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Methanobactins (Mbns) are ribosomally produced, post-
translationally modified natural products that bind copper with
high affinity and specificity. Originally identified in metha-
notrophic bacteria, which have a high need for copper, operons
encoding these compounds have also been found in many non-
methanotrophic bacteria. The proteins responsible for Mbn
biosynthesis include several novel enzymes. Mbn transport
involves export through a multidrug efflux pump and re-inter-
nalization via a TonB-dependent transporter. Release of copper
from Mbn and the molecular basis for copper regulation of Mbn
production remain to be elucidated. Future work is likely to
result in the identification of new enzymatic chemistry, oppor-
tunities for bioengineering and drug targeting of copper metab-
olism, and an expanded understanding of microbial metal
homeostasis.

Transition metals are key cofactors in metabolically impor-
tant enzymes across all kingdoms of life (1). Nevertheless, care-
ful control of cellular metal levels is required; a cellular surplus
can limit viability due to oxidative stress (2), but metal starva-
tion can also be fatal. Investigations of metal influx during con-
ditions of metal scarcity have often been limited to iron, which
is poorly bioavailable under aerobic conditions (3). Iron-chelat-
ing natural products (siderophores) are secreted by many spe-
cies, and iron from siderophores is incorporated into the cellu-
lar iron pool after re-internalization (4). Although efflux has
historically dominated studies of non-iron homeostasis, there is
increasing evidence that similar systems exist for uptake of
other metal ions (5, 6). One of the best-understood examples is
methanobactin (Mbn),2 a natural product involved in copper
homeostasis in methanotrophic bacteria.

Methanotrophic bacteria oxidize methane to methanol in
the first step of their metabolism (7). Two unrelated metalloen-
zymes catalyze aerobic methane oxidation (8): the cytoplasmic
iron enzyme soluble methane monooxygenase (sMMO) and
the more widespread copper enzyme particulate methane
monooxygenase (pMMO), a integral inner membrane protein.
Some methanotrophic bacteria can produce both enzymes, but
whenever sufficient copper is present, sMMO is down-regu-
lated and pMMO is preferred (9). In the presence of copper,
methanotrophs produce extensive intracytoplasmic mem-
branes (10, 11). These membranes contain large quantities of
pMMO, representing up to a fifth of the cellular protein mass
(12). pMMO activity is copper-dependent (13), and metha-
notrophs thus have several systems for copper influx alongside
the better-understood efflux systems of other microbes (14).
Some methanotrophs secrete the post-translationally modified
protein MopE to bind extracellular copper (15), whereas other
methanotrophs use the copper-binding “chalkophore” (from
the Greek chalko-, copper) Mbn to mediate copper uptake into
the intracellular copper pool (16, 17). Mbns are ribosomally
produced, post-translationally modified natural products
(RiPPs) (18). Operons encoding Mbn precursor peptides along
with proteins involved in Mbn biosynthesis, transport, and reg-
ulation have been identified in a range of bacteria, including
non-methanotrophs, in which Mbn is increasingly believed to
play a similar role in copper homeostasis (19, 20). Here, we
summarize the current state of knowledge regarding Mbns.

Mbn structures

The crystal structure of copper-loaded Mbn (CuMbn) from
Methylosinus (Ms.) trichosporium OB3b was assigned as N-2-
isopropylester–(4-thionyl-5-hydroxy-imidazole)–Gly1–Ser2–
Cys3–Tyr4–pyrrolidine–(4-hydroxy-5-thionyl-imidazole)–
Ser5–Cys6–Met7, with a disulfide bridge between the two
cysteine residues (17). In this structure, two hydroxyimidazo-
late rings and neighboring thioamide groups coordinate a cop-
per ion in a distorted tetrahedral geometry. Re-analysis by
NMR provided two key corrections: the heterocycles are
instead oxazolone rings, and the “N-terminal” group is actually
a 3-methylbutanoyl group (Fig. 1A) (21). These oxazolone rings
(and in some circumstances other nitrogen-containing hetero-
cycles) and neighboring enethiol/thioamide groups are the core
Mbn post-translational modifications. Oxazolone rings contain
an acid-labile lactone moiety, and Mbn is thus susceptible to
acid-catalyzed methanolysis (21) and hydrolysis (22). The
C-terminal methionine is sometimes absent (23), although it is
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unclear when and how this residue loss occurs. The structure of a
second Methylosinus Mbn, Ms. sp. LW4 Mbn, was predicted based
on its Mbn operon content; despite an otherwise divergent pep-

