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Abstract

Ozone pollution in the Southeast US involves complex chemistry driven by emissions of 

anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates 

of surface ozone concentrations tend to be biased high in the region and this is of concern for 

designing effective emission control strategies to meet air quality standards. We use detailed 

chemical observations from the SEAC4RS aircraft campaign in August and September 2013, 

interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal 

resolution, to better understand the factors controlling surface ozone in the Southeast US. We find 

that the National Emission Inventory (NEI) for NOx from the US Environmental Protection 

Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its 

oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI 

satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions 

from mobile and industrial sources must be reduced by 30–60%, dependent on the assumption of 

the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large 

contribution to satellite observations of tropospheric NO2 that must be accounted for when using 

these data to estimate surface NOx emissions. We find that only half of isoprene oxidation 

proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to 

changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-

Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from 

the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as 

derived from a regression of ozone and NOx oxidation products. However, the model is still biased 

high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched 

during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem 

does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone 

production in the model boundary layer.

1 Introduction

Ozone in surface air is harmful to human health and vegetation. Ozone is produced when 

volatile organic compounds (VOCs) and carbon monoxide (CO) are photochemically 

oxidized in the presence of nitrogen oxide radicals (NOx ≡ NO+NO2). The mechanism for 

producing ozone is complicated, involving hundreds of chemical species interacting with 

transport on all scales. In October 2015, the US Environmental Protection Agency (EPA) set 

a new National Ambient Air Quality Standard (NAAQS) for surface ozone as a maximum 

daily 8-h average (MDA8) of 0.070 ppm not to be exceeded more than three times per year. 

This is the latest in a succession of gradual tightening of the NAAQS from 0.12 ppm (1-h 

average) to 0.08 ppm in 1997, and to 0.075 ppm in 2008, responding to accumulating 

evidence that ozone is detrimental to public health even at low concentrations (EPA, 2013). 

Chemical transport models (CTMs) tend to significantly overestimate surface ozone in the 

Southeast US (Lin et al., 2008; Fiore et al., 2009; Reidmiller et al., 2009; Brown-Steiner et 

Travis et al. Page 2

Atmos Chem Phys. Author manuscript; available in PMC 2018 April 02.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



al., 2015; Canty et al., 2015), and this is an issue for the design of pollution control 

strategies (McDonald-Buller et al., 2011). Here we examine the causes of this overestimate 

by using the GEOS-Chem CTM to simulate NASA SEAC4RS aircraft observations of ozone 

and its precursors over the region in August–September 2013 (Toon et al., 2016), together 

with additional observations from surface networks and satellite.

A number of explanations have been proposed for the ozone model overestimates in the 

Southeast US. Fiore et al. (2003) suggested excessive modeled ozone inflow from the Gulf 

of Mexico. Lin et al. (2008) proposed that the ozone dry deposition velocity could be 

underestimated. McDonald-Buller et al. (2011) pointed out the potential role of halogen 

chemistry as a sink of ozone. Isoprene emitted from vegetation is the principal VOC 

precursor of ozone in the Southeast US in summer, and Fiore et al. (2005) found that 

uncertainties in isoprene emissions and in the loss of NOx from formation of isoprene 

nitrates could also affect the ozone simulation. Horowitz et al. (2007) found a large 

sensitivity of ozone to the fate of isoprene nitrates and the extent to which they release NOx 

when oxidized. Squire et al. (2015) found that the choice of isoprene oxidation mechanism 

can alter both the sign and magnitude of the response of ozone to isoprene and NOx 

emissions.

The SEAC4RS aircraft campaign in August–September 2013 provides an outstanding 

opportunity to improve our understanding of ozone chemistry over the Southeast US. The 

SEAC4RS DC-8 aircraft hosted an unprecedented chemical payload including isoprene and 

its oxidation products, NOx and its oxidation products, and ozone. The flights featured 

extensive boundary layer mapping of the Southeast as well as vertical profiling to the free 

troposphere (Toon et al., 2016). We use the GEOS-Chem global CTM with high horizontal 

resolution over North America (0.25°×0.3125°) to simulate and interpret the SEAC4RS 

observations. We integrate into our analysis additional Southeast US observations during the 

summer of 2013 including from the NOMADSS aircraft campaign, the SOAS surface site in 

Alabama, the SEACIONS ozonesonde network, the CASTNET ozone network, the NADP 

nitrate wet deposition network, and NO2 satellite data from the OMI instrument. Several 

companion papers apply GEOS-Chem to simulate other aspects of SEAC4RS and concurrent 

data for the Southeast US including aerosol sources and optical depth (Kim et al., 2015), 

isoprene organic aerosol (Marais et al., 2016), organic nitrates (Fisher et al., 2016), 

formaldehyde and its relation to satellite observations (Zhu et al., 2016), and sensitivity to 

model resolution (Yu et al., 2016).

2 GEOS-Chem Model Description

We use the GEOS-Chem global 3-D CTM (Bey et al., 2001) in version 9.02 (www.geos-

chem.org) with modifications described below. GEOS-Chem is driven with assimilated 

meteorological data from the Goddard Earth Observing System (GEOS-5.11.0) of the 

NASA Global Modeling and Assimilation Office (GMAO). The GEOS-5.11.0 data have a 

native horizontal resolution of 0.25° latitude by 0.3125° longitude and a temporal resolution 

of 3 h (1 h for surface variables and mixing depths). We use a nested version of GEOS-

Chem (Chen et al., 2009) with native 0.25° × 0.3125° horizontal resolution over North 

America and adjacent oceans (130° − 60°W, 9.75° − 60°N) and dynamic boundary 
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conditions from a global simulation with 4° × 5° horizontal resolution. Turbulent boundary 

layer mixing follows a non-local parameterization based on K-theory (Holtslag and Boville, 

1993) implemented in GEOS-Chem by Lin and McElroy (2010). Daytime mixing depths are 

reduced by 40% from the GEOS-5.11.0 data as described by Kim et al. (2015) and Zhu et al. 

