S3; Jenkins, 1971; English, 1978; Peterson, 1984; Boczek-

Funcke et al. 1996; Macpherson & Ye, 1998; Alaverdashvili et al.

2008; Fischer et al. 2010).

The RS was allowed to translate parallel to the x-, y- and z-axes,

and to move independently from the rotations of UB and TS about

point P (Figs S8 and S11). The top positions of the scapulae were

defined as the ‘scapular positions (SPs)’ (Fig. S11). The paths of the

fascicles of the thoracic muscles (e.g. m. serratus ventralis,

m. rhomboideus) were modelled between the origin on TS and

the insertion on RS (Fig. S11b,d,f). The insertions of the fascicles

(m. serratus ventralis and m. rhomboideus) roughly correspond to

scapular position. The muscle fascicles were modelled to wrap

around the rib cage, not to penetrate the skeleton, in the model

(Fig. S12; Delp & Loan, 2000).

The maximum possible contractive force (Fmax) was estimated for

each muscle fascicle using PCSA (Table S2; Powell et al. 1984), as a

product of PCSA (mm2) and the specific tension [force per PCSA

(N mm�2)] of the muscle. The specific tension was obtained from

studies of the hindlimb muscles of therian mammals (2250–3120

N mm�2; Powell et al. 1984; Bodine et al. 1987; Brown et al. 1998),

and the smallest tensile force (2250 N mm�2) was used in this study

to ensure that the uplifting force produced by the thoracic muscle

was not overestimated. The specific tensions of the therian hin-

dlimb muscles were not the best choices for application to the mod-

els used in this study, but the specific tensions of the m. serratus

ventralis and m. rhomboideus have not yet been determined for

relatively small tetrapods. Future studies of their muscle architecture

may resolve this problem.

The product of body acceleration (m s�2) and the body mass

(kg) was defined as FCOM (N). The FCOM was applied to the COM

(Figs 3 and S11a,c,e). If the gravitational acceleration (g = 9.80665

m s�2; vertical) was applied, FCOM corresponded to the body

weight in the stand-still posture (Fig. 3a). The total vertical reac-

tion force on the supporting limbs in a walking cat or running

rat can reach ~1.2 or < 2.0 times body weight, respectively (Man-

ter, 1938; Webb & Muir, 2002). Therefore, the larger downward

acceleration of the COM up to four times the body weight was

considered as well (vertically accelerated models: FCOM = n9 body

weight, where n = 1, 2, 3 in Felis and Rattus; n = 1, 2, 3, 4 in Cha-

maeleo; Fig. 3a; Table S3a).

The COM acceleration can incline from the vertical during the

stance phase, although the horizontal component is much smaller

than the vertical component (Pandy et al. 1988; Schutt et al. 1997;

Macpherson & Ye, 1998; Muir & Wishaw, 1999; Webb & Muir, 2002;

Schmitt, 2003; Ahn et al. 2004; Witte et al. 2004; Schmidt, 2005; Ren

et al. 2010). According to the gait analyses on Felis forelimb, the

inclines of the vector from the vertical are less than 15° (Manter,

1938). Therefore, the models whose COM accelerations were

inclined 15° from the vertical toward four different orientations

(anterior, posterior, right and left) were taken into account as well

(anteriorly, posteriorly, rightward and leftward accelerated models;

Fig. 3b–e; Table S3b).

To simplify the model, all muscle fascicles were assumed to per-

form their maximum contractile forces to counteract the COM

acceleration (Tables S2 and S3a,b). The roll, yaw and pitch net

moments (N mm) of the UB about the pivot generated by the maxi-

mum contractive forces of these muscle fascicles (Fmax) and the

COM acceleration (n 9 FCOM; n = 1, 2, 3, 4) were estimated using

SIMM 6.0.3 (Fig. S13). The scapular positions at which the roll and

yaw net moments become zero were defined as the appropriate

positions in terms of roll (SPR) and yaw (SPY), respectively. The

scapular position at which the net pitch moments become zero was

defined as the appropriate scapular position in terms of the pitch

moments (SPP: SPP�n corresponds to SPP estimated for the down-

ward force of n 9 FCOM, where n = 1, 2, 3, 4).