tidic backbone, this Mbn has two oxazolone/thioamide pairs, an
internal disulfide bond, and an N-terminal ketone group, as
observed in Ms. trichosporium OB3b Mbn (Fig. 1B) (24).

Figure 1. Structures of copper-bound Mbns. In all structures, residues that are sometimes absent are denoted in gray. Additional C-terminal residues appear
to be lost in all Methylocystis Mbns (20). A, Ms. trichosporium OB3b CuMbn crystal structure and chemical structure. Both heterocycles are oxazolones (labeled
OxaA and OxaB). B, Ms. sp. LW4 CuMbn chemical structure. As with Ms. trichosporium OB3b CuMbn, both heterocycles are oxazolones (labeled OxaA and OxaB).
C, Mc. sp. SB2 CuMbn chemical structure. Heterocycle A has been described as an imidazolone (labeled ImiA), whereas heterocycle B is an oxazolone (labeled
OxaB). D, Mc. hirsuta CSC1 CuMbn crystal structure and chemical structure. Heterocycle A has been depicted as a pyrazinediol (labeled PyrA), whereas hetero-
cycle B is an oxazolone (labeled OxaB). E, Mc. rosea SV97 CuMbn chemical structure. Heterocycle A has been depicted as a pyrazinediol (labeled PyrA), whereas
heterocycle B is an oxazolone (labeled OxaB). F, Mc. sp. M CuMbn crystal structure and chemical structure. Heterocycle A has been depicted as a pyrazinediol
(labeled PyrA), whereas heterocycle B is an oxazolone (labeled OxaB). G, possible identities for heterocycle A in Methylocystis Mbns. Hydroxypyrazinone and
pyrazinedione tautomers are potentially consistent with the observed crystal structures and NMR data.
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CuMbn from Methylocystis (Mc.) sp. SB2, characterized by
NMR, was reported to have a divergent peptidic backbone, no
cysteine-derived disulfide bond, and a sulfonated threonine as
well as two heterocycle/thioamide moieties (Fig. 1C) (22). Sev-
eral C-terminal residues are lost in the characterized com-
pound (20). The first “N-terminal” heterocycle (heterocycle A)
was deemed an imidazolone ring based on an NMR-detectable
secondary amine embedded in that heterocycle (22). The sec-
ond heterocycle (heterocycle B) is an oxazolone, as in Ms
trichosporium OB3b Mbn. Two additional Mbns from the
Methylocystis species have been characterized via X-ray crys-
tallography and a third closely related Mbn via mass spectrom-
etry (Fig. 1, D–F). Although these Mbns differ from Mc. sp. SB2
Mbn by only one or two residues, heterocycle A is clearly a
six-membered ring, depicted as a pyrazinediol group (25).
Given that the Methylocystis species are closely related, the
structural discrepancy in heterocycle A is puzzling (20). One
explanation is that Methylocystis Mbns may actually contain a
hydroxypyrazinone or pyrazinedione tautomer (Fig. 1G), which
would contain a heterocyclic secondary amine, as observed by
NMR, and the six-membered rings observed via X-ray crystal-
lography. Supporting this notion, the non-copper-chelating
nitrogen in heterocycle A in the Methylocystis Mbn crystal
structures appears to be protonated (24). Thioamide/enethiol
tautomerization may also occur, depending on ionic state, cop-
per chelation, and the identity of the neighboring heterocycle.