(2016) to match aircraft lidar observations. The GEOS-Chem nested model simulation is 

conducted for August–September 2013, following six months of initialization at 4° × 5° 

resolution.

2.1 Chemistry

The chemical mechanism in GEOS-Chem version 9.02 is described by Mao et al, (2010, 

2013). We modified aerosol reactive uptake of HO2 to produce H2O2 instead of H2O in 

order to better match H2O2 observations in SEAC4RS. We also include a number of updates 

to isoprene chemistry, listed comprehensively in the Supplementary Material (Tables S1 and 

S2) and describe here more specifically for the low-NOx pathways. Companion papers 

describe the isoprene chemistry updates relevant to isoprene nitrates (Fisher et al., 2016) and 

organic aerosol formation (Marais et al., 2016). Oxidation of biogenic monoterpenes also is 

added to the GEOS-Chem mechanism (Fisher et al., 2016) but does not significantly affect 

ozone.

A critical issue in isoprene chemistry is the fate of the isoprene peroxy radicals (ISOPO2) 

produced from the oxidation of isoprene by OH (the dominant isoprene sink). When NOx is 

sufficiently high, ISOPO2 reacts mainly with NO to produce ozone (high-NOx pathway). At 

lower NOx levels, ISOPO2 may instead react with HO2 or other organic peroxy radicals, or 

isomerize, in which case ozone is not produced (low-NOx pathways). Here we increase the 

molar yield of isoprene hydroperoxide (ISOPOOH) from the ISOPO2 + HO2 reaction to 

94% based on observations of the minor channels of this reaction (Liu et al., 2013). 

Oxidation of ISOPOOH by OH produces isoprene epoxides (IEPOX) that subsequently react 

with OH or are taken up by aerosol (Paulot et al., 2009b; Marais et al., 2016). We use 

updated rates and products from Bates et al. (2014) for the reaction of IEPOX with OH.

ISOPO2 isomerization produces hydroperoxyaldehydes (HPALDs) (Peeters et al., 2009; 

Crounse et al., 2011; Wolfe et al., 2012), and we explicitly include this in the GEOS-Chem 

mechanism. HPALDs go on to react with OH or photolyze at roughly equal rates over the 

Southeast US. We use the HPALD+OH reaction rate constant from Wolfe et al. (2012) and 

the products of the reaction from Squire et al. (2015). The HPALD photolysis rate is 

calculated using the absorption cross-section of MACR, with a quantum yield of 1, as 

recommended by Peeters and Müller (2010). The photolysis products are taken from 

Stavrakou et al. (2010). Self-reaction of ISOPO2 is updated following Xie et al. (2013).

A number of studies have suggested that conversion of NO2 to nitrous acid (HONO) by gas-

phase or aerosol-phase pathways could provide a source of HOx radicals following HONO 

photolysis (Li et al., 2014; Zhou et al., 2014). This mechanism would also provide a 

catalytic sink for ozone when NO2 is produced by the NO + ozone reaction, viz.,

NO+ O3 NO2 + O2 (1)

Travis et al. Page 4

Atmos Chem Phys. Author manuscript; available in PMC 2018 April 02.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



NO2 HONO by various pathways (2)

HONO+hυ NO + OH (3)

Observations of HONO from the NOMADSS campaign (https://www2.acom.ucar.edu/

campaigns/nomadss) indicate a mean daytime HONO concentration of 10 ppt in the 

Southeast US boundary layer (Zhou et al., 2014), whereas the standard gas-phase 

mechanism in GEOS-Chem version 9.02 yields less than 1 ppt. We add the pathway 

proposed by Li et al. (2014), in which HONO is produced by the reaction of the HO2•H2O 

complex with NO2, but with a slower rate constant (kHO2•H2O+NO2 = 2×10−12 cm3 molecule
−1 s−1) to match the observed ~10 ppt daytime HONO in the Southeast US boundary layer. 

The resulting impact on boundary layer ozone concentrations is negligible.

2.2 Dry Deposition

The GEOS-Chem dry deposition scheme uses a resistance-in-series model based on Wesely 

(1989) as implemented by Wang et al. (1998). Underestimate of dry deposition has been 

invoked as a cause for model overestimates of ozone in the eastern US (Lin et al., 2008; 

Walker, 2014). Daytime ozone deposition is determined principally by stomatal uptake. 

Here, we decrease the stomatal resistance from 200 s m−1 for both coniferous and deciduous 

forests (Wesely, 1989) by 20% to match summertime measurements of the ozone dry 

deposition velocity for a pine forest in North Carolina (Finkelstein et al., 2000) and for the 

Ozarks oak forest in southeast Missouri (Wolfe et al., 2015), both averaging 0.8 cm s−1 in 

the daytime. The mean ozone deposition velocity in GEOS-Chem along the SEAC4RS 

boundary layer flight tracks in the Southeast US averages0.7±0.3 cm s−1 for the daytime (9–

16 local) surface layer. Deposition is suppressed in the model at night due to both stomatal 

closure and near-surface stratification, consistent with the Finkelstein et al. (2000) 

observations.

Deposition flux measurements for isoprene oxidation products at the Alabama SOAS site 

(http://soas2013.rutgers.edu) indicate higher deposition velocities than simulated by the 

standard GEOS-Chem model (Nguyen et al., 2015). The diurnal cycle of dry deposition in 

GEOS-Chem compares well with the observations from SOAS (Nguyen et al., 2015). As an 

expedient, Nguyen et al. (2015) scaled the Henry’s law coefficients for these species in 

GEOS-Chem to match their observed deposition velocities and we follow their approach 

here. Other important depositing species include HNO3 and peroxyacetyl nitrate (PAN), 

with mean deposition velocities along the SEAC4RS Southeast US flight tracks in daytime 

of 3.9 cm s−1 and 0.6 cm s−1, respectively.

