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Abstract

Immature mucosal defenses contribute to increased susceptibility of newborn infants to pathogens. 

Sparse knowledge of age-dependent changes in mucosal immunity has hampered improvements in 

neonatal morbidity due to infections. Here, we report that exposure of neonatal mice to commensal 

bacteria immediately after birth is required for a robust host defense against bacterial pneumonia, 

the leading cause of death in newborn infants. This crucial window was characterized by an abrupt 

influx of interleukin (IL)-22 producing group 3 innate lymphoid cells (IL22+ILC3) into the lungs 

of newborn mice. This influx was dependent on sensing of commensal bacteria by intestinal 

mucosal dendritic cells. Disruption of postnatal commensal colonization or selective depletion of 

dendritic cells interrupted the migratory program of lung IL-22+ILC3 and made the newborn mice 

more susceptible to pneumonia, which was reversed by transfer of commensal bacteria after birth. 

Thus, the resistance of newborn mice to pneumonia relied on commensal bacteria-directed ILC3-

influx into the lungs, which mediated IL-22-dependent host resistance to pneumonia during this 

developmental window. These data establish that postnatal colonization by intestinal commensal 

bacteria is pivotal in the development of lung defenses in mice.
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Introduction

Development of the immune system requires a sequential series of timed and coordinated 

events that begin early in fetal life and continue through the early postnatal period (1). 

Disruption of immune development during the early neonatal period results in abnormal 

postnatal immune responses that are more dramatic and persistent than those after disruption 

during adult life, highlighting the importance of the neonatal period as a critical 

developmental window (2). While several host genetic and environmental factors modulate 

the development of the immune system during fetal and early postnatal life (3), few are as 

important as the continued interaction with commensal bacteria, which is not only the most 

intimate environmental exposure (4, 5), but also represents a challenge to the developing 

immune system (6, 7).

Commensal colonization, which begins at birth, progresses through a choreographed 

succession of bacterial species and evolves rapidly during the first month of life (8). These 

evolving microbial signals are hypothesized to play a critical role in the functional 

programming of immune cells. Modern childbirth practices like caesarean deliveries (9) and 

increased use of antibiotics in early life (10) not only alter the pattern of intestinal 

commensal colonization in the newborn, but are also associated with increased risk of sepsis 

and pneumonia (10–14), suggesting that intestinal commensal bacteria can promote the 

resistance of newborn infants to pneumonia. The interaction between host and the intestinal 

commensal bacteria extends beyond the local enteric environment and influences immune 

homeostasis at peripheral sites, exemplified by intestinal complications during respiratory 

disease and vice versa (15, 16). Nevertheless, the mechanistic basis of cross talk between the 

intestinal commensal bacteria and innate lung defense, the so-called gut-lung axis, remains 

poorly defined (17) and the developmental pathways underlying the association between 

commensal colonization in the early postnatal period and development of lung immunity in 

newborns remain unexplored.

Here, we show that interactions between host and the intestinal commensal bacteria shape 

the repertoires of immune cells in the newborn mouse lung and importantly directs the 
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postnatal ontogeny of IL-22 producing type 3 innate lymphoid cells (ILC3), a group of 

sentinel cells that maintain homeostasis at mucosal barrier sites. This postnatal influx of 

IL-22+ILC3 promotes the resistance of neonatal mice to pneumonia. This crosstalk is 

mediated by mucosal dendritic cells (DC), which capture signals from intestinal commensal 

bacteria. Disruption of commensal bacteria interrupted the migratory program of ILC3, 

impairing their ability to traffic to the lungs and rendering the newborn mice more 

susceptible to pneumonia, which was reversed by exogenous IL-22 or through adoptive 

transfer of ILC3. Reconstitution of intestinal commensal bacteria restored the expression of 

CCR4 on the ILC3, restored the ability of ILC3 to migrate into the lungs and promoted 

IL-22 dependent resistance to pneumonia in newborn mice.

Results

Postnatal colonization by commensal bacteria promotes resistance to pneumonia in 
newborn mice

Prior epidemiological studies show that human infants whose mothers received frequent 

antibiotics before birth, or who were delivered by Caesarean section, not only had altered 

intestinal commensal bacteria (18, 19), but also had increased risk of developing pneumonia 

(20, 21). This led us to hypothesize that early life exposure to commensal bacteria promotes 

resistance to pneumonia in newborns. To test this hypothesis, we exposed pregnant mouse 

dams to a combination of ampicillin, gentamicin, and vancomycin, three commonly used 

antibiotics in pregnant women and human newborns (22)(Fig. 1A), beginning 5 days before 

delivery. Antibiotics were discontinued immediately after birth and newborn mice were 

challenged intratracheally with Streptococcus pneumoniae (S. pneumoniae) serotype 19 A, a 

leading cause of pneumonia in human newborns (23).

This early life antibiotic exposure reduced not only the total number of commensal bacteria 

(Fig. 1B) but also disrupted the succession of bacterial species in the intestine of newborn 

mice (Fig. S1A,B, Table S1A). Six hours post infection, we observed an increased bacterial 

load in the lungs and the bronchial lavage (BAL) fluid (Fig. S1C) and increased 

susceptibility in newborn mice whose dams were exposed to antibiotics (ABX-exposed) as 

compared to age-matched mice whose dams were not exposed to antibiotics (ABX-free) 

(Fig. 1C). Germ-free (GF) mice, which lack commensal bacteria, similarly were more 

susceptible to challenge with S. pneumoniae as compared to the age-matched conventionally 

raised (CNV) mice (Fig. 1D). We paralleled these observations using Escherichia coli K1 or 

Candida albicans, other common causes of pneumonia in newborns (Fig. S1D,E) (24). Since 

disruption of commensal bacteria in infancy is associated with increased susceptibility to 

inflammatory disorders like allergen-induced airway hyperreactivity (25) and colitis (26) in 

later life, we ascertained whether disruption of postnatal commensal colonization led to 

durable changes in host resistance to infection. We found that increased susceptibility to 

pneumonia after early life ABX-exposure persisted beyond the neonatal period, until at least 

four weeks of age (Fig. 1E). This persistence in susceptibility contrasted with the transient 

susceptibility to infection that occurs in ABX-exposed adult mice (27, 28), highlighting the 

critical nature of commensal exposure in early life.
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We reversed the commensal disruption in ABX-exposed newborns by transferring intestinal 

contents from a newborn mouse in the early postnatal period as done previously (Fig. 1A) 

(29). Reconstitution of intestinal commensal bacteria restored resistance to pneumonia in 

ABX-exposed and GF newborn mice (Fig. 1C,D). This protection against S. penumoniae 
persisted beyond the neonatal period. ABX-exposed mice that received intestinal contents in 

the early postnatal period likewise showed increased resistance to infection at least for as 

long as four weeks after birth compared to their littermates that did not receive intestinal 

bacterial reconstitution (Fig. 1E,F).

Whether lung-resident commensal bacteria educate the mucosal immune system, like the 

intestinal commensal bacteria, remains a source of controversy (30, 31) and the effect of 

early life antibiotics on lung commensal colonization in human newborns remains 

unexplored. We found no difference in the composition of lung commensal bacteria in ABX-

free and ABX-exposed mice (Fig. S1F,G, Table S1B), perhaps related to our experimental 

strategy of limiting ABX-exposure to the pregnant dams and not the newborn mice. Lack of 

differences in lung-resident commensal bacteria in the ABX-exposed newborn mice as 

compared to ABX-free newborns suggest that intestinal commensal bacteria rather than lung 

commensals mediate the resistance to pneumonia, although this possibility cannot be 

completely excluded.