The paired heterocycles and thioamides found in all these
Mbns have characteristic spectral features. Oxazolone B
absorbs at 340 –342 nm, whereas heterocycle A absorbs at 388 –
394 nm (22, 24 –26). Fluorescence is observed at 375– 475 nm
with excitation at the heterocycle-associated absorbance max-
ima (26, 27). Absorbance features from tyrosines or trypto-
phans are also observed for the two Methylosinus compounds,
and a feature at 254 nm may be related to the thioamide/ene-
thiol groups. Major spectral shifts occur upon copper binding
(22, 27), and oxazolone-derived fluorescence is mostly abol-
ished (26 –28).

Mbns as metallophores

Mbns have a high affinity for copper in both oxidation states.
Values vary significantly by measurement technique (28), but
the broad consensus is that characterized Mbns have Cu(I)-
binding constants of at least 1020–1021 M�1 (23, 25, 28, 29).
Structural modifications beyond the first coordination sphere
such as loss of C-terminal residues or desulfonation of the thre-
onine in Methylocystis Mbns slightly affect copper affinity (23,
25). The Cu(I) affinity is high enough that Mbn can liberate
bio-unavailable copper from sources ranging from humic acids
(30) to minerals (31) to borosilicate glass (32, 33). Although
Mbns bind Cu(II) with lower affinity, generally calculated to be
1011–1014 M�1 (25), binding is reductive, with conversion to
Cu(I) within the first 10 min via an unknown mechanism, as
confirmed by electron paramagnetic resonance and X-ray
absorption spectroscopies (27, 29, 34, 35). Under superstoichio-
metric copper conditions, a second copper binds, albeit with
lower affinity and without reduction (29). Other stoichiome-
tries are also observed under some conditions (29).

Like other metallophores, Mbns can bind additional metal
ions. Harder metals, including Cd(II), Co(II), Fe(III), Mn(II),
Ni(II), and Zn(II), bind Mbn poorly and sometimes as bis-
chelates or as dimetallated compounds, and no reductive bind-
ing is observed (36). Softer metals such as Ag(I), Au(III), Hg(II),
Pb(II), and U(VI) bind single Mbn molecules with a 1:1 stoichi-
ometry. Recent ion-mobility mass spectrometry experiments
complicate this classification of Mbn–metal interactions,
although further spectroscopic analysis may be necessary to
confirm these results (37). Nevertheless, binding of softer met-
als is consistently of higher affinity, results in spectral features
resembling those of CuMbn, and can be reductive for at least
Au(III), Ag(I), and Hg(II) (36). Relative binding affinities show
some pH dependence (36, 37). However, reported binding con-
stants for these metals are approximately 5 orders of magnitude
lower than that for Cu(II) and 15 orders of magnitude lower
than that for Cu(I) (36). Despite this lower affinity, spectro-
scopic data suggest that bound Au(III), Ag(I), and Hg(II) are not
readily displaced by copper (38, 39). Metal binding has only
been investigated extensively for Ms. trichosporium OB3b and
Mc. sp. SB2 Mbns, but there are indications that relative affin-
ities for metals other than copper may vary by Mbn (39).

Mbn operons

The peptidic Mbn backbone was originally thought to be the
result of non-ribosomal peptide synthesis (40, 41). However, a
short open reading frame encoding a 30-amino acid peptide
with 11 C-terminal residues resembling the Mbn backbone was
identified in the Ms. trichosporium OB3b genome, suggesting a
ribosomal origin (22), and disruption of this open reading frame
abrogated Mbn production (42). Bioinformatic analyses identi-
fied related genes with similar genomic neighborhoods in other
species (43), with 18 operons identified in 16 species by 2013
(19). To date, 74 Mbn operons have been found in 71 species,
with Mbn operons in methanotrophs forming a minority (Fig.
2A) (20). No Mbn operons are found in �-proteobacterial
methanotrophs; their reported Mbns may be other metallo-
phores (19, 35).