2.3 Emissions

We use hourly US anthropogenic emissions from the 2011 EPA national emissions inventory 

(NEI11v1) at a horizontal resolution of 0.1° × 0.1° and adjusted to 2013 using national 
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annual scaling factors (EPA, 2015). The scaling factor for NOx emissions is 0.89, for a 2013 

US NEI total of 3.5 Tg N a−1. Further information on the use of the NEI11v1 in GEOS-

Chem can be found here: http://wiki.seas.harvard.edu/geos-chem/index.php/EPA/

NEI11_North_American_emissions/. Soil NOx emissions, including emissions from 

fertilizer application, are computed according to Hudman et al. (2012), with a 50% reduction 

in the Midwest US based on a previous comparison with OMI NO2 observations (Vinken et 

al., 2014). Open fire emissions are from the daily Quick Fire Emissions Database (QFED) 

(Darmenov and da Silva, 2014) with diurnal variability from the Western Regional Air 

Partnership (Air Sciences, 2005). We emit 40% of open fire NOx emissions as PAN and 20% 

as HNO3 to account for fast oxidation taking place in the fresh plume (Alvarado et al., 

2010). Following Fischer et al. (2014), we inject 35% of fire emissions above the boundary 

layer, evenly between 3.5 and 5.5 km altitude. Lightning is an additional source of NOx but 

is mainly released in the upper troposphere, as described below.

Initial implementation of the above inventory in GEOS-Chem resulted in an 60–70% 

overestimate of NOx and HNO3 measured from the SEAC4RS DC-8 aircraft, and a 70% 

overestimate of nitrate (NO3
−) wet deposition fluxes measured by the National Acid 

Deposition Program (NADP) across the Southeast US. Correcting this bias required a ~40% 

decrease in surface NOx emissions. Assuming strongly reduced soil and fertilizer NOx 

emissions (18% of total NOx emissions in the Southeast) and open fires (2%), also 

considering the large uncertainty in these emissions, would be insufficient to correct this 

bias. Emissions from power plant stacks are directly measured but account for only 12% of 

NEI NOx emissions on an annual basis (EPA, 2015). Several local studies in recent years 

have found that NEI NOx emissions for mobile sources may be too high by a factor of two 

or more (Castellanos et al, 2011; Fujita et al., 2012; Brioude et al., 2013; Anderson et al., 

2014). We can achieve the required 40% decrease in total NOx emissions by reducing NEI 

emissions from mobile and industrial sources (all sources except power plants) by 60%, or 

alternatively by reducing these sources by 30% and zeroing out soil and fertilizer NOx 

emissions. Since it is apparent that there is some minimum contribution by soil NOx 

emissions we assessed the impact of the approach of reducing the NEI emissions by 60%. 

The spatial overlap between anthropogenic and soil NOx emissions is such that we cannot 

readily arbitrate between these two scenarios. Comparisons with observations will be 

presented in the next Section.

We constrain the lightning NOx source with satellite data as described by Murray et al. 

(2012). Lightning NOx is mainly released at the top of convective updrafts following Ott et 

al. (2010). The standard GEOS-Chem model uses higher NOx yields for mid-latitudes 

lightning (500 mol/flash) than for tropical (260 mol/flash) (Huntrieser et al., 2007, 2008; 

Hudman et al., 2007; Ott et al., 2010) with a fairly arbitrary boundary between the two at 

23°N in North America and 35°N in Eurasia. Zhang et al. (2014) previously found that this 

leads GEOS-Chem to overestimate background ozone in the southwestern US and we find 

the same here for the eastern US and the Gulf of Mexico. We treat here all lightning in the 

35°S–35°N band as tropical and thus remove the distinction between North America and 

Eurasia.
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Figure 1 gives the resulting surface NOx emissions for the Southeast US for August and 

September 2013. With the original NEI inventory, fuel combustion accounted for 81% of 

total surface NOx emissions in the Southeast US (not including lightning). If the required 

reduction of non-power plant NEI emissions is 60%, the contribution from fuel combustion 

would be 68%.

Biogenic VOC emissions are from MEGAN v2.1, including isoprene, acetone, acetaldehyde, 

monoterpenes, and >C2 alkenes. We reduce MEGAN v2.1 isoprene emissions by 15% to 

better match SEAC4RS observations of isoprene fluxes from the Ozarks (Wolfe et al., 2015) 

and observed formaldehyde (Zhu et al., 2016). Yu et al. (2016) show the resulting isoprene 

emissions for the SEAC4RS period.

3 Overestimate of NOx emissions in the EPA NEI inventory

Figure 2 shows simulated and observed median vertical distributions of NOx, total inorganic 

nitrate (gas-phase HNO3+aerosol NO3
−), and ozone concentrations along the SEAC4RS 

flight tracks over the Southeast US. Here and elsewhere the data exclude urban plumes as 

diagnosed by [NO2] > 4 ppb, open fire plumes as diagnosed by [CH3CN] > 200 ppt, and 

stratospheric air as diagnosed by [O3]/[CO] > 1.25 mol mol−1. These filters exclude <1%, 

7%, and 6% of the data respectively. We would not expect the model to be able to capture 

these features even at native resolution (Yu et al., 2016).

Model results in Figure 2 are shown both with the original NOx emissions (dashed line) and 

with non-power plant NEI fuel emissions decreased by 60% (solid line). Decreasing 

emissions corrects the model bias for NOx and also largely corrects the bias for inorganic 

nitrate. Boundary layer ozone is overestimated by 12 ppb with the original NOx emissions 

but this bias disappears after decreasing the NOx emissions. Results are very similar if we 

decrease the non-power plant NEI fuel emissions by only 30% and zero out soil and 

fertilizer emissions. Thus the required decrease of NOx emissions may involve an 

overestimate of both anthropogenic and soil emissions.

