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The copper-containing superoxide dismutases (SODs) repre-
sent a large family of enzymes that participate in the metabolism
of reactive oxygen species by disproportionating superoxide
anion radical to oxygen and hydrogen peroxide. Catalysis is
driven by the redox-active copper ion, and in most cases, SODs
also harbor a zinc at the active site that enhances copper cataly-
sis and stabilizes the protein. Such bimetallic Cu,Zn-SODs are
widespread, from the periplasm of bacteria to virtually every
organelle in the human cell. However, a new class of copper-
containing SODs has recently emerged that function without
zinc. These copper-only enzymes serve as extracellular SODs
in specific bacteria (i.e. Mycobacteria), throughout the fungal
kingdom, and in the fungus-like oomycetes. The eukaryotic cop-
per-only SODs are particularly unique in that they lack an elec-
trostatic loop for substrate guidance and have an unusual open-
access copper site, yet they can still react with superoxide at
rates limited only by diffusion. Copper-only SOD sequences
similar to those seen in fungi and oomycetes are also found in
the animal kingdom, but rather than single-domain enzymes,
they appear as tandem repeats in large polypeptides we refer to
as CSRPs (copper-only SOD-repeat proteins). Here, we compare
and contrast the Cu,Zn versus copper-only SODs and discuss the
evolution of copper-only SOD protein domains in animals and
fungi.

Superoxide dismutase (SOD)2 was discovered in 1969 by
McCord and Fridovich (1) as a copper metalloprotein present
in bovine erythrocytes that can disproportionate superoxide
anion radicals with incredible catalytic efficiency (two-step
reaction below).

Cu(II) � O2
�� ¡ Cu(I) � O2

STEP 1

Cu(I) � O2
�� � 2H� ¡ Cu(II) � H2O2

STEP 2

Not long afterward, zinc was also detected in this cupropro-
tein, establishing mammalian SOD1 as a copper and zinc
bimetalloenzyme (2). Since the discovery of Cu,Zn-SODs, dis-
tinct classes of SODs that use iron, manganese, or nickel as
co-factors have been identified. These SODs are unrelated to
Cu,Zn-SODs in primary sequence and structure but share in
common the use of a redox-active metal co-factor to dispropor-
tionate superoxide (3). SODs protect cells from oxidative stress,
particularly in the removal of superoxide produced during
metabolism (4, 5), and also have key roles in cell signaling
through the local production of H2O2 (6 –8). In addition, many
SODs are virulence factors for pathogens, allowing them to sur-
vive the oxidative burst of macrophages and neutrophils at the
host–pathogen interface (9, 10).

Cu,Zn-SODs are the only SODs known to function as bimet-
alloenzymes, requiring copper for catalysis and zinc to enhance
catalytic efficiency and stabilize the protein (11–14). For many
decades, all members of this SOD family from bacteria to
humans were believed to require both copper and zinc. This
dogma was challenged first in 2004 with the discovery of a
mycobacterial copper-only SOD (15), and then in 2014 with the
identification of a large family of copper-only SODs in fungi
that not only lacked zinc but contained an unusually open-
access copper site (16). Very recent bioinformatics analyses
have revealed that copper-only SOD-like protein sequences
also occur as repeated protein domains in large molecules we
call CSRP (copper-SOD-repeat protein). In this review, we shall
compare and contrast the copper-only versus Cu,Zn-SOD pro-
teins and discuss the utility of the copper-only SOD protein
domain in biology.

Ubiquitous Cu,Zn-SODs

The bimetallic copper- and zinc-containing SODs are widely
dispersed in biology from bacteria to mammals and are found in
both intracellular and extracellular locations. Virtually all
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eukaryotes express an abundant intracellular Cu,Zn-SOD typ-
ically known as SOD1 (1–3, 17–19). This ubiquitous enzyme is
found in various intracellular compartments, primarily in the
cytosol (19) but also in the mitochondrial inter-membrane
space (20 –23), the secretory pathway (24, 25), and even the
nucleus (26, 27). SOD1 protects against oxidative damage from
metabolic sources of superoxide, including that from the mito-
chondrial respiratory chain, and also functions in cell signaling
involving its H2O2 product and peroxide-sensitive kinases and
phosphatases (6, 7). In the nucleus, SOD1 can participate in
controlling gene expression as has been shown in baker’s yeast
with gene responses to DNA damage and copper starvation
stress (26, 27). SOD1 is a highly abundant protein, and in
humans, mutant versions of SOD1 have been linked to an
inherited form of amyotrophic lateral sclerosis (ALS). SOD1
misfolding has been implicated in ALS disease, and many excel-
lent reviews have been written on this topic (28 –32).