Postnatal colonization by commensal bacteria promotes interleukin (IL)-22 dependent 
mucosal defenses in newborn mice

We hypothesized that disruption of commensal colonization mediated changes in the 

expression of genes related to various aspects of innate lung defense. We carried out RNA 

sequencing analysis of lung mucosal RNA isolated from newborn mice on day 0-4. 

Unsupervised analysis revealed consistent transcriptional changes in ABX-exposed 

newborns as compared to ABX-free murine newborns (Fig. S1H, Table S2). Differentially 

expressed genes included interleukin (IL)-22, a cytokine critical in lung epithelial repair 

(Fig. S1H) (32, 33) and host defense against pathogens (32, 34, 35). We found decreased 

concentrations of IL-22 in the BAL fluid of ABX-exposed or GF newborn mice as compared 

to ABX-free newborn mice (Fig. 1F). We confirmed these observations in human newborns, 

finding reduced concentrations of IL-22 in the BAL fluid from human newborns exposed to 

prolonged duration of ABX (Fig. 1G, Table 1).

Reconstitution with intestinal contents from age-matched neonatal mice restored IL-22 

levels in BAL fluid of ABX-exposed or GF newborn mice (Fig. 1G). Similarly, treatment 

with recombinant IL-22 intratracheally restored host resistance to pneumonia in ABX-

exposed newborn mice (Fig. 1H). To interrogate the importance of IL-22 in newborn’s 

resistance to pneumonia, we blocked IL-22 signaling with an IL-22 neutralizing antibody 

(36). Treatment of newborn mice with an anti-IL-22 antibody blocked the restoration of host 

resistance in ABX-exposed newborn mice after reconstitution of intestinal commensal 

bacteria (Fig. 1I). IL-22 acts via a transmembrane receptor complex that consists of 

IL-22R1, a receptor subunit that is shared by related cytokine IL-20 (37). We found no 

difference in concentrations of IL-20 in BAL fluid of ABX-exposed or GF newborn mice 

compared to ABX-free newborn mice (Fig. S1I). Blockade of IL-20 signaling by treatment 
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with a neutralizing antibody directed against IL-20 (38) did not block restoration of host 

resistance in ABX-exposed newborn mice after reconstitution of intestinal commensal 

bacteria (Fig. S1J) (36). These findings demonstrate a central and non-redundant role for 

IL-22 in host defense against pneumonia (32, 33) and importantly, implicate IL-22 as a 

critical mediator by which commensal bacteria promote resistance to pneumonia in newborn 

mice . IL-22 bioactivity is negatively regulated by IL-22-binding protein (IL-22BP), a 

secreted receptor that binds to soluble IL-22 with higher affinity than IL-22R1 and functions 

as an antagonist (39). We did not evaluate the role of endogenous IL-22BP in our study. 

Several lung resident immune cells are known to secrete IL-22BP(40), but the role of 

endogenous IL-22BP in pulmonary host defense remains unclear and may represent an 

additional regulatory layer in the ontogeny of lung defense in the newborn.

Disruption of commensal bacteria in the early postnatal period leads to durable changes in 
the repertoire of IL-22 producing immune cells in the lungs of newborn mice, contributing 
to increased susceptibility to pneumonia

The identity of the IL-22-producing cells in the newborn mouse lung is unknown. We found 

that neither neutrophils (CD45+Ly6G+) nor macrophages (CD45+F4/80+) nor T cells 

(CD45+CD4+) were a significant source of IL-22 in the lungs of newborn mice (Fig. 2A). 

The majority of IL-22 producing cells in the murine newborn lung were lineage negative 

(CD45+CD3−CD8−CD11b−CD19−MHCII−F4/80−CD161−Ly6G−) lymphocytes. We further 

characterized these lineage-negative lymphocytes based on expression of surface markers 

CD4, CD117, CD127, NkP46 or CCR6 and transcription factors RORγt, T-Bet or Eomes. 

More than 90% of IL-22 producing cells were lineage negative (CD3−CD8−CD11b
−CD19−MHCII−F4/80−CD161−Ly6G−F4/80−) lymphocytes expressing surface markers 

NKp46, CCR6, CD117 and transcription factor RORγt identifying them as ILC3 lymphoid 

cells (Fig 2A, S2A).

We tested these observations in human newborns. ILC3 

(CD45+CD3−CD8−CD14−CD19−CD69− RORγt+), but not neutrophils 

(CD45+CD3−CD8−CD19−CD69+), NK cells (CD45+CD3−CD8−CD19−CD56+), CD4+ T 

cells (CD45+CD3+CD4+) or CD8+ T cells (CD45+CD8+) were a primary source of IL-22 in 

the lungs of human newborns (Fig. 2B, S2B). These findings illustrate an important 

difference in the cellular sources of IL-22 in the lung of newborn humans compared to adult 

humans, as several groups have reported that NK cells (41), Th17 (42) and γδ T cells (43) 

are the principal sources of IL-22 in adult human lungs.

ILC3 lymphoid cells developmentally depend on RORγT and continuously express this 

transcription factor (44, 45). Therefore, to interrogate the importance of ILC3 in the 

resistance of newborn mice to pneumonia, we bred transgenic mice expressing cre 

recombinase under the control of the RORγt promoter (46) with transgenic mice expressing 

inducible diphtheria toxin receptor (iDTR) (47) to generate RorγtDTR mice. Treatment of 

newborn RorγtDTR mice with diphtheria toxin (DT) decreased the number of ILC3 in the 

lungs (Fig. 2C, S2C), reduced IL-22 in BAL fluid (Fig. S2D) and made the DT-treated 

RorγtDTR newborn mice more susceptible to pneumonia (Fig. 2D). Adoptive transfer of 

lung ILC3 restored host resistance to pneumonia in newborn RorγtDTR mice treated with 

Gray et al. Page 5

Sci Transl Med. Author manuscript; available in PMC 2018 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DT (Fig. 2D). Together, these data confirm that IL-22+ILC3 are necessary and sufficient in 

promoting host resistance to pneumonia in newborn mice (48).

We sought to determine if disruption of commensal colonization alters the repertoire of 

IL-22 producing cells in the newborn mouse lung. We found significantly decreased 

(P<0.01) numbers of IL-22+ILC3 (Fig. 2E–G) but not neutrophils or T cells or NK cells (for 

all, P>0.05) (Fig. S2E) in the lungs of ABX-exposed or GF newborn mice as compared to 

ABX-free newborn mice. The decrease in the numbers of IL-22+ILC3 persisted beyond the 

newborn period till at least four weeks of life (Fig. 2E). We confirmed these observations in 

human newborns and found significantly decreased numbers of lung IL-22+ILC3 in the BAL 

fluid of human newborns exposed to prolonged duration of antibiotics (Fig. 2H). We then 

questioned if reversing the commensal disruption would correct the immune alterations in 

ABX-exposed newborn mice. We found that reconstitution with commensal bacteria 

restored the numbers of IL-22+ILC3 in the lungs of ABX-exposed or GF newborn mice 

(Fig. 2F,G), although individual IL-22 expression did not change (Fig. S2F). These data 

illustrate that disruption of commensal bacteria in early postnatal development alters the 

repertoire of IL-22-producing cells in the newborn lungs.

Commensal bacteria direct the postnatal trafficking of IL-22+ILC3 in the murine newborn 
lung

We tested whether reduced numbers of IL-22+ILC3 in the lungs of GF or ABX-exposed 

newborn mice could be explained by differences in proliferation or apoptosis of IL-22+ILC3. 