Further support for decreasing NOx emissions is offered by observed nitrate wet deposition 

fluxes from the NADP network (NADP, 2007). Figure 3 compares simulated and observed 

fluxes for the model with decreased NOx emissions. Model values have been corrected for 

precipitation bias following the method of Paulot et al. (2014), in which the monthly 

deposition flux is assumed to scale to the 0.6th power of the precipitation bias. We diagnose 

precipitation bias in the GEOS-5.11.0 data relative to high-resolution PRISM observations 

(http://prism.oregonstate.edu). For the Southeast US, the precipitation bias is −34% in 

August and −21% in September 2013. We see from Figure 3 that the model with decreased 

NOx emissions reproduces the spatial variability in the observations with only +8% bias over 

the Southeast US and +7% over the contiguous US. In comparison, the model with original 

emissions had a 63% overestimate of the nitrate wet deposition flux nationally and a 71% 

overestimate in the Southeast. The high deposition fluxes along the Gulf of Mexico in Figure 

3, both in the model and in the observations, reflect particularly large precipitation.
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The model with decreased NOx emissions also reproduces the spatial distribution of NOx in 

the Southeast US boundary layer as observed in SEAC4RS. This is shown in Figure 4 with 

simulated and observed concentrations of NOx along the flight tracks below 1.5 km altitude. 

The spatial correlation coefficient is 0.71. There are no obvious spatial patterns of model 

bias that would point to specific source sectors as responsible for the NOx emission 

overestimate, beyond the blanket 30–60% decrease of non-power plant NEI emissions 

needed to correct the regional emission total.

4 Using satellite NO2 data to verify NOx emissions: sensitivity to upper 

troposphere

Observations of tropospheric NO2 columns by solar backscatter from the OMI satellite 

instrument offer an additional constraint on NOx emissions (Duncan et al., 2014; Lu et al., 

2015). We compare the tropospheric columns simulated by GEOS-Chem with the NASA 

operational retrieval (Level 2, v2.1) (NASA, 2012; Bucsela et al., 2013) and the Berkeley 

High-Resolution (BEHR) retrieval (Russell et al., 2011). The NASA retrieval has been 

validated to agree with surface measurements to within ± 20% (Lamsal et al., 2014). Both 

retrievals fit the observed backscattered solar spectra to obtain a slant tropospheric NO2 

column, Ωs, along the optical path of the backscattered radiation detected by the satellite. 

The slant column is converted to the vertical column, Ωv, by using an air mass factor (AMF) 

that depends on the vertical profile of NO2 and on the scattering properties of the surface 

and the atmosphere (Palmer et al., 2001):

Ων =
Ωs

AMF =
Ωs

AMFG∫ 0
ZT w z S z dz

(4)

In Equation 4, AMFG is the geometric air mass factor that depends on the viewing geometry 

of the satellite, w(z) is a scattering weight calculated by a radiative transfer model that 

describes the sensitivity of the backscattered radiation to NO2 as a function of altitude, S(z) 
is a shape factor describing the normalized vertical profile of NO2 number density, and ZT is 

the tropopause. Scattering weights for NO2 retrievals typically increase by a factor of 3 from 

the surface to the upper troposphere (Martin et al., 2002). Here we use our GEOS-Chem 

shape factors to re-calculate the AMFs in the NASA and BEHR retrievals as recommended 

by Lamsal et al. (2014) for comparing model and observations. We filter out cloudy scenes 

(cloud radiance fraction > 0.5) and bright surfaces (surface reflectivity > 0.3).

Figure 5 shows the mean NO2 tropospheric columns from BEHR, NASA, and GEOS-Chem 

(with NOx emission reductions applied) over the Southeast US for August–September 2013. 

The BEHR retrieval is on average 6% higher than the NASA retrieval. GEOS-Chem is on 

average 11±19% lower than the NASA retrieval and 16±18% lower than the BEHR retrieval. 

With the original NEI NOx emissions, GEOS-Chem would be biased high against both 

retrievals by 26–31%. The low bias in the model with reduced NOx emissions does not 

appear to be caused by an overcorrection of surface emissions but rather by the upper 

troposphere. Figure 6 (top left panel) shows the mean vertical profile of NO2 number density 
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as measured from the aircraft by two independent instruments (NOAA and UC Berkeley) 

and simulated by GEOS-Chem. At the surface, the median difference is 1.8×109 molecules 

cm−3 which is within the NOAA and UC Berkeley measurement uncertainties of +/− 0.030 

ppbv + 7% and +/− 5%, respectively. The observations show a secondary maximum in the 

upper troposphere above 10 km, absent in GEOS-Chem. It has been suggested that aircraft 

measurements of NO2 in the upper troposphere could be biased high due to decomposition 

in the instrument inlet of thermally unstable NOx reservoirs such as HNO4 and 

methylperoxynitrate (Browne et al., 2011; Reed et al., 2016). This would not affect the UC 

Berkeley measurement (Nault et al., 2015) and could possibly account for the difference 

with the NOAA a measurement in Figure 6.

The top right panel of Figure 6 shows the cumulative contributions from different altitudes 

to the slant NO2 column measured by the satellite, using the median vertical profiles from 

the left panel and applying mean altitude-dependent scattering weights from the NASA and 

BEHR retrievals. The boundary layer below 1.5 km contributes only 19–28% of the column. 

The upper troposphere above 8 km contributes 32–49% in the aircraft observations and 23% 

in GEOS-Chem. Much of the observed upper tropospheric NO2 likely originates from 

lightning and is broadly distributed across the Southeast because of the long lifetime of NOx 

at that altitude (Li et al., 2005; Bertram et al., 2007; Hudman et al., 2007). The NO2 vertical 

profile (shape factor) assumed in the BEHR retrieval does not include any lightning 

influence, and the Global Modeling Initiative (GMI) model vertical profile assumed in the 

NASA retrieval has little contribution from the upper troposphere (Lamsal et al., 2014). 