Cu,Zn-SODs can also be found in extracellular locations, and
because superoxide does not generally cross biological mem-
branes, the substrate for the extracellular SOD must originate
outside the cell. Certain bacteria express Cu,Zn-SODs in their
periplasmic space (33–35), and in the case of pathogenic bacte-
ria, these SODs protect against the oxidative burst of the host
immune system (9, 10). Many eukaryotes also express a Cu,Zn-
SOD distinct from SOD1 that is extracellular. This so-called
ecSOD was first discovered by Marklund in 1982 (36) and is a
secreted tetrameric protein in extracellular fluid or anchored to
the extracellular matrix (3, 36 – 41). The superoxide substrate
for ecSOD is derived from NADPH oxidase (NOX) enzymes
(42) that are flavin- and heme-dependent transmembrane
enzymes that reduce oxygen to superoxide (42–44). Together,
ecSOD and NOX can function in signaling involving reactive
oxygen and reactive nitrogen species (8).

Cu,Zn-SODs can be homodimeric (SOD1), tetrameric
(ecSOD), or in rare cases monomeric (Escherichia coli SodC) (3,
45). Each monomer has several landmark features as follows: a
Greek key �-barrel fold; highly conserved copper- and zinc-
binding residues; a conserved disulfide; active-site arginine; and

an extended loop VII, also known in eukaryotic Cu,Zn-SODs as
the electrostatic loop (ESL) (46). The catalytic copper in the
oxidized Cu(II) state is coordinated in a distorted square planar
geometry to an axial water molecule and four histidines, one of
which (His-63 in the case of yeast and human SOD1) also coor-
dinates zinc (Fig. 1). For the purpose of this review, we shall
refer to this bridging His-63 as the “dynamic” histidine based
on its on-and-off coordination to copper during catalysis. As
superoxide is oxidized in the first step of catalysis, the dynamic
bridge between His-63 and copper is broken as Cu(II) is
reduced to Cu(I) and detached from His-63, resulting in a trig-
onal planar geometry for Cu(I). The zinc co-factor remains
bound to the dynamic His-63 during catalysis and is addition-
ally coordinated to two other histidines and an aspartate (Fig. 1)
(46 –48). Although zinc does not directly interact with the
superoxide substrate during catalysis, its coordination with the
dynamic His-63 assists in the re-oxidation of Cu(I) to Cu(II) in
the second step of catalysis and accounts for the large pH inde-
pendence of SOD activity (11, 12, 14, 49). The zinc co-factor is
also important for stabilizing protein structure (13, 14, 50).
Additional invariant features of Cu,Zn-SODs include an inter-
molecular disulfide (48) and an active-site arginine (Arg-143 in
SOD1) positioned at the end of the ESL, which attracts and
stabilizes the anionic superoxide substrate over the copper-
metal center (Fig. 1) (51). With many charged amino acids
residing in the ESL, it is believed to create an electrostatic net-
work to funnel the highly solvated superoxide into the active
site and accounts for the remarkably rapid rates of superoxide
disproportionation (37, 51–54). The ESL is also believed to play
a role in stabilizing copper and zinc binding through a network
(or series) of hydrogen bonds (11, 50).

Bacterial copper-SOD functions without zinc

For 35 years following the discovery of Cu,Zn-SODs, all cop-
per-containing SOD enzymes were thought to require zinc.
However, in 2004 the copper-containing SodC from Mycobac-
terium tuberculosis (MtSodC) was reported to lack zinc and to
function with only a single copper atom (15). This copper-only

