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This 11th Thematic Metals in Biology Thematic Series deals
with copper, a transition metal with a prominent role in bio-
chemistry. Copper is a very versatile element, and both deficien-
cies and excesses can be problematic. The five Minireviews in
this series deal with several aspects of copper homeostasis in
microorganisms and mammals and the role of this metal in two
enzymes, copper-only superoxide dismutase and cytochrome c
oxidase.

This 11th Thematic Series in Metals in Biology (1–10) deals
with copper, an essential metal in mammals. As in the case of
iron, the subject of the last Metals in Biology series (10), copper
is a transition metal that is essential but can also be toxic,
depending upon the concentration (11). Copper has unique
properties and is specifically needed in a number of enzymes,
including dopamine �-hydroxylase and other redox enzymes
(12–14). Two important enzymes considered here are superox-
ide dismutase and cytochrome c oxidase (15, 16). High concen-
trations of labile copper are problematic in terms of oxygen
toxicity, as in the case of free iron (11), but emerging data reveal
contributions of dynamic copper pools to physiological signal-
ing (17).

We have had Minireviews on aspects of copper biochemistry
before (18 –23) but not a complete Thematic Series. For this
Metals in Biology series, we selected several areas of current
interest in research with copper.

We begin the series with methanotrophic bacteria and
methanobactins in the Minireview by Kenney and Rosenzweig
(24). One of the needs for copper in these bacteria is for the
copper prosthetic group of particulate methane monooxyge-
nase, a major factor in the methane “economy” on the planet.
Some methanotrophs use the copper-binding metallophore
methanobactin. Methanobactins are peptidic natural products,
produced by ribosomal synthesis and then post-translationally
modified. These methanobactins have very high affinity for CuI

and also bind CuII reductively. The machinery to biosynthesize
methanobactins is encoded by operons, and several novel
enzymes are involved. Methanobactins are exported via a
MATE family multidrug efflux pump, followed by re-internal-

ization by a TonB-dependent transporter. Release of copper
from methanobactins and the copper-dependent regulation of
the pathways involved in methanobactin synthesis, processing,
and transport remain unresolved. Methanobactins are also
under investigation as therapeutics for diseases of copper
metabolism. An open area of research involves the finding that
methanobactin operons are also found in non-methanotrophs,
where their function has not been established, but is likely also
related to copper homeostasis.

The next Minireview in our Thematic Series (25) picks up
with bacteria and methanobactin. While trying to find metha-
nobactin within a methanotroph, Dennison’s group discovered
a new family of copper storage proteins, the Csp group. Csp1
has 13 cysteines, none of which are in the form of disulfides, and
can bind up to 13 CuI ions. All of these are found along the core
of its four-helix bundle monomer in an unprecedented arrange-
ment. Methylosinus trichosporium OB3b Csp1 and Csp3 are
homologous; both are tetramers, but Csp3 can bind up to 20
CuI atoms per monomer. They have similar average CuI affini-
ties but differ considerably in CuI removal rates. Csp3 is cyto-
solic, and Csp1 is exported. Copper-regulated Csp1 is isolated
from M. trichosporium OB3b with copper bound, and gene
deletion has a detrimental effect on methane oxidation by the
particulate methane monooxygenase. Thus, Csp1 acts as a
store of copper for this enzyme. The exact functions of the more
widespread and common cytosolic Csp3 proteins are yet to be
delineated, but in vitro data and emerging in vivo evidence are
all consistent with a role in copper storage while preventing
toxicity. Possible links of the Csp proteins to pathogenicity are
also discussed in this Minireview.

The third Minireview, by Ackerman and Chang (26), extends
the discussion of copper homeostasis to mammals. The
authors’ laboratory has been involved in developing new probes
for tracking copper in mammalian cells and tissues (27). Mam-
malian copper homeostasis involves proteins such as the trans-
porter CTR1, chaperones (Atox1), and the storage protein met-
allothionein. New evidence indicates that not all copper is
tightly sequestered and that kinetically accessible pools of cop-
per exist that are not tied up in enzyme active sites and can be
mobilized following stimuli. Imaging has shown copper trans-
location upon neural stimulation. In addition to the effects of
copper signaling in neurotransmission and in learning and
memory, copper has also been shown to influence circadian
rhythm. Copper interacts directly with prion, amyloid precur-
sor, and huntingtin proteins, as well as superoxide dismutase,
and may have roles in neurodegenerative diseases. In addition,
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mammalian immune systems utilize copper to prevent micro-
bial growth. A copper exporter (ATP7A) in macrophages
moves to the phagosomal membrane in response to infectious
stimuli, and manipulating labile copper within immune cells
may be a therapeutic possibility. Copper has also been studied
in cancer, as a regulator of tumor cell proliferation, with the
involvement of mitogen-activated protein kinase (MAPK),
BRAF, V600E, MEK1/2, and ERK1/2 proteins. Finally, dysregu-
lation of lipid metabolism is a symptom of copper deficiency or
overload, and copper has been identified as an allosteric regu-
lator of phosphodiesterase 3, which controls lipolysis in adi-
pocytes. Cys-768 is distant from the active site but binds cop-
per, and this allosterically regulates enzymatic activity.