These underestimates of upper tropospheric NO2 in the retrieval shape factors will cause a 

negative bias in the AMF and therefore a positive bias in the retrieved vertical columns.

The GEOS-Chem underestimate of observed upper tropospheric NO2 in Figure 6 is partly 

driven by NO/NO2 partitioning. The bottom left panel of Figure 6 shows the [NO]/[NO2] 

concentration ratio in GEOS-Chem and in the observations (NOAA for NO, UC Berkeley 

for NO2). One would expect the [NO]/[NO2] concentration ratio in the daytime upper 

troposphere to be controlled by photochemical steady-state:

NO + O3 NO2 + O2 (5)

NO + HO2/RO2 NO2 + OH /RO (6)

NO2 + hυ →
o2 NO + O3 (7)

If reaction (6) plays only a minor role then [NO]/[NO2] ≈ k7/(k5[O3]), defining the NO-

NO2-O3 photochemical steady state (PSS). The PSS plotted in Figure 6 agrees closely with 

GEOS-Chem. Such agreement has previously been found when comparing photochemical 
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models with observed [NO]/[NO2] ratios from aircraft in the marine upper troposphere 

(Schultz et al., 1999) and lower stratosphere (Del Negro et al., 1999). The SEAC4RS 

observations show large departure. The NO2 photolysis frequencies k7 computed locally by 

GEOS-Chem are on average within 10% of the values determined in SEAC4RS from 

measured actinic fluxes (Shetter and Muller, 1999), so this is not the problem.

A possible explanation is that the model underestimates peroxy radical concentrations and 

hence the contribution of reaction (6) in the upper troposphere. Zhu et al. (2016) found that 

GEOS-Chem underestimates the observed HCHO concentrations in the upper troposphere 

during SEAC4RS by a factor of 3, implying that the model underestimates the HOx source 

from convective injection of HCHO and peroxides (Jaeglé et al., 1997; Prather and Jacob, 

1997; Müller and Brasseur, 1999). HO2 observations over the central US in summer during 

the SUCCESS aircraft campaign suggest that this convective injection increases HOx 

concentrations in the upper troposphere by a factor of 2 (Jaeglé et al., 1998). The bottom 

right panel of Figure 6 shows median modeled and observed vertical profiles of the HOx 

reservoir hydrogen peroxide (H2O2) during SEAC4RS over the Southeast US. GEOS-Chem 

underestimates observed H2O2 by a mean factor of 1.7 above 8km. The bottom left panel of 

Figure 6 shows the [NO]/[NO2] ratio in GEOS-Chem with HO2 and RO2 doubled above 8 

km. Such a change corrects significantly the bias relative to observations.

The PSS and GEOS-Chem simulation of the NO/NO2 concentration ratio in Figure 6 use k5 

= 3.0×10−12 exp[−1500/T] cm3 molecule−1 s−1 and spectroscopic information for k7 from 

Sander et al. (2011). It is possible that the strong thermal dependence of k5 has some error, 

considering that only one direct measurement has been published for the cold temperatures 

of the upper troposphere (Borders and Birks, 1982). Cohen et al. (2000) found that reducing 

the activation energy of k5 by 15% improved model agreement in the lower stratosphere. 

Correcting the discrepancy between simulated and observed [NO]/[NO2] ratios in the upper 

troposphere in Figure 6 would require a similar reduction to the activation energy of k5, but 

this reduction would negatively impact the surface comparison. This inconsistency of the 

observed [NO]/[NO2] ratio with basic theory needs to be resolved, as it affects the inference 

of NOx emissions from satellite NO2 column measurements. Notwithstanding this 

inconsistency, we find that NO2 in the upper troposphere makes a significant contribution to 

the tropospheric NO2 column observed from space.

5 Isoprene oxidation pathways

Measurements aboard the SEAC4RS aircraft included first-generation isoprene nitrates 

(ISOPN), isoprene hydroperoxide (ISOPOOH), and hydroperoxyaldehydes (HPALDs) 

(Crounse et al., 2006; Paulot et al., 2009a; St. Clair et al., 2010; Crounse et al., 2011; Beaver 

et al., 2012; Nguyen et al., 2015). Although measurement uncertainties are large (30%, 40%, 

and 50%, respectively (Nguyen et al., 2015)), these are unique products of the ISOPO2 + 

NO, ISOPO2 + HO2, and ISOPO2 isomerization pathways and thus track whether oxidation 

of isoprene proceeds by the high-NOx pathway (producing ozone) or the low-NOx pathways. 

Figure 2 (bottom row) compares simulated and observed concentrations. All three gases are 

restricted to the boundary layer because of their short lifetimes. Mean model concentrations 

in the lowest altitude bin (Figure 2, approximately 400m above ground) differ from 
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observations by +19% for ISOPN, +70% for ISOPOOH, and −50% for HPALDs. The 

GEOS-Chem simulation of organic nitrates including ISOPN is further discussed in Fisher et 

al. (2016). Our HPALD source is based on the ISOPO2 isomerization rate constant from 

Crounse et al. (2011). A theoretical calculation by Peeters et al. (2014) suggests a rate 

constant that is 1.8× higher, which would reduce the model bias for HPALDs and ISOPOOH 

and increase boundary layer OH by 8%. St. Clair et al. (2015) found that the reaction rate of 

ISOPOOH + OH to form IEPOX is approximately 10% faster than the rate given by Paulot 

et al. (2009b), which would further reduce the model overestimate. For both ISOPOOH and 

HPALDs, GEOS-Chem captures much of the spatial variability (r = 0.80 and 0.79, 

respectively).