The above-mentioned models assume that all the muscle fascicles

perform their maximum contractile forces (Table S3a,b). However,

the contractile force of each fascicle may not reach its maximum

depending on the timing during the stance phase, although the

forces in vivo are not fully understood (English, 1978; Jenkins &

Weijs, 1979; Jenkins & Goslow, 1983; Yamaguchi, 1992). To test how

the difference in contractile force of muscle fascicles affects the esti-

mated scapular position, additional analyses were conducted for

Felis models. In these models, the COM was subjected to vertical

downward acceleration (n 9 FCOM), and the contractile forces of

thoracic muscle fascicles (RHc, m. rhomboideus cervicis; RHt,

m. rhomboideus thoracis; SVc, m. serratus ventralis cervicis; SVt,

m. serratus ventralis thoracis) were conditioned as follows. In a

model that relies more on the cranial fascicles (RHc-SVc) than the

caudal fascicles (RHt-SVt; cranial fascicles-dependent model), con-

tractile forces of RHc, RHt, SVc and SVt were assumed to perform
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91, 90.5, 91, 90.5 times Fmax, respectively. Likewise, in a caudal fas-

cicles (RHt-SVt)-dependent model, the four different fascicles, i.e.

RHc, RHt, SVc and SVt, perform 90.5, 91, 90.5, 91 times Fmax,

respectively; in a dorsal fascicles (RHc-RHt)-dependent model, they

perform 91, 91, 90.5, 90.5 times Fmax, respectively; and in a ventral

fascicles (SVc-SVt)-dependent model, they perform 90.5, 90.5, 91,

91 times Fmax, respectively (Table S3c). The SPR, SPY and SPP�1 were

estimated for these models. The solutions of SPP�2 and SPP�3 were

not available for these models, because the net pitch moment did

not exceed zero.

3D distortion model

The 3D polygons of the TS were imported into the software for a

3D stress analysis using the finite element method (Voxelcon 2014,

Quint, Fuchu, Japan). The orientations of TS about the x-, y-, z -

coordinates were set as in the postures in the 3D rotation models.

The 3D polygon for each TS was replaced with blocks of ~100 000

small cubic voxels that reflected the shape of the TS. The sides of

each voxel were perpendicular to the x-, y-, z-axes.

The upward lifting force on each rib against gravity was assumed

in this analysis. In the voxel blocks of TS, the translation of the ver-

tebral column was fixed for the x-, y-, z-axes, and the upward lifting

force (1 N) along the y-axis was applied to the origin of m. serratus

ventralis on each rib (Fig. S14). Young’s modulus and Poisson’s ratio

for TS were set to 18 GPa and 0.4, respectively, according to previ-

ously reported experiments on mammal bones (Vogel, 2003). The

distribution of the von Mises stresses (N mm�2) on the TS block was

calculated with Voxelcon 2014, and the maximum stress was esti-

mated. The maximum stress is inversely proportional to the strength

of the rib against vertical compression (Fujiwara et al. 2009). There-

fore, the muscle fascicle origin at which the maximum von Mises

stress on the rib was minimized is the rib most strengthened against

vertical compression. The x,z-position of this fascicle origin was

defined as the appropriate scapular position against vertical com-

pression (SPV).

The appropriate scapular positions estimated from the rotation

(SPR, SPY and SPP) and distortion (SPV) models were compared with

the positions in vivo (SPin_vivo) based on cineradiographic records for

these taxa [Felis (English, 1978; Boczek-Funcke et al. 1996; Macpher-

son & Ye, 1998); Rattus (Jenkins, 1974; Alaverdashvili et al. 2008);

Chamaeleo (Peterson, 1984; Fischer et al. 2010)].

Results

Appropriate scapular positions in the rotation model

In the vertically accelerated models, the appropriate scapu-

lar position in terms of the yaw moment (SPY) was dis-

tributed vertically near the reference plane in all the taxa

studied (Figs 4a–c, S15–S17). As mentioned above, the refer-

ence plane corresponds to the median plane in the vertically

accelerated model (Fig. 3a). The distribution of the appro-

priate position in terms of the roll moment (SPR) was nearly

parallel to the roll axis in all the taxa studied, although it

was inclined latero-ventrally in Felis, was more vertical in

Rattus and was nearly horizontal in Chamaeleo (Fig. 4a–c).