We assessed cell proliferation or apoptosis by quantifying the number of IL22+ILC3 

lymphoid cells expressing Ki67 or annexin, respectively. We found that an increased number 

of ILC3 in the lungs was not due to changes in proliferation or apoptosis (Fig. S2G). We, 

therefore, hypothesized that a decrease in the absolute numbers of IL-22+ILC3 in ABX-

exposed newborn mice was due to a reduced ability of ILC3 from ABX-exposed newborns 

to traffic preferentially to the lungs. To test this, we used a competitive trafficking assay (49) 

to determine the advantage of ILC3 isolated from ABX-free newborn mice to traffic to the 

lungs as compared to ILC3 from ABX-exposed newborn mice. We found that ILC3 from 

ABX-exposed newborn mice had decreased ability to traffic selectively into the lungs, but 

not the spleen or small intestine as compared to ILC3 isolated from ABX-free newborn mice 

(Fig. 2I,J).

We then asked if reversing the commensal disruption would restore the ability of ILC3 to 

traffic to the lungs. We similarly determined the advantage of ILC3 isolated from ABX-

exposed newborn mice that had received transfer of commensal bacteria to traffic to the 

lungs as compared to ILC3 from ABX-exposed newborn mice that had received no such 

transfer. Reconstitution of commensal bacteria restored the ability of ILC3 from ABX-

exposed newborns to traffic selectively to the lungs (Fig. 2I,J). Tissue-selective ILC3 

trafficking has been described for the small intestine and secondary lymphoid tissues (50, 

51). Our data unveils a role for intestinal commensal bacteria in selective trafficking of ILC3 

into the lungs.
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Commensal bacteria modulate expression of CCR4 on ILC3 lymphoid cells and direct their 
postnatal trafficking into lung

Chemokines control the trafficking and positioning of immune cells and are critical for 

development and recruitment of immune cells in disease (52). We first identified the 

repertoire of chemokine receptors on IL22+ILC3 from the lungs or small intestine (SI) of 

newborn mice. We found that C-C chemokine receptor (CCR) 4 was highly expressed by a 

majority of IL-22+ILC3 from the newborn murine lung but not from the newborn murine SI 

(Fig. S3A). We found no difference in expression of CCR6, 7, 9 or C-C chemokine ligand 

(CCL) 20 nor C-X-C chemokine receptor (CXCR) 3 or 5 on IL-22+ILC3 from the newborn 

lung or SI (Fig. S3A). Tissue-selective ILC3 trafficking has been described for the intestine 

(50, 51), but not for the lungs. Like the intestine, the lung has a large mucosal surface, which 

is in continuous contact with the environment and therefore could potentially benefit from 

lung-selective ILC3 trafficking.

We hypothesized that exposure to commensal bacteria in early life may modulate the 

expression of lung-specific homing receptors on IL-22+ILC3 lymphoid cells and thus 

increase their ability to traffic to the lungs. We examined the numbers and frequencies of 

CCR4 expressing IL22+ILC3 in the lungs of ABX-exposed or ABX-free newborn mice. We 

found that the majority of IL22+ILC3 from the lungs of ABX-free newborn mice were 

CCR4high as compared to the lung ILC3 from ABX-exposed mice or GF mice, which were 

CCR4low (Fig. 3A). We found no difference in expression of CCR6, 7, 9 CCL20, CXCR3 or 

CXCR5 on IL22+ILC3 from the lungs of ABX-free mice or ABX-exposed mice (Fig. 3A). 

CCR4 is critical for homeostatic trafficking of T lymphocytes (53) and Tregs (54) into the 

lungs. CCL17, one of the ligands for CCR4 is expressed by the lung epithelium (55). We 

therefore hypothesized that commensal bacteria use a similar mechanism to direct trafficking 

of ILC3 into the newborn lungs. To test this hypothesis we determined the capability of 

ILC3 isolated from newborn mice lacking CCR4 (Ccr4−/−) to traffic to the lungs as 

compared to ILC3 from age-matched wild-type littermates. We found that ILC3 from 

newborn Ccr4−/− mice had decreased ability to traffic into the lungs as compared to ILC3 

isolated from wildtype littermates (Fig. 3B). Furthermore, the newborn Ccr4−/−mice were 

more susceptible to pneumonia compared to wildtype littermates (Fig. 3C). We then asked if 

an adoptive transfer of wildtype ILC3, which express CCR4 and therefore traffic into the 

lungs, could improve host resistance in newborn Ccr4−/−mice. We found that adoptive 

transfer of ILC3 from wildtype newborn mice to age-matched Ccr4−/−mice restored host 

resistance to pneumonia (Fig. 3C). These data illuminate a role for CCR4 in trafficking of 

ILC3 into the lungs and promoting newborn’s resistance to pneumonia. Nevertheless, the 

origin of ILC3 that traffic to the lungs is unknown. ILC3 are concentrated within the SI (51), 

and the spatial proximity of ILC3 with commensal bacteria in the small intestine supports 

the notion that ILC3 in intestinal mucosa may be directed by the commensal bacteria to 

traffic to the lung.

CD103+CD11b+ DC capture antigen from commensal bacteria and induce expression of 
CCR4 on ILC3

We sought to identify the mechanisms by which intestinal commensal bacteria induce the 

expression of CCR4 on ILC3. Murine ILC3 do not express pattern recognition receptors and 
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therefore are unlikely to directly sense the commensal bacteria (56). Mononuclear 

phagocytes like DC and macrophages, not only detect a range of microbial signals (57), but 

can also cross talk with ILC3 in the intestine (58). We found that the majority of 

mononuclear phagocytes in the intestine of newborn mice were CD45+CD11b
+CD103+F4/80− cells (CD103+CD11b+ DC) (Fig. 3D), consistent with previous findings 

(59). Transcription factor ZBTB46 is selectively expressed by CD103+ CD11b+ DCs and 

their committed progenitors but is not expressed by monocytes, macrophages, or other 

lymphoid or myeloid lineages (60, 61). We used mice that express diptheria toxin receptor 

(DTR) under the control of Zbtb46, (Zbtb46DTR), which allows for the depletion of CD103+ 

CD11b+ DC (60) after treatment with DT. Twenty-four hours later, there was a decreased 

number of intestinal CD11b+CD103+ DCs (Fig. S3C). Depletion of CD103+CD11b+ DCs 

was associated with a decrease in IL-22 in the BAL (Fig. S3D), reduced numbers of ILC3 in 

the lungs and increased susceptibility to pneumonia of DT-treated Zbtb46DTR newborn mice 

(Fig. 3E,F). Adoptive transfer of CD103+ CD11b+ DC into age-matched newborn 

Zbtb46DTR mice treated with DT (CD103+CD11b+ DC-depleted newborn mice) restored the 

number of lung ILC3 and improved the resistance of newborn mice to pneumonia (Fig. 

3E,F).