Figure 7 shows the model branching ratios for the fate of the ISOPO2 radical by tracking the 

mass of ISOPO2 reacting via the high-NOx pathway (ISOPO2+NO) and the low-NOx 

pathways over the Southeast US domain. The mean branching ratios for the Southeast US 

are ISOPO2+NO 54%, ISOPO2+HO2 26%, ISOPO2 isomerization 15%, and ISOPO2+RO2 

5%. The lack of dominance of the high-NOx pathway is due in part to the spatial segregation 

of isoprene and NOx emissions (Yu et al., 2016). This segregation also buffers the effect of 

changing NOx emissions on the fate of isoprene. Our original simulation with higher total 

NOx emissions (unadjusted NEI11v1) had a branching ratio for the ISOPO2+NO reaction of 

only 62%.

6 Implications for ozone: aircraft and ozonesonde observations

Figure 2 compares simulated and observed median vertical profiles of ozone concentrations 

over the Southeast US during SEAC4RS. There is no significant bias through the depth of 

the tropospheric column. The median ozone concentration below 1.5 km is 49 ppb in the 

observations and 51 ppb in the model. We also find excellent model agreement across the 

US with the SEACIONS ozonesonde network (Figure 8). The successful simulation of 

ozone is contingent on the decrease in NOx emissions. As shown in Figure 2, a simulation 

with the original NEI emissions overestimates boundary layer ozone by 12 ppb.

The model also has success in reproducing the spatial variability of boundary layer ozone 

seen from the aircraft, as shown in Figure 4. The correlation coefficient is r = 0.71 on the 

0.25°×0.3125° model grid, and patterns of high and low ozone concentration are consistent. 

The highest observed ozone (>75 ppb) was found in air influenced by agricultural burning 

along the Mississippi River and by outflow from Houston over Louisiana. GEOS-Chem does 

not capture the extreme values and this probably reflects a dilution effect (Yu et al., 2016).

A critical parameter for understanding ozone production is the ozone production efficiency 

(OPE) (Liu et al., 1987), defined as the number of ozone molecules produced per molecule 

of NOx emitted. This can be estimated from atmospheric observations by the relationship 

between odd oxygen (Ox ≡ O3+NO2) and the sum of products of NOx oxidation, collectively 

called NOz and including inorganic and organic nitrates (Trainer et al., 1993; Zaveri, 2003). 

The Ox vs. NOz linear relationship (as derived from a linear regression) provides an upper 

estimate of the OPE because of rapid deposition of NOy, mainly HNO3 (Trainer et al., 2000; 

Rickard et al., 2002).
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Figure 9 shows the observed and simulated daytime (9–16 local) Ox vs. NOz relationship in 

the SEAC4RS data below 1.5 km, where NOz is derived from the observations as NOy-NOx 

≡ HNO3 + aerosol nitrate + PAN + alkyl nitrates. The resulting OPE from the observations 

(17.4±0.4 mol mol−1) agrees well with GEOS-Chem (16.7±0.3). Previous work during the 

INTEX-NA aircraft campaign in summer 2004 found an OPE of 8 below 4 km (Mena-

Carrasco et al., 2007). By selecting INTEX-NA data only for the Southeast and below 1.5 

km we find an OPE of 14.1±1.1 (Figure 9, right panel). The median NOz was 1.1 ppb during 

SEAC4RS and 1.5 ppb during INTEX-NA, a decrease of approximately 40%. With the 

original NEI11v1 NOx emissions (53% higher), the OPE from GEOS-Chem would be 

14.7±0.3. Both the INTEX-NA data and the model are consistent with the expectation that 

OPE increases with decreasing NOx emissions (Liu et al., 1987).

7 Implications for ozone: surface air

Figure 10 compares maximum daily 8-h average (MDA8) ozone values at the US EPA Clean 

Air Status and Trends Network (CASTNET) sites in June-August 2013 to the corresponding 

GEOS-Chem values. The model has a mean positive bias of 6±14 ppb with no significant 

spatial pattern. The model is unable to match the low tail in the observations, including a 

significant population with MDA8 ozone less than 20 ppb. The improvements to dry 

deposition described in Section 2.2 minimally reduce (approximately 1 ppb) GEOS-Chem 

ozone compared to SEAC4RS boundary layer and CASTNET surface MDA8 ozone 

observations. The reduction of daytime mixing depths described in Section 2 results in a 

small increase in mean MDA8 ozone (approximately 2 ppb).

The positive bias in the model for surface ozone is remarkable considering that the model 

has little bias relative to aircraft observations below 1.5 km altitude (Figures 2 and 4). A 

standard explanation for model overestimates of surface ozone over the Southeast US, first 

proposed by Fiore et al. (2003) and echoed in the review by McDonald-Buller et al. (2011), 

is excessive ozone over the Gulf of Mexico, which is the prevailing low-altitude inflow. We 

find that this is not the case. SEAC4RS included four flights over the Gulf of Mexico, and 

Figure 11 compares simulated and observed vertical profiles of ozone and NOx 

concentrations that show no systematic bias. The median ozone concentration in the marine 

boundary layer is 26 ppb in the observations and 29 ppb in the model. This successful 

simulation is due to our adjustment of lightning NOx emission (Section 2.3); a sensitivity 

test with the original (twice higher) GEOS-Chem lightning emissions in the southern US 

increases surface ozone over the Gulf of Mexico by up to 6 ppb. The aircraft observations in 

Figure 4 further show no indication of a coastal depletion that might be associated with 

halogen chemistry. Remarkably, the median ozone over the Gulf of Mexico is higher than 

approximately 8% of MDA8 values at sites in the Southeast.

It appears instead that there is a model bias in boundary layer vertical mixing and chemistry. 

Figure 12 shows the median ozonesonde profile at a higher vertical resolution over the 

Southeast US (Huntsville, Alabama and St. Louis, Missouri sites) during SEAC4RS as 

compared to GEOS-Chem below 1.5 km. The ozonesondes indicate a decrease of 7 ppb 

from 1.5 km to the surface, whereas GEOS-Chem features a reverse gradient of increasing 

ozone from 1.5 to 1 km with flat concentrations below. This implies a combination of two 
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model errors in the boundary layer: (1) excessive vertical mixing, (2) net ozone production 

whereas observations indicate a net loss.