The distributions of the appropriate scapular positions in

terms of the pitch moment varied with the force applied to

the COM [n9 FCOM (N): n = 1, 2, 3, 4]. SPP�1, SPP�2, SPP�3

and SPP�4 were distributed nearly transversely and nearly

parallel to, but above, the roll axis in all the taxa studied

(Figs 4d–f and S15–S17). The dorso-ventral heights were in

increasing order: SPP�1, SPP�2, SPP�3 and SPP�4. SPP�1, SPP�2,

SPP�3 and SPP�4 were convex ventrally above the anterior-

most portion of the rib cage and near the median plane.

SPP�4 was more deeply convex than SPP�3, followed by

SPP�2 and SPP�1, whose ventral convexity was shallowest

among these limits (Fig. 4d–f). The distance between SPP�1

and SPP�3 in Rattus and Felis, or between SPP�1 and SPP�4 in

Chamaeleo, was smallest at the point at which these sur-

faces were convex ventrally.

In all the taxa studied, the scapular position in vivo during

the stance phase corresponded to the place at which the

SPR, SPY and SPP�1�SPP�4 (above the anterior portion of the

rib cage, above the roll axis and near the median plane)

came close to each other (Fig. 4; Jenkins, 1974; English,

1978; Peterson, 1984; Boczek-Funcke et al. 1996; Macpher-

son & Ye, 1998; Alaverdashvili et al. 2008; Fischer et al.

2010). The SPin_vivo was between SPP�2 and SPP�3 in Felis

and Rattus, and between SPP�1 and SPP�2 in Chamaeleo.

The SPin_vivo corresponded to SPR in Rattus and Chamaeleo,

but was slightly higher than SPR in Felis, although the dis-

tance was not great (Figs 4 and S15–S17).

In rotation models of Felis with the COM accelerated in

different orientations (anteriorly, posteriorly, rightward

and leftward; Table S3b), the scapular position at which the

SPY, SPR, SPP�1 and SPP�3 came close to each other was simi-

lar to the scapular position estimated in the vertically accel-

erated model (Fig. S18), although the orientations of the

SPR, SPY and SPP distributions inclined depending on the ori-

entations of the reference plane to the roll axis (Fig. S18d,

e). Likewise, the scapular position at which the SPY, SPR,

SPP�1 and SPP�2 came close to each other in Felis models

with different contractile forces of the thoracic muscles

(RHc, RHt, SVc and SVt) were similar to the scapular position

estimated in the vertically accelerated models as well

(Fig. S19).

Appropriate scapular positions in the distortion

model

The resistance of the rib against 1 N vertical compression

was highest in the anterior-most ribs in all the specimens

studied (Fig. 5). In Felis, the maximum von Mises stresses

were 8–12 MPa on the third to the ninth thoracic ribs

(Fig. 5a: T8–12), whereas the stresses were 3–5 MPa on the

first two thoracic ribs (Fig. 5a: T1–2). In Rattus, the maxi-

mum von Mises stresses were 190–260MPa on the fourth to

the sixth thoracic ribs, but decreased toward the anterior

ribs, and were < 15 MPa on the first thoracic rib (Fig. 5b). In

Chamaeleo, the fourth cervical rib had three fascicle origins

of m. serratus ventralis, and the maximum von Mises stress

distributed on the rib were smallest when the force was
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applied to the most proximal origin (< 15 MPa; Fig. 5c: C4p)

rather than to the most distal origins (> 65 MPa; Fig. 5c:

C4d).

SPV was determined to be above the origin of the muscle

fascicle on the anterior-most rib in all the taxa studied

(Fig. 5). The scapular positions in vivo were above the first

two thoracic ribs in Felis and Rattus, but above the proximal

muscle fascicle origin on the fourth cervical rib in Chamae-

leo (Jenkins, 1974; English, 1978; Peterson, 1984; Boczek-

Funcke et al. 1996; Macpherson & Ye, 1998; Alaverdashvili

et al. 2008; Fischer et al. 2010). Owing to the shapes of the

rib cages, in which the medio-lateral width narrows cra-

nially, both the x,y scapular positions in vivo corresponded

to SPV in all the taxa studied (Fig. 5a–c).

Discussion

The top positions of the scapulae during the support phase

(SPin_vivo) in the taxa studied were above the anterior por-

tion of the rib cage and near the median plane (Jenkins,

1974; English, 1978; Peterson, 1984; Boczek-Funcke et al.