Our last two Minireviews deal with copper in important
enzyme systems, superoxide dismutase (SOD)2 and cyto-
chrome c oxidase (COX) (15, 16). Superoxide dismutase was
originally discovered by McCord and Fridovich in 1969 as a
Cu/Zn enzyme (28) but there are versions known to use other
metals (e.g. iron, manganese, nickel). Very recently, a new class
of “copper-only” SODs has been identified in mycobacterium,
fungi, and fungus-like oomycetes, as discussed in the fourth
Minireview by Robinett, Peterson, and Culotta (15). The
eukaryotic copper-only SODs are strictly extracellular; they
lack both the zinc group and the electrostatic loop for substrate
guidance that are hallmarks of Cu/Zn-SODs. Nevertheless, the
copper-only SODs still catalyze the disproportionation of
superoxide with diffusion-controlled efficiency. Copper-only
SOD sequences are not just SOD enzymes but also occur in
animals as repeated protein domains in large molecules called
Cu-SOD–repeat proteins (CSRPs).

The last Minireview in the series, by Jett and Leary (16), dis-
cusses some aspects of the assembly of COX, a protein with two
copper sites composed of three copper atoms (because of the
mononuclear CuB site and the binuclear CuA site), essential for
life. The assembly of this multimeric protein, coded for by both
nuclear and mitochondrial genomes, involves several proteins.
In terms of function, the CuA site accepts electrons from cyto-
chrome c, and subsequent electron transfer to the heme a (iron)
and then the heme a3 (iron)–CuB metal centers of COX1 are
involved in the reduction of molecular oxygen to water. The
individual structural subunits of COX are matured and assem-
bled in modules, specific to COX1, COX2, and COX3. Holoen-
zyme assembly requires a large number of COX assembly fac-
tors. Deficiencies of any of these result in death or serious
diseases in humans. As an example of the complexity of the
systems, the proteins COA6, SCO1, and SCO2 form a metal-
lochaperone module that interacts with the COX20 –COX2
complex just to add copper to the CuA site, with the CuI coming
from a labile pool housed in the mitochondrial matrix (29, 30).
This process involves four stages, including export of the N-ter-
minal tail of COX2 into the intermembrane space association of
COX20 with COX2 during membrane insertion (for stabiliza-
tion), COX18 release from the COX20 –COX2 complex
accompanied by recruitment of the SCO1/SCO2/COA6 metal-
lochaperone module, and finally reduction of two cysteinyl sul-

furs of COX2 with SCO1 inserting two CuI ions into the CuA

site (16).
A good review not only answers questions but also identifies

new ones to be addressed. In this Thematic Series, there are
many things left to know, and I will touch on only some of the
questions I had after reading. How are the precursor peptides
processed to generate methanobactins (24)? New knowledge
about the enzymes involved in other peptide post-translational
modifications is becoming available (31, 32). Why are metha-
nobactin-like genes found in non-methanotrophs? What are
the functions of bacterial cytosolic copper storage proteins
(Csp3s) (25)? Why do bacteria store copper in the cytosol when
they are not thought to possess copper enzymes in this cellular
compartment? Is there more to learn about copper and viru-
lence in mammalian hosts? What are the origins of some of the
copper signals seen in mammals (26)? Do changes in redox state
trigger mobilization of copper signals? Can new imaging tech-
nologies be harnessed to provide more effective disease thera-
pies? How much do copper issues contribute to diseases such as
neurodegeneration, infection, obesity, and cancer? With regard
to SODs, what are the Cu-SOD–repeat proteins doing in ani-
mals without lungs (15)? Have all of the accessory proteins for
cytochrome oxidase assembly been identified (16)? Are the
sequential order and timing of events in cytochrome oxidase
assembly critical? What is the role of redox states— both copper
and thiols—in cytochrome oxidase assembly? How are pools of
“available” copper regulated and used in prokaryotes (24, 25)
and eukaryotes (16, 26)? Perhaps we can revisit progress toward
these and other questions in a future Metals in Biology The-
matic Series.

The authors and I hope that you enjoy reading this Thematic
Series. We have begun to plan the next Metals in Biology, the
theme of which will be determined soon.
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