8 Conclusions

We used aircraft (SEAC4RS), surface, satellite, and ozonesonde observations from August 

and September 2013, interpreted with the GEOS-Chem chemical transport model, to better 

understand the factors controlling surface ozone in the Southeast US. Models tend to 

overestimate ozone in that region. Determining the reasons behind this overestimate is 

critical to the design of efficient emission control strategies to meet the ozone NAAQS.

A major finding from this work is that the EPA National Emission Inventory (NEI11v1) for 

NOx (the limiting precursor for ozone formation) is biased high across the US by as much as 

a factor of 2. Evidence for this comes from (1) SEAC4RS observations of NOx and its 

oxidation products, (2) NADP network observations of nitrate wet deposition fluxes, and (3) 

OMI satellite observations of NO2. Presuming no error in emissions from large power plants 

with continuous emission monitors (14% of unadjusted NEI inventory), we find that 

emissions from other industrial sources and mobile sources must be 30–60% lower than NEI 

values, depending on the assumption of the contribution from soil NOx emissions. We thus 

estimate that anthropogenic fuel NOx emissions in the US in 2013 were 1.7–2.6 Tg N a−1, as 

compared to 3.5 Tg N a−1 given in the NEI.

OMI NO2 satellite data over the Southeast US are consistent with this downward correction 

of NOx emissions but interpretation is complicated by the large contribution of the free 

troposphere to the NO2 tropospheric column retrieved from the satellite. Observed (aircraft) 

and simulated vertical profiles indicate that NO2 below 2 km contributes only 20–35% of the 

tropospheric column detected from space while NO2 above 8 km (mainly from lightning) 

contributes 25–50%. Current retrievals of satellite NO2 data do not properly account for this 

elevated pool of upper tropospheric NO2, so that the reported tropospheric NO2 columns are 

biased high. More work is needed on the chemistry maintaining high levels of NO2 in the 

upper troposphere.

Isoprene emitted by vegetation is the main VOC precursor of ozone in the Southeast in 

summer, but we find that only 50% reacts by the high-NOx pathway to produce ozone. This 

is consistent with detailed aircraft observations of isoprene oxidation products from the 

aircraft. The high-NOx fraction is only weakly sensitive to the magnitude of NOx emissions 

because isoprene and NOx emissions are spatially segregated. The ability to properly 

describe high- and low-NOx pathways for isoprene oxidation is critical for simulating ozone 

and it appears that the GEOS-Chem mechanism is successful for this purpose.

Our updated GEOS-Chem simulation with decreased NOx emissions provides an unbiased 

simulation of boundary layer and free tropospheric ozone measured from aircraft and 

ozonesondes during SEAC4RS. Decreasing NOx emissions is critical to this success as the 

original model with NEI emissions overestimated boundary layer ozone by 12 ppb. The 

ozone production efficiency (OPE) inferred from Ox vs. NOz aircraft correlations in the 

mixed layer is also well reproduced. Comparison to the INTEX-NA aircraft observations 
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over the Southeast in summer 2004 indicates a 14% increase in OPE associated with a 40% 

reduction in NOx emissions.

Despite the successful simulation of boundary layer ozone (Figures 2 and 9), GEOS-Chem 

overestimates MDA8 surface ozone observations in the Southeast US in summer by 6±14 

ppb. Daytime ozonesonde data indicate a 7 ppb decrease from 1.5 km to the surface that 

GEOS-Chem does not capture. This may be due to excessive boundary layer mixing and net 

ozone production in the model. Excessive mixing in GEOS-Chem may be indicative of an 

overestimate of sensible heat flux (Holtslag and Boville, 1993), and thus an investigation of 

boundary layer meteorological variables is warranted. Such a bias may not be detected in the 

comparison of GEOS-Chem with aircraft data, generally collected under fair-weather 

conditions and with minimal sampling in the lower part of the boundary layer. An 

investigation of relevant meteorological variables and boundary layer source and sink terms 

in the ozone budget to determine the source of bias and its prevalence across models will be 

the topic of a follow-up paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Surface NOx emissions in the Southeast US in GEOS-Chem for August and September 

2013 including fuel combustion, soils, fertilizer use, and open fires (total emissions=153 Gg 

N). Anthropogenic emissions from mobile sources and industry in the National Emission 

Inventory (NEI11v1) for 2013 have been decreased by 60% to match atmospheric 

observations (see text). Lightning contributes an additional 25 Gg N to the free troposphere 

(not included in the Figure). The emissions are mapped on the 0.25° × 0.3125° GEOS-Chem 

grid. The pie chart gives the sum of August–September 2013 emissions (Gg N) over the 

Southeast US domain as shown on the map (94.5–75° W, 29.5–40° N).
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Figure 2. 
Median vertical concentration profiles of NOx, total inorganic nitrate (gas HNO3 + aerosol 

NO3
−), ozone, isoprene nitrate (ISOPN), isoprene hydroperoxide (ISOPOOH), and 

hydroperoxyaldehydes (HPALD) for the SEAC4RS flights over the Southeast US (domain of 

Figure 1). Observations from the DC-8 aircraft are compared to GEOS-Chem model results. 

The dashed red line shows model results before adjustment of NOx emissions from fuel 

combustion and lightning (see text). The 25th and 75th percentiles of the DC-8 observations 

are shown as grey bars. The SEAC4RS observations have been filtered to remove open fire 

plumes, stratospheric air, and urban plumes as described in the text. Model results are 

sampled along the flight tracks at the time of flights and gridded to the model resolution. 

Profiles are binned to the nearest 0.5 km. The NOAA NOyO3 4-channel chemiluminescence 

(CL) instrument made measurements of ozone and NOy (Ryerson et al., 1998), NO (Ryerson 

et al., 2000) and NO2 (Pollack et al, 2010). Total inorganic nitrate was measured by the 

University of New Hampshire Soluble Acidic Gases and Aerosol (UNH SAGA) instrument 

(Dibb et al., 2003) and was mainly gas-phase HNO3 for the SEAC4RS conditions. 