1996; Macpherson & Ye, 1998; Alaverdashvili et al. 2008; Fis-

cher et al. 2010). The dorso-ventral positions of SPin_vivo
were above the vertebral column in Felis and Rattus, whose

rib cages are spread broadly posteriorly but narrowly anteri-

orly (Fig. 5a,b), whereas the position did not reach the top

position on the trunk in Chamaeleo (Fischer et al. 2010),

whose rib cage was narrow along its entire length (Fig. 5c).

However, in all extant quadrupedal tetrapods, SPin_vivo
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occurs at the position at which the width of the rib cage

narrows (Jenkins, 1974; English, 1978; Peterson, 1984; Boc-

zek-Funcke et al. 1996; Macpherson & Ye, 1998; Alaver-

dashvili et al. 2008; Fischer et al. 2010). SPin_vivo
corresponded to the appropriate scapular position in both

the rotation (SPR, SPY, SPP1�4) and distortion (SPV) models

(Figs 4 and 5). The estimated scapular position at which the

SPR, SPY and SPP1�4 came close to each other did not largely

depend on the orientations of the COM acceleration

(Fig. S18) and the difference between contractile forces of

the thoracic muscle fascicles (Fig. S19). This scapular position

is shared by all non-testudine quadrupedal taxa (see the

Introduction). Therefore, the quadrupedal tetrapods seem

to retain their scapulae in the appropriate positions for

body support to avoid the risks of unsteadiness of the

uplifted body element and bone fracture in the thoracic

skeleton. This hypothesis could be further strengthened if

healed micro stress fractures (McCaw & Bates, 1991; Burr,

1993) were found to be distributed on the weight-bearing

ribs beneath the scapulae in a future study.

The attachments to the skeletons and the fascicle PCSAs

of the thoracic muscles are difficult to determine in fossils.

Therefore, the analyses used in this study cannot be con-

ducted for extinct taxa. However, if the number of case

studies in which this method is applied to extant quadrupe-

dal tetrapods increased, and the top positions of the scapu-

lae/suprascapulae of the quadrupedal tetrapods were

found to be common, the scapulae in extinct quadrupedal

taxa could well be inferred to occur at similar positions,

based on the assumption that the animal used quadrupedal

locomotion with a symmetric gait.

Rib strength has been used to estimate the ability to walk

on land in mammalian taxa that have shifted their eco-

space from land to water, such as cetaceans and sirenians

(Ando & Fujiwara, 2016). Furthermore, the scapulae of

some bipedal dinosaurs used to be reconstructed on the lat-

eral aspect of the rib cage, mainly based on the preserva-

tions of the fossil occurrences, although their use of

forelimbs for body support remains unclear [e.g. hadrosaurs

(Galton, 1970); theropods (Stevens et al. 2008)]. The time

when the ability of forelimbs to provide support on land

was lost in these tetrapod lineages could be more precisely

reconstructed if the appropriate scapular position for the

terrestrial quadrupedal stance and the possible scapular

position around the rib cage were determined for extinct

taxa.

Limitations

The rotation and distortion models used in this study are

quite new and constitute a useful approach to explaining

why the scapular positions of terrestrial quadrupedal tetra-

pods are restricted. However, both the rotation and distor-

tion models have several limitations. The first limitation is

the uncertainties in the assumptions listed below, which

were used in the models. The models assumed that each

muscle fascicle exerts 100% or 50% of its maximum contrac-

tive force in proportion to the PCSA (Table S3), although

the exact contractive force of each muscle fascicle during

the stance is unknown. Furthermore, the models assumed

that a static equilibrium was present between the forces

generated by the muscle fascicles and body acceleration;

however, the posture of uplifted body elements may not be

fixed during the gait [e.g. Felis (Farrell et al. 2014); Rattus

(Vidal et al. 2004)], which may cause a shift in the COM

position. The models also assumed that only serratus and

rhomboideus muscles were involved in supporting the

body, although the other muscles connecting the forelimb

and rib cage, such as m. pectoralis and m. latissimus dorsi,

may also function to support the body (see Introduction).

All these factors would affect the estimated appropriate

scapular positions (SPR, SPY, SPP and SPV). Future studies of

these taxa that combine an electromyographic analysis of

the fascicles of all the anti-gravity muscles involved in body

support and 3D kinematic analyses using force plates and

cineradiography (Baier & Gatesy, 2013) would resolve these

problems.