Mbn operon content varies considerably. Only three genes
are found in all operons: mbnA encoding the precursor peptide,
and mbnB and mbnC encoding hypothetical proteins with pro-
posed roles in Mbn biosynthesis (19). Genes for membrane pro-
teins related to Mbn import (TonB-dependent transporters)
and export (MATE multidrug export proteins) are found in
many but not all operons. Beyond MbnB and MbnC, several
groups of operons encode other biosynthesis proteins, includ-
ing aminotransferases, predicted dioxygenases, flavoenzymes,
sulfotransferases, and distant MbnB homologues, although
none of these genes are widespread among Mbn operons.

Phylogenetic analysis of MbnA, MbnB, and MbnC yields six
major Mbn subgroups (Fig. 2B); these groups are also easily
distinguished by their varying operon content (19) (Fig. 2A).
Groups I, IIa, and IIb are found exclusively in �-proteobacterial
methanotrophs belonging to the Methylosinus and Methylocys-
tis genera, and groups III–V are found in non-methanotrophs
(Fig. 2B). Group III operons are present in various proteobac-
teria, particularly Cupriavidus and Pseudomonas species.
Group IV operons are found exclusively in Komagataeibacter/
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Gluconacetobacter and related genera. Group V operons are
found in a diverse range of species, including non-metha-
notrophic proteobacteria as well as Gram-positive Streptomy-
ces species and even a Chlamydiales strain (20).

Biosynthetic pathway of Mbns

RiPPs originate as larger precursor peptides, containing both
a “core” peptide, which is the basis for the final natural product,
as well as “leader” peptide sequences that mediate interactions
with biosynthetic enzymes and are lost during maturation (18).
The MbnA precursor peptides are 22–35 amino acids in length
(19, 20). Almost all MbnA leader peptides contain several pos-
itively charged residues and a hydrophobic patch; group V
MbnAs also have negatively charged residues. The core pep-
tides are more variable. The copper-binding oxazolones and
thioamides derive from post-translationally modified cysteines
(22), and only these cysteines are universal in core peptides (19).
Not all cysteines in MbnAs are modified. A specific peptide
sequence triggers modification: the target cysteine is followed
by a small, often hydrophobic residue (alanine, glycine, or occa-
sionally serine) and then a slightly larger, mildly hydrophilic
residue (particularly serine and threonine) (19). Unmodified
cysteines may form disulfide bonds, as in Ms. trichosporium
OB3b and Ms. sp. LW4 Mbns (17, 24).

The primary candidate proteins for oxazolone and thioamide
biosynthesis are MbnB and MbnC (19). Neither belongs to a
characterized protein family, although both are likely to be
cytoplasmic, and MbnB is predicted to be a TIM barrel protein,
with the closest characterized families comprising xylose
isomerases and endonuclease IV enzymes. In some RiPP bio-
synthesis enzymes, a conserved RiPP recognition element
(RRE) mediates enzyme–peptide interactions (44), but no RRE
elements are found in MbnB, MbnC, or any other putative Mbn

biosynthesis enzyme. Nevertheless, genes encoding MbnB and
MbnC are present in all Mbn operons (Fig. 2A) as a translation-
ally coupled pair (20). No other biosynthesis proteins are uni-
versally present, and although a handful of other natural prod-
ucts contain oxazolone or thioamide groups, no homologues
for any genes involved in biosynthesis of those compounds can
be found in Mbn operons.