There is increasing evidence that intestinal DCs act as conductors of ILC traffic to the 

intestine and secondary lymphoid tissue (50). We tested whether CD103+CD11b+ DCs 

induced CCR4 expression on IL-22+ILC3. We co-cultured CD103+CD11b+ DCs isolated 

from the small intestine of ABX-free or ABX-exposed newborn mice with ILC3 isolated 

from the lungs of ABX-free or ABX-exposed newborn mice. CD103+CD11b+ DCs isolated 

from the small intestine of ABX-free newborn mice were more efficient than 

CD103+CD11b+ DCs isolated from the small intestine of ABX-exposed newborn mice at 

inducing CCR4 expression on IL-22+ILC3 (Fig. 3G,H) and restoring the ability of lung 

ILC3 from ABX-exposed animals to migrate in response to the CCR4 ligand, CCL17 in 
vitro (Fig. 3I). We found no change in expression of CCR6, 7, 9 CCL20, CXCR3 or CXCR5 

(Fig. 3G). Conversely, co-culture of CD11b+CD103− DCs isolated from small intestine of 

either ABX-free or ABX-exposed newborn mice did not change the CCR4 expression on 

IL-22+ILC3 (Fig. S3E), suggesting CD11b+CD103− DCs were not as efficient as CD11b
+CD103+ DCs at modulating CCR4 expression on IL-22+ILC3. These observations are 

consistent with other reports (62–64), which suggest that distinct DC subsets respond 

differentially to similar environmental cues.

Finally, to test the hypothesis that CD103+CD11b+ DCs capture antigen from commensal 

bacteria and direct the trafficking of ILC3 into the lungs, we treated newborn Zbtb46DTR 

mice with DT before reconstitution with commensal bacteria. Depletion of CD103+CD11b+ 

DCs abrogated the increase in ILC3 number in ABX-exposed newborn Zbtb46DTR mice 

after reconstitution with intestinal commensal bacteria (Fig. 3J). Treatment of Zbtb46DTR 

newborn mice with DT depleted the CD103+CD11b+ DCs in extra-intestinal sites including 

the lungs. CD103+CD11b+ DCs are exceedingly rare in the newborn murine lungs (65). 

Therefore intestinal CD103+CD11b+ DCs, but not lung resident CD103+CD11b+ DCs are 

likely to play a major role in selective trafficking of ILC3 to the lung. Since previous reports 

(66, 67) implicated IL-1β in crosstalk between intestinal mononuclear phagocytes and small 

intestine ILC3, we measured IL-1β in the supernatant from co-cultures of DCs and ILC3. 
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We found no difference in the IL-1β levels in co-culture supernatants of CD103+ CD11b+ 

DCs isolated from the small intestine of ABX-free or ABX-exposed newborn mice and co-

cultured with ILC3, (Fig. S3F), suggesting that IL-1β may not be involved in cross-talk 

between DCs and ILC3.

Discussion

Distinct immune responses specifically adapted for fetal and early postnatal life render 

newborns more vulnerable to infection (1). Lack of understanding of immune development 

in early life contributes to our inability to reduce neonatal morbidity due to pneumonia, 

which unfortunately kills more newborns than any other cause. While a series of coordinated 

events control the development of a newborn’s immune system (3), few are as important as 

the interaction with successive waves of commensal bacteria, which colonize the newborn’s 

intestine immediately after birth (4, 5). Disruption of commensal colonization in the critical 

window of the early postnatal period has enduring consequences for the developing immune 

system, exemplified by increased risk of inflammatory disorders like asthma and increased 

risk of respiratory infections beyond infancy in those infants exposed to prolonged antibiotic 

treatment or delivered by caesarean section (10–14). To develop therapeutic interventions to 

decrease morbidity in the newborn period and beyond, we need to better understand the role 

of commensal colonization in the development of the newborn immune system.

Prior studies investigating commensal bacteria-driven immune maturation have prioritized 

the use of GF mice (68). It is now accepted that the immune system while not immature in 

early life, differs fundamentally from immune responses in adults (1). Importantly, the 

newborn’s intestine is colonized by successive waves of diverse commensal bacteria, and 

newborn’s intestinal microbiota is fundamentally distinct from that of adult mice (29). Thus, 

commensal reconstitution studies in adult GF mice do not fully capture the complex 

interaction between the developing host and evolving microbiota. We exposed pregnant 

mouse dams to a combination of ABX, used commonly to treat mother and infants. This not 

only disrupted the sequential colonization of the newborn’s intestine by different commensal 

bacteria but also made the newborn mice more susceptible to pneumonia, replicating the key 

observations from epidemiological studies (10–14). Perhaps more importantly, the 

susceptibility to pneumonia in ABX-exposed newborn mice persisted beyond the newborn 

period, in contrast to previous reports (28) (27), showing that ABX exposure in adult mice 

induced only transient susceptibility to infection. Reversing the commensal disruption 

restored the resistance to pneumonia in the ABX-exposed newborn mice and, importantly, 

this protection persisted beyond the newborn period. These results coupled with other recent 

reports (25, 26) highlight the importance of therapeutic interventions addressing commensal 

dybiosis in early life that have lasting consequences.

T cells (32) and NK cells (41) are primary mediators of innate mucosal defense against 

respiratory pathogens in adults. We found that at birth, the mouse lung is populated by a few 

IL-22+ T cells or NK cells, but is home to a significant number of IL-22+ ILC3 innate 

lymphoid cells. While IL22+ILC3 maintain tissue homeostasis in the small intestine, the role 

of IL22+ILC3 in lung mucosal defense remains a source of controversy (69). ILC3 were 

dispensable for protection against Influenza A pneumonia (70). Reports ascribing an 
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important role for ILC3 in lung immune homeostasis have used adult mice deficient in 

recombination activating gene (Rag) 2 or interleukin 2 receptor, gamma (Il2rg) (48, 71), 

which are profoundly immunodeficient, or treated with antiCD90.2 antibodies (35) resulting 

in nonspecific depletion of several immune cell types thus confounding interpretation of 

results from these animals. We, therefore, generated RorγtiDTR mice, a genetic tool to 

selectively deplete ILC3. By first showing that ILC3 depletion in early life rendered the 

newborn mice more susceptible to pneumonia, we were able to demonstrate that IL-22+ 

ILC3 were necessary to promote the resistance of newborn mice to pneumonia. Second, by 

restoring the resistance to pneumonia in ILC3 depleted-newborn mice after adoptive transfer 

of ILC3, we established that ILC3 were sufficient to promote newborn’s resistance to 

pneumonia. One limitation of RorγtiDTR mice is potential depletion of the RORγt+ T cells 

after DT treatment. However, both human newborns (72) as well as murine newborns (73) 

are relatively lymphopenic compared to adults. Absolute numbers of IL22+ T cells were low 

in the newborn mice (Fig. 2B), suggesting that depletion of RORγt+ T cells in our 

RorγtiDTR mice may have had only a marginal effect on the newborn’s resistance to 

infections.

Having shown that ILC3 played a critical role in promoting the resistance of newborn mice 

to pneumonia, we investigated the role of commensal bacteria in the postnatal development 

of lung IL22+ILC3. Several groups have demonstrated that colonization with commensal 

bacteria increased the number of IL22+ILC3 in the small intestine of adult GF mice (74, 75). 

Similarly, an increase in the number of IL-22+ILC3 in the postnatal period has been 

described for the small intestine (76, 77) but not for the lung, raising the possibility that this 

phenomenon is restricted to the newborn’s intestine. Our data challenge this assumption and 

illuminate a role for intestinal commensal bacteria in the postnatal accumulation of 

IL-22+ILC3 in the lungs. We noted an abrupt increase in the number of IL-22+ILC3 in the 

lungs immediately after birth and observed an age-dependent increase in the number of lung 

IL22+ILC3, peaking at two weeks of age. This postnatal increase in lung IL22+ILC3 was 

absent in GF or ABX-exposed newborn mice and was reversed by transfer of commensal 

bacteria in the early postnatal period. Previous studies have used transcriptional activation 

and cytokine production to delineate a role for commensal bacteria in the ontogeny of ILC3 

(75, 76). But tissue selective-trafficking as a mechanism through which commensal bacteria 

direct the ontogeny of ILC3 in postnatal lungs has not been investigated. ILC3 are thought to 

establish residency in the developing intestine by tissue-specific migration (50, 51). We 

show that exposure to commensal bacteria in early life directs the lung-specific IL-22+ ILC3 

trafficking and thus contributes to the postnatal accumulation of IL22+ILC3 in the newborn 

lung. This study did not address the potential role of commensal bacteria in long-term 

maintenance of lung IL-22+ILC3, which needs to be clarified in the context of recent reports 

that ILC homeostasis at peripheral sites is dependent primarily on self-renewal (78).