Figure 1. Active site of Cu,Zn versus copper-only SODs. Left and right, comparison of Saccharomyces cerevisiae Cu,Zn-SOD1 (left) and C. albicans copper-only
SOD5 (right) active site with key features highlighted as follows: Greek key �-barrel core (tan), ESL (yellow) with SOD1 Asp-124, active-site arginine (SOD1
Arg-143 and SOD5 Arg-159), disulfide loop (blue) with cysteines as yellow spheres, copper ion (blue), and zinc ion (green) with coordinating residues labeled by
number. The dynamic histidine (SOD1 His-63 and SOD5 His-93) is orange, and SOD5 Glu-110 and Asp-113 are cyan and green. Dotted lines represent hydrogen
bond networks and small red spheres represent water molecules.
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SOD retains the Greek key �-barrel backbone of Cu,Zn-SODs
as well as the same copper-coordination site, disulfide, active-
site arginine, and extended loop VII covering the active site
(equivalent to the ESL in eukaryotic Cu,Zn-SODs). However,
MtSodC is missing the two non-dynamic histidines needed to
bind zinc, with one substituted with an alanine and one missing
due to a seven-amino acid deletion in the zinc loop (15). Struc-
tural analyses indicate zinc is missing from the active site of
MtSodC (15).

As mentioned above, the zinc co-factor in Cu,Zn-SODs
promotes pH independence in the enzyme and assists in SOD
folding/stability. As would be expected for a zinc-less SOD,
MtSodC demonstrates diffusion-limited catalysis from pH 6.0
to 8.0, but catalytic efficiency rapidly decreases above pH 8.0
(15). Because M. tuberculosis can exist in environments of low
pH, e.g. the macrophage phagolysosome (55), this sensitivity to
alkaline pH is likely a non-issue. To circumvent the require-
ment for zinc in protein stability, MtSodC shows an altered
dimer interface with a long and rigid loop that is thought to
stabilize the protein (15). Copper-only SodC is the only
periplasmic SOD in M. tuberculosis and has been shown to pro-
tect the pathogen from the superoxide bursts of NOX enzymes
in activated macrophages (56).

Of note, many SodC sequences in the Mycobacterium genus
appear to lack the same zinc-binding histidines, indicating that
diverse species of Mycobacterium SodCs are copper-only (15).
Even so, within the eubacterial kingdom, copper-only SOD
enzymes appear unique to the Mycobacterium genus, as all
other periplasmic SODs characterized to date have both copper
and zinc (9, 34, 45, 57).

Copper-only SOD in a fungal pathogen

Fungal pathogens, like bacteria, utilize their extracellular
SODs as a first line of defense against superoxide generated by
macrophage and neutrophil NOX enzymes (9). One of the best
studied cases is the extracellular SOD5 from the opportunistic
fungal pathogen, Candida albicans (58). C. albicans expresses
three extracellular SODs (SOD4 – 6) that are members of the
Cu,Zn-SOD family and are linked to the cell wall through GPI
anchors (59). Of these, SOD5 is the most abundantly expressed
in numerous models of candidiasis (60 –65) and contributes to
virulence in a mouse model of disseminated candidiasis (58).
The enzyme is induced during the transition to the hyphal fila-
mentous form required for host invasion (58, 66) and protects
C. albicans from the superoxide burst of macrophages and neu-
trophils (63, 67– 69). For many years, SOD5 was described as a
bimetallic Cu,Zn-SOD (58, 66).

In 2014, three-dimensional structure and biochemical anal-
yses of C. albicans SOD5 revealed that it is not a canonical
Cu,Zn-SOD (16). Although SOD5 shares the overall Greek key
�-barrel fold of Cu,Zn-SODs and exhibits a similar copper-
binding geometry, it is missing the same two zinc-binding his-
tidines as M. tuberculosis SodC, although in this case both due
to amino acid substitutions, not deletions. Furthermore, SOD5
is missing an extensive portion of the ESL/loop VII (Fig. 1) (16).
The absence of ESL sequences creates a uniquely open active
site where copper is much more accessible to solvent. Attempts
to load SOD5 with zinc were unsuccessful, demonstrating that

SOD5 functions with a single atom of copper and no other
metals (16). Despite such striking deviations from canonical
Cu,Zn-SODs, copper-only SOD5 is an extremely efficient SOD
enzyme capable of disproportionating superoxide at maximum
rates approaching diffusion limits, 1.8 � 109 M�1 s�1 at pH 6.0
(16, 70).