Genes in some Mbn operons have other predicted biosyn-
thetic roles, and all appear to encode cytoplasmic proteins.
Genes encoding PLP-dependent aminotransferases (annotated
mbnN) are present in some group I and all group IV Mbn oper-
ons (Fig. 2A), although the aminotransferases in the two groups
are not closely related (19, 20). When mbnN is disrupted in
Ms. trichosporium OB3b, no wild-type Mbn production is
observed (45). A smaller compound is present, with a mass
equivalent to that of the apo compound altered by C-terminal
methionine loss, an N-terminal primary amine rather than a
ketone, and acid hydrolysis of one of the two labile oxazolone/
thioamide moieties. This compound was proposed to result
from incomplete oxazolone A formation without MbnN. Given
that all Mbns characterized thus far have oxazolone B (21, 22,
24, 25), despite the absence of an aminotransferase in all Methy-
locystis Mbn operons (19), it is unclear why oxazolone A would
require MbnN in the two Methylosinus species. Increased acid
lability resulting in hydrolysis of oxazolone A is an alternative
interpretation.

As with MbnN, the role of a cytoplasmic 3�-phosphoadeno-
sine-5�-phosphosulfate-dependent sulfotransferase (MbnS) is
relatively straightforward. It is found only in group IIa Mbn
operons (19), which encode Mbns containing a sulfonated thre-
onine (22, 25), and is predicted to perform that post-transla-
tional modification. An NAD(P)H-dependent flavoenzyme

Figure 2. Mbn operons. A, schematics and content of typical operons from the common groups. B, phylogenetic tree of Mbn operons, based on MbnB protein
sequences; similar results were obtained using MbnA and MbnC protein sequences. Subgroups containing methanotrophs are circled with a dotted line.
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(MbnF) may play a role in heterocycle biosynthesis in some
group I and II Mbns (19, 20), catalyzing the transformation of
the oxazolone A to a (hydroxy)pyrazin(edi)one. The closest
characterized relatives are monooxygenases that carry out hy-
droxylation reactions (46), but it is unclear whether MbnF
modifies Mbn intermediates similarly. Alternatively, MbnF
may be involved in an oxidation step in oxazolone biosynthesis
(47), although Ms. trichosporium OB3b and Ms. sp. LW4 Mbn
operons lack MbnFs, but produce oxazolone-containing Mbns
(19, 21, 24).

Two cytoplasmic biosynthesis proteins have unpredicted
roles. A gene annotated as a dioxygenase (mbnD) follows mbnF
in group IIb operons, but no Mbns from these operons have
been characterized so its role in Mbn biosynthesis is unclear
(19). A distant relative of MbnB, MbnX, is encoded in group V
operons, with mbnX immediately following mbnA and transla-
tionally coupled with mbnB, mbnC, and mbnM (19). In the
absence of characterized Mbns encoded by these operons, the
role of MbnX is unclear. Notably, no identifiable protease
is conserved in Mbn operons. Cytoplasmic enzymes such as
MbnN and MbnF are predicted to carry out modifications
requiring prior leader peptide loss, meaning leader peptide loss
must occur in the cytoplasm, but it is unknown when and how
this loss occurs.

Finally, a pair of proteins encoded in many Mbn operons,
MbnH, a di-heme cytochrome c peroxidase, and MbnP, a tryp-
tophan-rich protein from no identifiable family, have also been
proposed to play a role in oxazolone biosynthesis (47). How-
ever, these proteins have genes more closely associated with
Mbn import machinery (19, 48), are periplasmic unlike all other
cytoplasmic biosynthesis enzymes (20), and are not present in
the operon of at least one characterized Mbn (24). Their func-
tion has not been investigated experimentally.

Mbn transport

Uptake of intact CuMbn was demonstrated using isotopic
and fluorescent labeling, and competition experiments with
apo Mbn provided evidence for the existence of a specific trans-
porter (49). This transporter was hypothesized to belong to the
TonB-dependent transporter (TBDT) family (41), members of
which import siderophores and other compounds across bac-
terial outer membranes and into the periplasm (50), powered by
the proton-motive force (51). Experiments using spermine as a
passive transport inhibitor and carbonyl cyanide m-chlorophe-
nylhydrazone as an active transport inhibitor confirmed that
CuMbn is taken up actively via a process distinct from the pas-
sive and likely porin-dependent uptake of soluble copper com-
pounds such as CuCl2 and CuSO4, although copper uptake via
either pathway can increase cellular copper and affect copper-
dependent gene regulation (49).