Small intestine-specific trafficking of ILC3 depends on expression of chemokine receptors 

CCR9 and α4β7 by ILC3 (50). In contrast, we found that lung-specific trafficking of 

IL-22+ILC3 was mediated by CCR4, a homing receptor also used by other immune cells 

(79) for homeostatic trafficking into the lung. CCR4 is activated by chemokine CCL17 or 

CCL20. CCL17 is expressed by the lung epithelium (55). There is evidence that intestinal 
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DCs act as conductors of ILC3 traffic to the small intestine and secondary lymphoid tissue 

but not to the lungs (50, 51). We, therefore, evaluated the role of intestinal DCs in instructing 

IL-22+ILC3 to traffic to the lung and found that intestinal CD103+CD11b+ DCs increased 

expression of the lung homing receptor CCR4 by IL-22+ILC3. The ability to up-regulate 

CCR4 expression was dependent on the exposure of intestinal CD103+CD11b+ DCs to 

commensal bacteria as CD103+CD11b+ DCs from ABX-exposed newborn mice failed to 

increase the expression of CCR4 on IL22+ILC3, suggesting that the ability to induce CCR4 

expression and thus direct the tissue-specific migration of IL22+ILC3 is a cell extrinsic 

property. Many factors such as components of bacterial cell walls, bacterial metabolites, and 

intestinal epithelial cell-derived cytokines are known to condition the functional properties 

of CD103+CD11b+ DCs (80). Identification of this signal remains an area of active 

investigation. The role of lung CD103+CD11b+ DCs in lung-specific trafficking of 

IL-22+ILC3 remains unclear. The rarity of CD103+CD11b+ DCs in the newborn murine 

lung (65) precluded us from evaluating whether these cells could induce IL22+ILC3 to 

traffic to the lungs as efficiently as intestinal CD103+CD11b+ DCs, a potential limitation of 

our study.

In conclusion, our data demonstrate the importance of commensal exposure in a defined 

developmental window during the newborn period in the development of pulmonary 

mucosal immunity in mice. We illuminate a critical role for intestinal commensal bacteria in 

lung-selective trafficking of IL22+ILC3. This was mediated by intestinal CD103+CD11b+ 

DCs, which induced expression of the lung homing signal CCR4 on the IL22+ILC3. Lung-

selective trafficking contributed to the postnatal accumulation of IL22+ILC3, promoting the 

newborn’s resistance to pneumonia. These data also potentially explain the association 

between caesarean delivery or widespread use of antibiotics and an increased risk of 

infections in newborn infants. Finally, similar mechanisms could influence the development 

of other pulmonary inflammatory disorders like asthma, which is also associated with 

caesarean delivery and antibiotic use in early life (81) and lead to new therapeutic agents to 

mitigate the risk associated with early-life antibiotic exposure in children.

Materials and Methods

Study design

Institutional Animal Care and Use Committee at Cincinnati Children’s Hospital Medical 

Center (CCHMC) approved all the animal studies (IACUC2014-0055), which were carried 

out in accordance with NIH’s Guide for the Care and Use of Laboratory Animals. We bred 

Rorγt-Cre mice with Rosa26-iDTR mice to generate RorγtiDTR mice. We maintained C57/

BL6, Rosa26-iDTR mice, Rorγt-Cre or Zbtb46DTR mice at CCHMC animal facility. We 

maintained the germ-free (GF) C57/BL6 neonatal mice in plastic isolator cages with 

autoclaved feed and water at CCHMC Germ-Free Core facility. After birth, neonatal mice 

from multiple litters were pooled and redistributed to control for the founder effect and to 

minimize in-cage variations. We used neonatal C57/BL6, Zbtb46DTR, RorγtDTR or GF 

C57/BL6 mice between postnatal ages P1 and P14 and appropriate, age-, sex- and genetic 

strain-matched controls to account for any variations in data. We treated pregnant female 

mice (C57/BL6 or Zbtb46DTR) with sterile drinking water mixed with three different 
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antibiotics (ampicillin, gentamicin, and vancomycin; all at 1 mg ml−1) starting from 

embryonic day 15 until the delivery of neonatal mice. We determined group sizes necessary 

for adequate statistical power analysis using preliminary data sets. There was no 

randomization designed in the experiments, and we did not exclude any samples. The 

investigators were not blinded to group allocation during collection and analysis of the data.

Murine neonatal pneumonia studies

We grew S. pneumoniae serotype 19A (ATCC 700674) or E. coli serotype K1 (82) or C. 
albicans (37°C, 200 rpm) in tryptic soy (TS) broth to log-phase growth. To mimic S. 
pneumoniae or E. coli or C. albicans pneumonia, we inoculated neonatal mice (postnatal day 

4 or 14) with either S. pneumoniae serotype 19A (105 CFU g−1) or E. coli (104 CFU g−1) or 

C. albicans (105 CFU g−1) respectively via i.t. route. The animals were examined every 6 h 

for signs of distress and were euthanized 72 h later or earlier if moribund. To assess bacterial 

burden we homogenized the lung in sterile PBS. We plated serial dilutions of lung 

homogenates or BAL fluid in TSB agar plates and incubated (37°C, overnight) to count the 

number of CFU.

We pooled intestinal contents from no ABX-exposed P2 newborn mice. We transferred 

intestinal contents (200 μg in 50 μl PBS) or vehicle (50 μl PBS) to antibiotic-exposed 

neonatal P2 mice by a single oral gavage via fine polyethylene tubing as described before 

(83).

Isolation and characterization of IL-22+ cells in the murine neonatal lung

We pooled and cut the freshly lungs from 3-4 newborn mice and incubated (37 °C, 30 min) 

the cut tissues with shaking (150 r.p.m.) in digestion buffer (RPMI 1640 with 10% FBS, 15 

mM HEPES, 1% penicillin/streptomycin (wt/vol) and 300 U ml−1 collagenase VIII) and 

pressed through a 100-µm nylon strainer to obtain single-cell suspension. The pooled 

preparation constituted a single data point in our analysis. We then incubated (37 °C, 5 h, 

5% CO2) the cells (1 × 107) in culture medium containing RPMI 1640 with 10% FCS, 1× 

nonessential amino acids, 10 mM HEPES, 2 mM L-glutamine (all from Invitrogen) and 1% 

penicillin/streptomycin with 1:1,000 Golgi Stop (554724, BD Biosciences), 10 ng/ml 

phorbol 12-myristate 13-acteate (PMA) and 500 ng/ml calcium ionophore A23187 (both 

from Sigma-Aldrich). We washed and incubated (4 °C, 10 min) the cells (1 × 107) with anti-

mouse CD16/CD32 and then re-incubated (4 °C, 30 min) with anti-mouse CD3 antibody 