How does copper-only SOD5 function in the absence of zinc
and the ESL? As mentioned above, zinc promotes pH-indepen-
dent catalysis of Cu,Zn-SODs through interactions with the
dynamic histidine that also binds Cu(II) (11, 12, 14, 49). In lieu
of zinc, the dynamic His-93 of copper-only SOD5 interacts with
a conserved glutamate (Glu-110) in the active site (Fig. 1). Dis-
ruption of this interaction through Glu-110 mutations alters
the orientation of the dynamic His-93 and dramatically de-
creases the pH range of activity (70). Thus, SOD5 Glu-110
appears to act analogous to zinc, interacting with and correctly
orienting the dynamic His-93 to promote rapid catalysis up to
pH 8 (70).

The absence of the ESL is perhaps the most striking feature of
fungal copper-only SODs, as this highly charged loop was pre-
viously reported to be critical for substrate guidance and effi-
cient catalysis in Cu,Zn-SODs (51–54). Despite no ESL, SOD5
shows a strong catalytic dependence on ionic strength, indica-
tive of an alternative form of electrostatic substrate guidance
(16). In Cu,Zn-SOD1, the ESL also helps stabilize the copper
site through interactions involving ESL Asp-124 and copper
coordinating His-46 (Fig. 1, left) (11, 50). In copper-only SOD5,
the equivalent copper coordinating His-75 interacts with SOD5
Asp-113 through a hydrogen bond network (Fig. 1, right). Evi-
dence indicates that Asp-113 in the SOD5 active site helps cir-
cumvent the need for the ESL in stabilizing copper binding (70).
Interestingly, Asp-113 is invariant among all copper-contain-
ing SODs reported to date; in Cu,Zn-SODs, this aspartate is a
zinc ligand and in copper-only SODs the aspartate functions
through interactions with the copper site. This re-purposing of
Asp-113 together with Glu-110 represents novel adaptations in
the active site of eukaryotic copper-only SODs.

Of note, the features of Glu-110 and Asp-113 described
above for fungal SOD5 may not extend to prokaryotic copper-
only SODs. Mycobacterium SodC retains loop VII/ESL
sequences and shows similar loop VII– copper site interactions
as seen with Cu,Zn-SOD1 (15). There is no equivalent to SOD5
Glu-110 in mycobacterial SodC; instead, the invariant aspartate
(equivalent to SOD5 Asp-113) interacts with the dynamic his-
tidine (15, 70). MtSodC appears to be a hybrid of Cu,Zn and
fungal copper-only SODs.

What is the advantage of expressing a copper-only SOD ver-
sus a bimetallic Cu,Zn-SOD? Clues may be obtained from
examining the metallation process. In mammals, the extracel-
lular Cu,Zn-SOD acquires copper and zinc in the secretory
pathway and arrives at the cell surface in an enzymatically
active form (71, 72). By contrast, characterization of C. albicans
SOD5 indicated that the apoprotein is secreted without copper
and is only activated upon scavenging copper from the extra-
cellular environment (16). The open active site may help pro-
mote such capture of copper outside the cell. With no zinc site,
mis-metallation events, such as copper migrating to the zinc
site as is seen with Cu,Zn-SODs (49), are obviated. Additionally,
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the copper site of C. albicans SOD5 appears refractory to mis-
metallation by non-native metals such as zinc (16). As such,
enzyme activity remains intact regardless of fluctuations in
environmental zinc. The copper-only design may indeed be
advantageous to controlling enzyme maturation outside the
cell.

Role of copper-only SODs in fungal pathogenesis and
signaling

Copper-only SODs are widely distributed throughout the
fungal kingdom and, in all cases examined thus far, are pre-
dicted to be extracellular and attached to the cell wall through
GPI anchors (70). Like C. albicans SOD5, all fungal extracellu-
lar SODs lack zinc binding and ESL sequences and retain the
equivalents to Glu/Gln-110 and Asp-113 at the active site. Cop-
per-only SODs are found in many fungal pathogens where they
combat the oxidative burst of the host and promote virulence,
as has been seen with C. albicans, the pulmonary pathogen His-
toplasma capsulatum (73), and systemic mycosis pathogen
Paracoccidioides brasillienssis (74). Because of their extracellu-
lar location, fungal copper-only SODs may be uniquely posi-
tioned with their open active site to acquire copper from the
host (16). Curiously, copper-only SODs are also found in non-
pathogenic fungi that are not subject to host oxidative attacks,
such as the Tuber melanosporum truffles fungus (70). With
these non-pathogens, the SODs may react with superoxide
derived from the fungus itself, similar to how copper- and zinc-
containing ecSODs partner with NOX enzymes in mammals as
part of signaling through reactive oxygen and reactive nitrogen
species (see above). Multicellular fungi are indeed known to use
NOX enzymes to signal differentiation (75–77).