TonB-dependent transporters are present in four of the five
Mbn operon groups (19). The exceptions are group V operons,
which are predicted to produce divergent Mbns that may have
roles other than copper uptake. TBDTs in Mbn operons belong
to three distinct phylogenetic groups, of which none belong to
known TBDT subfamilies (48). Group I Mbn operons encode
MbnT1s with an N-terminal extension involved in trans-
periplasmic interactions with inner-membrane anti-� factors

(52). Analogous to the FecIRA system, in which uptake of iron
citrate through FecA (the TBDT) triggers an interaction with
FecR (the anti-� factor), which then activates FecI (the � factor)
to increase the expression of the FecIRA (and other) genes (53),
MbnT1-mediated transport and regulation may be coupled
(Fig. 3). MbnT1s are found primarily in methanotrophs and
ammonia oxidizers, including many species that lack Mbn
operons, suggesting that Mbn piracy may occur. The MbnT2s
encoded in group II Mbn operons and the MbnT3s encoded in
group III and IV operons lack N-terminal extensions and are
not associated with regulatory components (48).

MbnT function has been verified experimentally. Disruption
of the Ms. trichosporium OB3b mbnT gene effectively elimi-
nates import of CuMbn, but not soluble copper (48, 54), and
heterologous expression of MbnT in E. coli enables these bac-
teria to take up CuMbn (48). Two other copper-repressed non-
operon mbnIRTPH clusters are present in the Ms. trichospo-
rium OB3b genome, but their regulatory patterns differ from
the operon mbnIRTPH genes, and their products do not appear
to substitute for the Mbn operon mbnIRT. Multiple MbnT ho-
mologues may offer separate uptake paths for non-native Mbns
as in siderophore piracy. However, surface plasmon resonance
experiments indicate that non-native Mbns can bind (if not
necessarily be transported by) MbnTs (48).

Some group I and II Mbn operons encode periplasmic bind-
ing proteins (PBPs), termed MbnEs, that interact with periplas-
mic CuMbns (48). MbnEs are related to oligopeptide-binding
PBPs like OppA and AppA, which are members of solute-bind-
ing protein family 5 (55) and are part of oligopeptide ABC trans-
port systems, conveying peptides to inner membrane import
systems after their initial uptake across the outer membrane
and into the periplasm. Unlike genes for related PBPs such as
yejA, whose product binds the peptidic natural product micro-
cin C7 (56), mbnEs are copper-regulated like the Mbn operon,
even if they are not in its immediate genomic proximity (48).
The crystal structure of Mc. parvus OBBP MbnE (48) exhibits a
substrate-binding cavity as large as that of the nonapeptide-
binding AppA (57), consistent with a role in Mbn binding. Mul-
tiple heterologously expressed and immobilized MbnEs bind
native Mbns, but unlike MbnTs, no binding of non-native

Figure 3. Schematic for Mbn biosynthesis, transport, and regulation in
Ms. trichosporium OB3b.
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Mbns is observed (48). Because mbnEs lack neighboring ABC
transporter genes, it is unclear whether MbnEs share an ABC
transport system with oligopeptide-binding PBPs or whether
they play a role unrelated to cytoplasmic uptake of intact
CuMbn.