ISOPOOH, ISOPN, and HPALDs were measured by the Caltech single mass analyzer CIMS 

(Crounse et al., 2006; Paulot et al., 2009a; Crounse et al., 2011).
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Figure 3. 
Nitrate wet deposition fluxes across the US in August–September 2013. Mean observations 

from the NADP network (circles in the left panel) are compared to model values with 

decreased NOx emissions (background). Also shown is a scatterplot of simulated versus 

observed values at individual sites for the whole contiguous US (black) and for the 

Southeast US (green). The correlation coefficient (r) and normalized mean bias (NMB) are 

shown inset, along with the 1:1 line.
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Figure 4. 
Ozone and NOx concentrations in the boundary layer (0–1.5km) during SEAC4RS (6 Aug to 

23 Sep 2013) Observations from the aircraft and simulated values are averaged over the 

0.25°×0.3125° GEOS-Chem grid. NOx above 1ppb is shown in black. The spatial 

correlation coefficient is 0.71 for both NOx and O3. The normalized mean bias is −11.5% for 

NOx and 4.5% for O3.
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Figure 5. 
NO2 tropospheric columns over the Southeast US in August–September 2013. GEOS-Chem 

(sampled at the 13:30 local time overpass of OMI) is compared to OMI satellite observations 

using the BEHR and NASA retrievals. Values are plotted on the 0.25°×0.3125° GEOS-Chem 

grid. The GEOS-Chem mean bias over the Figure domain and associated spatial standard 

deviation are inset in the bottom panel.
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Figure 6. 
Vertical distribution of NO2 over the Southeast US during SEAC4RS (August-September 

2013) and contributions to tropospheric NO2 columns measured from space by OMI. The 

top left panel shows median vertical profiles of NO2 number density measured from the 

SEAC4RS aircraft by the NOAA and UC Berkeley instruments and simulated by GEOS-

Chem. The top right panel shows the fractional contribution of NO2 below a given altitude to 

the total tropospheric NO2 slant column measured by OMI, accounting for increasing 

sensitivity with altitude as determined from the retrieval scattering weights. The bottom left 

panel shows the median vertical profiles of the daytime [NO]/[NO2] molar concentration 

ratio in the aircraft observations (NOAA for NO and UC Berkeley for NO2) and in GEOS-

Chem. Also shown is the ratio computed from NO-NO2-O3 photochemical steady state 

(PSS) as given by reactions (5)+(7) (blue) and including reaction (6) with doubled HO2 and 

RO2 concentrations above 8km (purple). The bottom right panel shows the median H2O2 

profile from the model and from the SEAC4RS flights over the Southeast US. H2O2 was 

measured by the Caltech CIMS (see Figure 2).
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Figure 7. 
Branching ratios for the fate of the isoprene peroxy radical (ISOPO2) as simulated by 

GEOS-Chem over the Southeast US for August–September 2013. Values are percentages of 

ISOPO2 that react with NO, HO2, or isomerize from the total mass of isoprene reacting over 

the domain. Note the difference in scale between the top panel and the lower two panels. 

Regional mean percentages for the Southeast US are shown inset. They add up to less than 

100% because of the small ISOPO2 sink from reaction with other organic peroxy radicals 

(RO2).
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Figure 8. 
Mean ozonesonde vertical profiles at the US SEACIONS sites (http://croc.gsfc.nasa.gov/

seacions/) during the SEAC4RS campaign in August–September 2013. An average of 20 

sondes were launched per site between 9am and 4pm local time. Ozonesondes at Smith 

Point, Texas were only launched in September. Model values are coincident with the 

launches. Data are averaged vertically over 0.5 km bins below 2 km altitude and 1.0 km bins 

above. Also shown are standard deviations.
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Figure 9. 
Ozone production efficiency (OPE) over the Southeast US in summer estimated from the 

relationship between odd oxygen (Ox) and the sum of NOx oxidation products (NOz) below 

1.5 km altitude. The left panel compares SEAC4RS observations to GEOS-Chem values for 

August–September 2013 (data from Figure 2). The right panel compares SEAC4RS 

observations to INTEX-NA aircraft observations collected over the same Southeast US 

domain in summer 2004 (Singh et al., 2006). NOz is defined here as HNO3 + PAN + 

alklynitrates, all of which were measured from the SEAC4RS and INTEX-NA aircraft. The 

slope and intercept of the reduced-major-axis (RMA) regression are provided inset with the 

correlation coefficient (r). Observations for INTEX-NA were obtained from ftp://ftp-

air.larc.nasa.gov/pub/INTEXA/.
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Figure 10. 
Maximum daily 8-h average (MDA8) ozone concentrations at the 30 CASTNET sites in the 

Southeast US in June–August 2013. The left panels show seasonal mean values in the 

observations and GEOS-Chem. The right panel shows the probability density functions 

(pdfs) of daily values at the 30 sites.
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Figure 11. 
Median vertical profiles of ozone and NOx concentrations over the Gulf of Mexico during 

SEAC4RS. Observations are from four SEAC4RS flights over the Gulf of Mexico (August 

12, September 4, 13, 16). GEOS-Chem model values are sampled along the flight tracks. 

The 25th and 75th percentiles of the aircraft observations are shown as horizontal bars.
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Figure 12. 
Median vertical profile of ozone concentrations over St. Louis, Missouri and Huntsville, 

Alabama during August and September 2013. Observations from SEACIONS ozonesondes 

launched between 10 and 13 local time (57 launches) are compared to GEOS-Chem results 

sampled at the times of the ozonesonde launches and at the vertical resolution of the model 

(11 layers below 1.5km, red circles). The ozonesonde data are shown at 150m resolution. 

Altitude is above local ground level.
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