Unlike multicellular organisms, unicellular microbes are not
generally thought to use NOX enzymes and extracellular SODs
for signaling. However, we recently found that copper-only
SOD5 from unicellular C. albicans can act in signaling involv-
ing ROS and a fungal NOX enzyme known as FRE8 (78). C. albi-
cans FRE8 and SOD5 together generate H2O2 that can help
drive morphogenesis of the fungus into an invasive filamentous
state (78). Therefore, SOD5 can react with superoxide gener-
ated from either the host or the fungal pathogen itself. During
infection, one can envision a “superoxide superstorm,” with
ROS coming from both the host and the fungal sides of the
infection battleground and SOD5 operating at the interface
(Fig. 2).

SOD5-like protein domains in animals

We have searched for SOD5-like proteins outside of the fun-
gal kingdom. Our definition of a SOD5-like protein is one with
the predicted Greek key �-barrel fold of the Cu,Zn-SOD family,
including the copper site, disulfide, and active-site arginine but
lacking sequences for zinc binding and the ESL and retaining
SOD5 equivalents to Glu-110 and Asp-113. The only non-fun-
gal organisms that express �20 –30-kDa (predicted molecular
mass of mature protein) SOD5-like SODs are oomycetes, a line
of heterokont eukaryotes distantly removed from the fungal
kingdom (Fig. 3A). As with fungi, the oomycete proteins are
predicted to be secreted GPI-anchored extracellular SODs (70).
Oomycetes are derived from photosynthetic microbes and are

thought have acquired genetic material through horizontal
gene transfer from a fungal ancestor (79 –81). Copper-only
SODs were apparently carried over as part of this genetic
transfer.

Interestingly, SOD5-like protein sequences are also found in
specific classes of animals but not in any plants, protists,
archaea, or eubacteria we could identify (Fig. 3A). As with fungi
and oomycetes, the animal proteins are largely predicted to be
extracellular with GPI anchors and to exhibit the signatures of
SOD5-like SODs defined above. However, in animals the
SOD5-like protein sequences are not 20 –30-kDa SOD
enzymes but rather protein domains in much larger polypep-
tides of �100 kDa we define as CSRP (copper-only SOD repeat
proteins). An example is illustrated in Fig. 3C with CSRP of the
zebrafish Danio rerio (XP_001343650.5). The protein is pre-
dicted to contain four tandem repeats of SOD5-like SOD
domains separated by very short linkers. Each domain contains
the Greek key �-barrel fold structure, disulfide cysteines,
active-site arginine, and equivalents to SOD5 Glu/Gln-110 and
Asp-113, except for domain four, which has a methionine
instead of the Glu-110 equivalent. All but the fourth domain
retain the four copper-binding histidines (Fig. 3C, top and mid-
dle). The ESL is missing, as is the zinc site in all four domains of
the zebrafish CSRP. Modeling of zebrafish CSRP shows how
similar each domain is to the C. albicans SOD5 prototype,
including the positioning of the predicted copper site in
domains 1–3 (Fig. 3B and 3C, bottom). It is curious that the
fourth domain is very similar to SOD5 in overall fold and posi-
tioning of the disulfide and active-site arginine but has no cop-
per site (Fig. 3C, middle and bottom). This identical pattern of

Figure 2. Copper-only SODs can react with superoxide from both the
host and fungal pathogen. Shown is a model depicting a fungal copper-
only SOD at the host–pathogen interface where it can react with superoxide
from host NOX (macrophages or neutrophils) or from fungal NOX. The H2O2
generated may be used in signaling as has been shown for C. albicans where
copper-only SOD5 and the FRE8 NOX promote morphogenesis of the fungus
(78).
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three copper-binding repeats followed by a fourth non-
copper– binding domain appears preserved within the class
of bony fishes/Osteichthyes, e.g. CSRPs from red piranha
(XP_017575212.1), common carp (KTF72519.1), and Atlantic
salmon (XP_014036762.1).