The uncertainty regarding the fate of internalized Mbn
extends to Mbn copper release. Some siderophores are
degraded during metal release (58), but many siderophores are
recycled, including pyoverdine, carboxymycobactin, and fer-
richrome (59 –61). For some siderophores, iron reduction
allows proteins with higher Fe(II) affinities to remove the metal
without metallophore modification (62). In Mbns, bound cop-
per could conceivably be oxidized to Cu(II). Periplasmic copper
proteins commonly encoded by Mbn operons, like CopC (63)
and DUF461 (64), might ultimately bind the oxidized copper
but are unlikely to be the oxidases. However, most Mbn group
I–IV Mbn operons contain mbnH and mbnP (19). Their asso-
ciation with mbnT genes suggests a role related to Mbn import
(19, 20) that could possibly involve copper release.

Mbn export is not yet well-characterized. Four of the five
Mbn operon groups, including the divergent group V operons,
contain genes encoding inner membrane efflux pumps,
MbnMs, belonging to the multidrug and toxic compound
extrusion (MATE) family (19). These H�/Na� antiporters
mediate the efflux of cationic xenobiotic compounds across the
inner membrane and into the periplasm (65, 66), but are poorly
understood, and their outer membrane partners are unidenti-
fied. A role for MATE proteins in the export of native natural
products such as Mbns would be new but is suggested by the
conservation of MbnM in the large majority of Mbn operons.

Regulation of Mbn in methanotrophs

In methanotroph copper homeostasis, sMMO and pMMO
are reciprocally regulated by copper (the copper switch) (67).
Expression and proteomic analysis of multiple species support
significant down-regulation of sMMO in the presence of cop-
per, whereas most studies show that pMMO is mildly up-regu-
lated (67–71). Because Mbn secretion was first observed at low
copper in wild-type methanotrophs (72, 73) or in variant strains
with a constitutively copper-starved phenotype (74, 75), and
because there should be no need for Mbn production in the
presence of abundant bioavailable copper, the Mbn operon was
expected to be copper-repressed. An extensive set of qRT-PCR
experiments, involving several time points after the addition of
copper to copper-starved Ms. trichosporium OB3b cells, con-
firmed that the entire Mbn operon in that species is copper-
regulated, along with the mbnE gene, despite separation from
the main operon (71). Furthermore, the Mbn and sMMO oper-
ons are co-regulated, with swift co-repression of the regulatory
genes followed by a slower decrease in main operon transcrip-
tion, perhaps as existing regulatory proteins degrade and are
not replaced. Additional studies identified significant but non-
identical copper down-regulation patterns in non-operon
mbnIRTPH gene clusters (48). Recent RNA-sequencing studies
under low- and high-copper conditions lack the time resolution
of the qRT-PCR studies but support these expression patterns
(76).

The regulatory protein(s) that repress the Mbn and sMMO
operons in the presence of copper have not been identified.
CuMbns may be a direct signaling factor in species with
MbnT1s, but the copper switch occurs in organisms lacking
Mbn operons, ruling out involvement of anything Mbn-related
(including MbnI and Mbn/CuMbn itself (47)) as the copper
switch regulator. MmoD, a protein of unknown function
encoded in the sMMO operon, has also been suggested as a
regulator, potentially in tandem with Mbn/CuMbn (42, 47).
However, biological support for this hypothesis relies on
knockouts of most of the sMMO operon (42), or of MmoD
alone (77), and in vitro biochemical evidence suggests that
MmoD interacts with and affects the activity of sMMO (78).
Knockout of major metabolic enzymes can cause significant
metabolic rewiring (79), so the extent to which phenotypic
effects reflect copper switch perturbation versus disruption of
sMMO activity remains unclear. There is also no evidence that
MmoD binds DNA, copper, or Mbn/CuMbn (71, 80). Despite
claims to the contrary (47), MmoD transcription is strongly
copper-repressed in several species (70, 71, 76), which is incom-
patible with several regulatory schemes. Finally, the overlap
between species producing sMMO, pMMO, and Mbn is quite
small (20). A yet-to-be-identified copper-responsive regulator
remains the most likely candidate for the copper switch in
methanotrophs (Fig. 3). Regulation of Mbn operons in non-
methanotrophs has yet to be investigated.