The scapular positions in vivo are not exactly consistent

with SPR in Felis (Fig. 4a). The roll moment on the uplifted

body elements causes torsion about the body axis (Pre-

uschoft et al. 2007; Hohn, 2011), although the roll moment

is much smaller than the yaw and pitch moments. Accord-

ing to electromyographic studies of several terrestrial tetra-

pods, the axial muscles are activated during the gait [e.g.

Varanus (Ritter, 1995), Rattus (Fischer, 1999), Felis (Macpher-

son & Ye, 1998; Wada et al. 2006), Ochotona (Schilling,

2005b)], and these muscles probably function to avoid the

roll of the uplifted body elements caused by the thoracic

muscles.

This study assumed a certain phase during symmetric

walk, stance on a single forelimb and hindlimb(s), in quad-

rupedal tetrapods whose scapulae are flexible relative to

the trunk. Likewise, the stance on the hindlimb(s) and non-

lead forelimb can occur during asymmetric gait as well (e.g.

Ochotona; Fig. S3l; Gray, 1968; Gambaryan, 1974; Fischer &

Lehmann, 1998; Rocha-Barbosa et al. 2005), and the models

in this study may explain the scapular positions in that case.

However, the timing when both forelimbs simultaneously

support the body commonly occurs in both symmetric and

asymmetric gaits (Fig. S3c,g,i,j,l,n,o). In stance on both sides

of the forelimbs, which is the case assumed for the asym-

metric gait, the roll and pitch moments generated by both

sides of the anti-gravity thoracic muscles could be balanced

with each other about the roll and yaw axes, respectively

(Fig. S10b–e). Therefore, the scapular positions that prevent

roll (SPR) and yaw (SPY) assumed for support on either side

of the forelimb could not be critical for the support on fore-

limbs during the asymmetric gait.

On the other hand, both positive pitch moments gener-

ated by right and left thoracic muscles counteract the
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negative pitch moment generated by the COM acceleration

(Figs 3 and S10f,g). The SPPs estimated for the stances on

right and left forelimbs could be symmetrical with respect

to the median plane, both of which could be distributed

near the median plane and above the anterior portion of

the rib cage (Figs 4 and S15–S17). The appropriate cranio-

caudal scapular position estimated in the distortion model

(SPV) does not largely depend on whether the animal sup-

ports itself on a single forelimb or both forelimbs (Fig. 5).

Therefore, we could make rough estimates of appropriate

scapular position in asymmetric quadrupedal gait to the

similar position estimated for the symmetric gait. However,

different analyses assuming the COM position and postures

during the stance on forelimbs in asymmetric gait are

required to test this.

In addition, further studies are required of the consecu-

tive phases in many different gait patterns and styles of

locomotion, such as trotting, galloping, vertical and suspen-

sory gaits, in various taxa, including those whose scapulae

are connected [e.g. lizards (Jenkins & Goslow, 1983) and

monotremes (Jenkins, 1970; Pridmore, 1992)], to better

understand the relationship between the scapular position

and the rib cage morphology. The reason why quadrupeds

share a similar scapular position relative to the trunk

(Fig. S3) has not been explained completely in this study,

because this study is based on a very complex assumption

and also utilizes a limited sample size. However, this is the

first study to reasonably estimate the 3D scapular positions

in quadrupedal tetrapods using two different mechanical

approaches, which have several advantages over previous

approaches. This study is consistent with the skeletal recon-

structions of extinct quadrupedal taxa in which the top

positions of the scapulae/suprascapulae are positioned in

the anterior portion of the rib cage, near the median plane,

and high above the line connecting the acetabular joints

and the COM.

Conclusion

Appropriate positions of the scapulae to the rib cage for

body support on one forelimb and hindlimbs in quadrupe-

dal tetrapods were estimated using two different mechani-

cal models – rotation and distortion models. The former

model estimated the net roll, yaw and pitch moments of

the trunk generated by the gravity force and the anti-grav-

ity thoracic muscles. The latter model estimated the resis-

tance of the rib to vertical compression by the downward

gravitational force and the upward lifting force from the

anti-gravity thoracic muscles. According to the analyses in

three different quadrupedal tetrapods that use symmetrical

gait, i.e. Felis, Rattus and Chamaeleo, their scapular posi-

tions in vivowere consistent with the place at which the roll

and yaw moments of the trunk are negligible, where the

pitch moment is large enough to lift the body, and above

the ribs having high strength against vertical compression.
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Fig. S6. Scapular positions of testudines.

Fig. S7. Muscular connection between the scapula and rib cage

in Felis.
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