CSRPs occur throughout the animal kingdom from the uni-
cellular Capsaspora owczarzaki (KJE90024.1) to diverse marine
invertebrates and insecta to vertebrate teleosts. In fact, at least
one study looking at the evolution of SODs remarks on the
presence of repeated SOD domains in Anopheles gambiae (82).
These CSRPs have been annotated widely as Cu,Zn-SODs, but

they are clearly more related to fungal copper-only SODs.
Expression of the transcripts have been analyzed, e.g. the Pacific
oyster Crassostrea gigas CSRP (83) (EKC41617.1), and the pro-
teins are produced as has been shown in proteomic analysis of
placozoans (XP_002114624.1, Uniprot. No. B3S3A9) (84).
Interestingly, CSRPs are not uniformly distributed in animals,
and to date all CSRPs we have identified are in aquatic organ-
isms and winged insects. We have yet to identify CSRP in
lunged animals, e.g. avians, reptiles, and mammals. The signif-
icance of this distribution is currently not understood as the
function of these curious SOD-like repeat proteins remains a

Figure 3. Evolution of copper-only SOD domains. A, phylogenetic tree of the distribution of copper-only SOD5-like domains in animals, fungi, and oomy-
cetes (purple). B, three-dimensional structure of C. albicans apo-SOD5 is shown above the schematic of the full-length native protein where the N- and
C-terminal sequences for secretion and GPI anchorage are in light gray and the Greek key �-barrel domain is depicted as an oval with active-site arginine (R),
copper site, disulfide cysteines (S–S), and active-site Glu-110 and Asp-113 (ED). C, top, schematic of the predicted full-length D. rerio zebrafish (Zf) CSRP
(XP_001343650.5) where the individual SOD5-like domains and key features are highlighted using the same scheme as for C. albicans SOD5 in B, bottom. D. rerio
CSRP contains additional sequences at the N terminus (dark gray) of unknown nature. The �-site for the GPI anchor is predicted to be at residue 955. C, middle,
alignment of the individual SOD5-like domains of D. rerio CSRP against C. albicans SOD5. The copper-binding histidines are in blue; disulfide is in purple;
active-site arginine is in black; and positions equivalent to SOD5 Glu-110 and Asp-113 are in green. The overall amino acid identity and similarity compared with
SOD5 is as follows: CSRP_D1, 33% identity and 51% similarity; CSRP_D2, 30 and 47%; CSRP_D3, 31 and 56%; and CSRP_D4, 27 and 43%. C, bottom, each of the
four SOD5-like domains were modeled onto C. albicans SOD5 using the MPI bioinformatics toolkit (93, 94). The most C-terminal repeat (CSRP_D4) is lacking a
copper site but retains the predicted overall fold as well as other hallmark features of copper-only SOD5-like domains, as indicated.
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mystery. Do these multidomain CSRPs function similarly to
their smaller, single-domain fungal counterparts in dispropor-
tionating superoxide, or have they evolved with an entirely dis-
tinct activity in animals? The possible function of animal CSRPs
in the metabolism or sensing of reactive oxygen species and/or
metals is worthy of investigation.

Concluding remarks

The eukaryotic copper-only SOD protein is not just a single
unit SOD enzyme, but a protein domain conserved in evolution
since the split of animals and fungi �1.5 billion years ago (Fig.
3A). In virtually all cases examined so far, including fungi,
oomycetes, and animals, the copper-only SOD-like protein is
predicted to be outside the cell, therefore serving in some
capacity involving the environment. The fungal copper-only
SOD enzyme is as fast as its Cu,Zn-SOD sister and can protect
fungal pathogens from host oxidative insults as well as operate
in signaling processes involving fungus-derived superoxide.
The function of animal CSRPs is currently unknown, but there
is precedence for diversification of small copper-binding pro-
teins. For example, copper-binding ATX1/ATOX functions as
either a single-domain �8-kDa copper chaperone (85, 86) or as
one of three domains in the copper chaperone CCS (87, 88) or
as repeated protein domains in copper-transporting ATPases
(89 –92). Similarly, the SOD5-like copper-binding domain may
have been diversified in evolution to function in numerous
capacities for metal and redox homeostasis.
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