Broader roles for Mbns

Mbn research has historically focused on its role in metha-
notroph copper homeostasis. However, most Mbn operons are
found in non-methanotrophs and remain unstudied. Neverthe-
less, the content of non-methanotrophic group III and IV Mbn
operons supports a role in copper homeostasis (20). CopC (a
periplasmic copper-binding protein) and CopD (an inner-
membrane copper transporter) are involved in copper uptake
(81) and are encoded in many Mbn operons. Genes encoding
other periplasmic copper-binding proteins are also frequently
present, including Sco1 (commonly involved in cytochrome c
oxidase copper loading (82)) as well as the poorly understood
DUF461 (83) and DUF2946 proteins, the latter of which is
TBDT-associated. The presence of so many genes encoding
periplasmic copper-binding proteins in Mbn operons is sugges-
tive of a role in copper homeostasis for non-methanotrophs. By
contrast, group V operons lack both importers and copper-
binding proteins (19), suggesting that these Mbns may have a
completely different function, perhaps acting as antibiotics.

Mbns might also play a role in protection against toxicity of
metal ions other than copper. Copper binding by the sidero-
phore yersiniabactin is believed to shield pathogens from cop-
per toxicity during infection (84). Mbn chelation of Hg(II) and
Au(III) has been proposed to have a similar function (39, 85).
However, it is unclear whether this broader-spectrum metal
binding is biologically relevant for most methanotrophs, which
live in a wide range of environments, most of which are not
contaminated with heavy metals. Similar caveats apply to meth-
ylmercury demethylation, in which Mbn has been proposed to
play a role, possibly replacing MerA via reductive binding (86).
Mbn-mediated production of gold nanoparticles has also been
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reported (87–89). Sequestration of toxic gold via nanoparticle
production is observed in several species (90) and can be medi-
ated by the natural product delftibactin in Delftia avidovorans
(91). It is conceivable that Mbn-derived nanoparticle produc-
tion is a means of defense against unwanted metals. Finally,
CuMbn has been reported to exhibit superoxide dismutase,
oxidase, and hydrogen peroxide reductase activities (92).
Because bacterial secretion of superoxide can be a source of
environmental oxidative stress (93), extracellular superoxide
dismutase activity mediated by secreted natural products may
be biologically relevant.

In terms of potential applications, CuMbn from Ms. tricho-
sporium OB3b has been reported to exhibit antibiotic activity
against Gram-positive bacteria (94). Mbn has also been inves-
tigated as a treatment for Wilson disease, a human disorder of
impaired copper efflux and toxic copper accumulation (95).
Existing treatments are limited, and most have significant side
effects, fail to liberate some bound forms of copper, or bind
problematic amounts of other biologically relevant metals (96).
In a rat model, Mbn reversed the acute liver failure associated
with copper overload (97). Mbns or Mbn analogues are thus of
significant interest as copper-chelating drug candidates. Once
it is better understood, the modular Mbn RiPP biosynthetic
machinery can be deployed to produce non-natural Mbns,
using rational design and high-throughput screening to adjust
chemical properties in a search for bioactive compounds. Sim-
ilar techniques have already been used in other RiPP systems,
including the cyanobactins (98).

Conclusions

Mbns play a key role in methanotroph copper homeostasis,
and efforts to elucidate that role are important for attempts to
bioengineer these organisms. However, it is clear that copper
uptake mediated by these compounds is relevant far beyond
methanotrophs. Future Mbn research will require a reassess-
ment of bacterial copper homeostasis, both in the broader envi-
ronment and at the host–pathogen interface. Characterization
of Mbns from a wider range of species will yield additional div-
idends as new post-translational modifications and biosyn-
thetic mechanisms are identified, and any resulting bioactive
compounds are investigated as drug candidates and ultimately
re-engineered for increased activity. The history of Mbns may
be defined by methanotrophy, but their future lies in the
broader bacterial world.
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