(145-2C11), anti–mouse CD4 antibody (GK1.5), anti–mouse CD8 antibody (53–5.8), anti–

mouse CD11b antibody (M1/70), anti–mouse CD19 antibody (6D5), anti-mouse Ly6G 

antibody (1A8), anti-mouse F4/80 antibody (BM8), anti-mouse CD117 antibody (2B8), 

anti–mouse NKp46 antibody (29A1.4), anti-mouse CCR4 antibody (2G12), anti-mouse 

CCR6 antibody (29-2L17), anti-mouse CCR7 antibody (4B12), anti-mouse CCR9 antibody 

(9B1), anti-mouse CCL20 antibody (114906), anti-mouse CXCR3 antibody (173), anti-

mouse CXCR5 antibody (L138D7), anti-mouse Ki67 antibody (16A8) (all diluted 1:100, 

Biolegend). For intracellular staining, we washed and fixed (4 °C, 60 min) the surface-

stained cells in 1× Cytofix/Cytoperm buffer (BD Biosciences) and permeabilized them 

(4 °C, overnight) using 1× Permeabilization Buffer (BD Biosciences) according to 

manufacturer instructions. We stained the cells intracellularly with anti–mouse IL-22 
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antibody (5164) or anti–mouse RORγt antibody (Q31-378) or anti-mouse T-bet antibody 

(4B10) or anti-mouse Eomes antibody (WD1928) (all diluted 1:50, Biolegend) and then 

washed (2×) and resuspended them in flow cytometry buffer. We collected the data with 

LSRII (BD Biosciences) and analyzed the data with FlowJo (Treestar).

Isolation and characterization of antigen presenting cells in the murine newborn intestine

We pooled and cut the freshly resected terminal ilea from 3-4 neonatal mice into 2- to 5-mm 

pieces and incubated (37°C,15 min) them in extraction buffer (HBSS, 15 mM HEPES and 1 

mM EDTA) to remove the epithelial cells. We then incubated (37°C, 30 min) the cut tissues 

with shaking (150 rpm) in digestion buffer (RPMI 1640 with 10% FBS, 15 mM HEPES, 1% 

penicillin/streptomycin (wt/vol), and 300 U ml-1 collagenase VIII) and pressed through a 

100-µm nylon strainer to obtain single-cell suspension. The pooled preparation constituted a 

single data point in our analysis. We then incubated (4 °C, 10 min) the cells (1 × 107) with 

anti-mouse CD16/CD32 and then re-incubated (4 °C, 30 min) with anti–mouse CD45 

antibody (30-F11), anti–mouse CD103 antibody (2E7), anti-mouse CD11b antibody 

(M1/70), anti-mouse CD11c antibody (N418), anti-mouse MHCII antibody (M5/114.15.2), 

anti–mouse F4/80 antibody (BM8) and anti-mouse CX3CR1(SA011F11) (all diluted 1:100, 

Biolegend) and then washed (2×) and resuspended them in flow cytometry buffer. We 

collected the data with LSRII (BD Biosciences) and analyzed the data with FlowJo 

(Treestar).

Treatment of neonatal mice with neutralizing antibodies, recombinant IL-22 or diphtheria 
toxin

We injected neonatal B6 mice with an anti-IL22 antibody (8E11, a gift from Wenjun 

Ouyang) or anti-IL20 antibody (Clone PA5-47092, Invitrogen) or anti-IgG2A (54447, R&D) 

(all 5 μg per g body weight) via i.p. route on P1. For specific cell depletion, we treated 

neonatal RorγtiDTR or Zbtb46DTR mice with diphtheria toxin (1.5 ng, R&D) or vehicle via 

i.p. route on P1. We assessed ablation efficiency by flow cytometry 24 h later. For gain of 

function studies, we treated ABX-exposed neonatal mice with recombinant IL-22 (10 μg per 

g body weight) (cat. 414-CS, R&D) or vehicle via i.t. route on P2.

Adoptive transfer of ILC3 or CD103+CD11b+ DCs

For adoptive transfer, we pooled lungs or SI from 8-10 P2 newborn mice. We harvested 

approximately 1 × 106 Lin−CCR6+ from the pooled specimens by positive and negative 

selection as done previously by other groups (71). This resulting cell population was > 97% 

enriched for ILC3 (71). We harvested 1 × 107 intestinal CD103+CD11b+ DC from the 

pooled SI specimens by positive and negative selection as done previously (84). We 

adoptively transferred Lin−CCR6+ cells (0.5 × 106 cells/animal) or CD103+CD11b+ DC (0.5 

× 106 cells/animal) via i.p. route on P2.

In vivo ILC3 migration assay

We first isolated lung Lin−CCR6+ cells (>97% ILC3) by positive and negative selection as 

done previously (71). We then incubated (37 °C, 20 min) ILC3 (1 × 107) from P3 GF or 

ABX-exposed newborns with carboxyfluorescein succinimidyl ester (CFSE) (5 mM). We 

Gray et al. Page 13

Sci Transl Med. Author manuscript; available in PMC 2018 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incubated ILC3 from control (ABX-free) neonatal mice with chloromethyl-benzoyl-amino-

tetramethylrhodamine (CMMTR) (10 mM). We quenched with an equal volume of 10% 

FBS, diluted 10 × with PBS and resuspended the cells in RPMI1640, supplemented with 2% 

FBS and 2 mM glutamine. We co-injected 106 cells of each population into ABX-exposed 

neonatal mice via i.p. route. We euthanized host mice 24 h. later and determined the 

numbers of injected ILC3 migrating into the lungs, spleen and SI by flow cytometry as done 

previously (50). We calculated the relative homing index as follows. [CFSE+ ILC3 in organ 

A]/[CMMTR+ ILC3 in organ A] ÷ [CFSE+ ILC3 in injected cells]/[CMMTR+ ILC3 in 

injected cells] as described before (49). We performed similar experiments after 

reconstitution of commensal bacteria and with lung Lin−CCR6+ cells from Ccr4−/− or WT 

mice.

Cell co-culture and chemotaxis assay

We isolated Lin−CCR6+ cells (>97%ILC3) from lungs (71) or CD103+CD11b+CD11c+ cells 

from the intestine of ABX-exposed or ABX-free newborn mice (P4). We then co-cultured 

lung ILC3 and intestinal CD103+CD11b+ DC or CD103−CD11b+ (105 cells each) in 

following combinations (ILC3 from ABX mice + DC from no-ABX mice, ILC3 from ABX-

mice + DC from ABX mice or ILC3 from ABX-free mice + DC from ABX-free mice or 

ILC3 from ABX-free mice + DC from ABX mice, ILC3 from ABX or ABX-free mice alone 

or DC from ABX and ABX-free mice alone) in round-bottom plates in RPMI1640 

supplemented with 2% FBS, 2 mM glutamine, and 50 µM β-mercaptoethanol. We harvested 

the supernatants and incubated the remaining cells were incubated with Golgi Plug and 

subsequently analyzed by flow cytometry. For chemotaxis assay, we loaded ILC3 (106 cells 

in 100 μl RPMI 2% FBS) into transwell inserts with pore size of 5 μm (Corning Transwell) 

and placed in wells containing ±20 nM CCL17 in RPMI1640, supplemented with 2% FBS, 2 

mM glutamine, and 50 µM β-mercaptoethanol. We incubated (2 h, 37 °C) the plates and then 

analyzed the migrated and input cells by flow cytometry. We expressed results as 

percentages of ILC3 in migrated wells as compared to input wells as described before (50).

Sample collection and analysis of commensal bacteria in the lungs and small intestine of 
newborn mice

Given the technical challenges in collecting adequate bio specimens for 16s sequencing from 

newborn mice, we opted to pool bio-specimens from 8-10 newborn mice from 3 separate 

litters per treatment group. An unexpected benefit of this approach is the control of 

variations in the commensal bacteria attributed to founder and cage effect (85). We collected 

the entire left lobe of the lung using one heat treated sterile scissor per animal as described 

previously by other groups (86). We then cut open the terminal ileum using sterile scissors 

and removed the intestinal contents using sterile plastic loops as done previously (29). We 

snap froze (−80°C) the specimens for subsequent analysis (−80°C). We extracted the 

bacterial DNA from the whole lung or the intestinal contents using QIAamp DNA stool 

Mini Kit (Qiagen) using a previously described protocol (86) and quantified 16S ribosomal 

(r) DNA by RT-PCR using degenerate primers as described before (87). To analyze the 

commensal bacteria, we amplified the V2 region of microbial 16S rRNA by high fidelity 

PCR with barcoded 8F and 338R universal primers with A and B sequencing adaptors 

respectively and bifido primers (Roche) and sequenced them with Genome Sequencer GS-
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FLX Titanium system (Roche) at University of North Carolina Microbiome core facility 

(Chapel Hill, NC). The reagents used for DNA extraction, polymerase chain reaction and 

sequencing reaction are a common source of contamination in microbiome sequencing 

studies (88). To control for variation in the reagents, we processed all the samples using a 

common batch of DNA extraction reagents and PCR reagents. We included appropriate 

controls including a negative control (no template) and positive community control 

(intestinal contents from age-matched mice) from each batch of harvested tissues when 

performing 16 rRNA PCR or 16S rRNA sequencing. We decoded and processed the 

sequences using the QIIME software package (Version 1.7) and custom R package code 

(89). Analysis of the sequences from negative control indicated presence of several bacterial 

species suggesting potential contamination from the DNA extraction or sequencing reagents. 

The dominant bacterial species in the negative control were Rhodocyclae (17%), Rhizobiales 

(15%) Argobacterium (14%), Micrococcus (10%), Hydrogenophilus (9%), Neiserria (5%), 

Lysinibacillus (4%), Micrococcus (4%) and Tenericutes (4%). The relative abundance of 

these contaminants in experimental samples was less than 3% (Supplemental Table 1) and 

thus unlikely to alter the conclusions. We used phylogenetic diversity (PD) to compute and 

visualize α diversity and unweighted and weighted Unifrac for β diversity. We tested the 

observed differences in Unifrac distances between antibiotic treated groups and across 

different ages for significance using a t-test, and we corrected the reported P values for 

multiple comparisons using a Monte Carlo permutation procedure with 10,000 iterations. 

We deposited all data sets in a publicly available database (Figshare) and can be accessed at 

https://figshare.com/s/52f4aa2f8035fd505cf1.

Transcriptomic analysis

We sequenced high-quality RNA from the whole lung at CCHMC Sequencing Core Facility 

with an Illumina HiSeq 2500. We performed data alignment with TopHat, followed by gene 

quantification (FPKM) using Cufflinks. We carried out differential expression analysis with 

both FPKM and read count-based methods. We performed pathway and network analyses 

with Altanalyze as described before (90). We deposited all data sets in a publicly available 

database (Figshare) and can be accessed at https://figshare.com/s/52f4aa2f8035fd505cf1.

Human newborn studies

The Institutional review board at CCHMC approved all the human studies. The biological 

samples were initially collected from infants who underwent clinical evaluation of either 

upper airway obstruction or tracheaobronchomalacia, common anomalies of the airways in 

infants, after obtaining informed consent from the parents (IRB approval #2013-3309). The 

bronchial lavage (BAL) fluid samples were centrifuged (4°C, 10 min, 400 g). The resultant 

supernatant was frozen (−80 °C) and the cells were cryopreserved (−150 °C) in 90% FBS 

and 10% DMSO. We used the frozen supernatant and cryopreserved cells in our analysis 

(IRB approval #2015-7983). Since pneumonia (48) and asthma (71) are associated with 

ILC3 activation in the lungs, we excluded infants with a history of pneumonia (defined as 

worsening of respiratory status, increase or change in the quality of respiratory secretions, 

temperature instability with radiographic changes) or wheezing. We then selected infants 

who received antibiotics (ABX-exposed group) or no antibiotics (No ABX-group) and 

matched the respective treatment groups for gestational age, age at the time of procedure and 
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history of mechanical ventilation. Characteristics of the subjects are provided in Table 1. 

After thawing, we incubated (37°C, 5 h, 5% CO2) the cells (0.5 × 106) in culture medium 

containing RPMI 1640 with 10% FCS, 1× nonessential amino acids, 10 mM HEPES, 2 mM 

L-glutamine (all from Invitrogen) and 1% penicillin/streptomycin with 1:1,000 Golgi Stop 

(554724, BD Biosciences), 10 ng/ml phorbol 12-myristate 13-acteate (PMA) and 500 ng/ml 

calcium ionophore A23187. We immunophenotyped the cells in BAL fluid as described 

before (91). We stained cells with anti-human CD3 antibody (SP34-2), anti-human CD8 

antibody (B9.11), anti-human CD14 antibody (RMO52), anti-human CD19 antibody 

(J3-119), anti-human CD45 antibody (J.33), anti-human CD56 antibody (NK901), anti-

human CD69 antibody (TP1.55.3) and anti-human NKp46 antibody (9E2) (all diluted 

1:1000, Biolegend). For intracellular staining, we washed and fixed (4 °C, 60 min) the 

surface-stained cells in 1× Cytofix/Cytoperm buffer (BD Biosciences) and permeabilized 

them (4 °C, overnight) using 1× Permeabilization Buffer (BD Biosciences) according to 

manufacturer’s instructions. We stained the cells intracellularly with anti-human RORγt 

antibody (AFKJS-9), anti-human T-bet antibody (4B10) and anti-human IL-22 antibody 

(BG/IL22) (all diluted 1:50, Biolegend) and then washed (2×) and resuspended them in flow 

cytometry buffer. We collected the data with LSRII (BD Biosciences) and analyzed the data 

with FlowJo (Treestar).

ELISA

We measured IL-22 or IL-20 in the murine (69) or human BAL fluid (92) using 

commercially available kits (eBioscience) as described before. We measured IL-1β in the 

cell culture supernatant using commercially available kits (eBioscience) as per 

manufacturer’s instructions.

Statistical analyses

Each data point represents a pool of 3-4 newborn mice that were pooled before the isolation 

of leukocytes from the indicated tissue. All data met the assumptions of the statistical tests 

used. We compared differences between groups by either unpaired two-tailed Student’s t-test 

or ANOVA or Wilcoxon signed-rank test. We used the Kaplan-Meier log-rank test to 

compare survival between groups. (All in GraphPad Prism 6.0). P-values are indicated as 

follows: * p ≤ 0.05 or ** p ≤ 0.01.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One sentence summary

Postnatal colonization by intestinal commensal bacteria directs migration of innate 

lymphoid cells into the lungs and promotes newborn resistance to pneumonia.
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Accessible Summary

Interactions between host and intestinal commensals shape the development of immune 

cells in intestine. We report that host-commensal interactions extend beyond the local 

environment and shape the repertoires of immune cells at extra-intestinal sites like the 

lungs. Exposure to commensals in the developmental window of newborn period directs 

lung-selective trafficking of innate lymphoid cells (ILC3), a group of sentinel cells that 

maintain mucosal homeostasis. This was mediated by intestinal DCs, which induced 

expression of the lung homing signal CCR4 on the ILC3. Lung-selective ILC3 trafficking 

promoted the newborn’s resistance to pneumonia. These data explain the association 

between widespread use of antibiotics and an increased risk of pneumonia in newborn 

infants.
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Figure 1. Intestinal commensal bacteria promote resistance to S. pneumoniae in newborn mice 
via IL22
(A) Study design. (B) Intestinal commensal bacteria enumerated in postnatal day 4 (P4) 

newborn mice exposed to antibiotics (ABX) or no antibiotics (ABX-free) quantified using 

real-time PCR.. (C) Survival of ABX-free or ABX-exposed P4 mice or ABX-exposed 

newborn mice reconstituted with intestinal commensal bacteria and infected with S. 
pneumonia. (D) Survival of germ-free (GF) or conventionally housed (CNV) mice or age-

matched GF mice reconstituted with intestinal commensal bacteria and infected with S. 
pneumoniae. (E) Survival of ABX-free or ABX-exposed P14 mice or ABX-exposed 

newborn mice reconstituted with intestinal commensal bacteria and infected with S. 
pneumoniae. (F) The amount of IL-22 in the bronchial lavage (BAL) fluid of P4 ABX-free 

or ABX-exposed mice or GF newborn mice or ABX-exposed or GF newborn mice 

reconstituted with intestinal commensal bacteria in early life. None of the newborn mice in 

this experimental group were inoculated with S. pneumoniae. (G) The amount of IL-22 in 

the BAL fluid of human newborns who were exposed to ABX or no ABX. (H) Survival of 

P4 ABX-free or ABX-exposed newborn mice treated with IL-22 intratracheally and infected 

with S. pneumoniae. (I) Survival of P4 ABX-free or ABX-exposed newborn mice treated 

with anti-IL22 antibody or isotype control antibody before reconstitution with intestinal 

commensal bacteria and infection with S. pneumoniae. Data are representative of three 

independent experiments. Results are shown as the mean ± s.e.m (Student’s t-test or 

ANOVA or Wilcoxon signed-rank test). *P ≤ 0.05; **P ≤ 0.01. Number of individual 

animals [n] are indicated.
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Figure 2. Intestinal commensal bacteria direct postnatal trafficking of IL-22+ILC3 innate 
lymphoid cells to murine newborn lung
(A) Representative flow cytometry plots of distinct subsets of IL-22+ cells in the lungs of 

postnatal day 4 (P4) newborn mice. Shown are relative frequencies of IL22+ T cells 

(CD45+CD3+) or neutrophils (CD45+Ly6G+) or lineage negative (CD3−CD8−CD11b
−CD19−F4/80−CD161−Ly6G−F4/80−) lymphocytes in the lungs of P4 newborn mice. (B) 

The relative frequencies of distinct subsets of IL-22+ cells in the bronchial lavage (BAL) 

fluid of human newborn infants.. (C) Absolute numbers of IL22+ILC3 in the lungs of P4 

wild-type (WT) or RorγtiDTR newborn mice treated with diphtheria toxin (DT) or no DT. 
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(D) Survival of P4 WT or RorγtiDTR newborn mice treated with DT (ILC3-depleted) that 

received adoptive transfer of ILC3 and then were infected with S. pneumoniae. (E) The 

absolute number of IL-22+ILC3 in the lungs of ABX-free or ABX-exposed newborn mice at 

different time points after birth. (F) Representative flow cytometry plots and (G) absolute 

numbers of IL-22+ILC3 in the lungs of P4 GF or ABX-free or ABX-exposed or ABX-

exposed newborn mice reconstituted with intestinal commensal bacteria in early life. (H) 

The absolute numbers of IL-22+ILC3 in the BAL fluid of human newborns exposed to ABX 

or no ABX. (I) ILC3 from P4 ABX-free newborn mice were labeled with 

carboxyflourosceinsuccimidylester (CFSE). ILC3 from age-matched P4 ABX-exposed or 

ABX-exposed newborn mice reconstituted with commensal bacteria were labeled with 

chloromethylbenozylaminotetramethylrhodamine (CMMTR). An equal number of CFSE- or 

CMMTR-labeled ILC3 were adoptively transferred into ABX-exposed newborn mice. 

Representative flow cytometry plots and absolute numbers of CFSE+ or CMMTR+ ILC3 in 

lung, spleen or small intestine were determined 12 h following adoptive transfer. (J) Relative 

capability of ILC3 from ABX-free or ABX-exposed or ABX-exposed newborn mice 

reconstituted with intestinal commensal bacteria in early life to traffic to the lungs (Homing 

index). Data and plots are representative of three independent experiments. Results are 

shown as the mean ± s.e.m (Student’s t-test or ANOVA or Wilcoxon signed-rank test). *P ≤ 

0.05; **P ≤ 0.01. Number of individual animals [n] are indicated.
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Figure 3. Intestinal dendritic cells mediate cross talk between commensal bacteria and 
IL22+ILC3 innate lymphoid cells and induce ILC3 to traffic to the murine newborn lung
(A) Representative flow cytometry histograms showing expression of C-C chemokine 

receptor (CCR) 4, 6, 7 and 9, C-X-C chemokine receptor (CXCR) 3 and 5 and C-C 

chemokine ligand (CCL) 20 by IL22+ILC3 innate lymphoid cells in the lung of postnatal 

day 4 (P4) ABX-free or ABX-exposed newborn mice. (B) An equal number of ILC3 from 

P4 WT or Ccr4−/− newborn mice were adoptively transferred into age-matched ABX-

exposed newborn mice, and the ability of ILC3 to traffic to the lungs (homing index) was 

determined. (C) Survival of P4 WT or Ccr4−/− newborn mice that received adoptive transfer 

of WT ILC3 after infection with S. pneumoniae. (D) Representative flow cytometry plots 
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and relative frequencies of distinct subsets of mononuclear phagocytes in the small intestine 

of P4 newborn mice. (E) The absolute numbers of IL22+ILC3 in the lungs of P4 WT or 

Zbtb46DTR newborn mice treated with DT (CD11b+CD103+ DC-depleted) that received 

adoptive transfer of CD11b+CD103+ DCs. (F) Survival of P4 WT or Zbtb46DTR newborn 

mice treated with DT (CD11b+CD103+ DC-depleted) that then received adoptive transfer of 

CD11b+CD103+ DCs, after infection with S. pneumoniae . (G) ILC3 isolated from lungs of 

P4 ABX-exposed mice were co-cultured with CD11b+CD103+ DCs isolated from age-

matched ABX-exposed or ABX-free mice and examined for surface expression of various 

chemokine receptors. A representative flow cytometry plot is shown and (H) relative 

frequencies of IL-22+ILC3 cells expressing CCR4. (I) ILC3 isolated from lungs of P4 ABX-

exposed mice were co-cultured either alone or with CD11b+CD103+ DCs isolated from age-

matched ABX-exposed or ABX-free newborn mice. The ability of these ILC3 to migrate in 
vitro in response to a gradient of the chemokine ligand (CCL) 17 is shown. (J) The absolute 

numbers of IL22+ILC3 in the lungs of P4 Zbtb46DTR newborn mice either exposed to ABX 

or no ABX that were then treated with DT (CD11b+CD103+ DC-depleted) or no DT (no DC 

depletion) before they were reconstituted with commensal bacteria. Data and plots are 

representative of three independent experiments. Results are shown as the mean ± s.e.m 

(Student’s t-test or ANOVA or Wilcoxon signed-rank test,). *P ≤ 0.05; **P ≤ 0.01. Number 

of individual animals [n] are indicated.
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