
Evaluating the impact of varied compliance to lung cancer 
screening recommendations using a microsimulation model

Summer S. Han1, S. Ayca Erdogan2, Iakovos Toumazis3, Ann Leung4, and Sylvia K. 
Plevritis3

1Quantitative Sciences Unit, Stanford Center for Biomedical Research (BMIR), Neurosurgery and 
Medicine, Stanford University School of Medicine, Stanford, CA, USA

2Department of Industrial and Systems Engineering, San Jose State University, San Jose, CA, 
USA

3Department of Radiology and Biomedical Data Science, Stanford University School of Medicine, 
1201 Welch Rd, Stanford, CA 94305, USA

4Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA

Abstract

Background—The US preventive services task force (USPSTF) recently recommended that 

individuals aged 55–80 with heavy smoking history be annually screened by low-dose computed 

tomography (LDCT), thereby extending the stopping age from 74 to 80 compared to the national 

lung screening trial (NLST) entry criterion. This decision was made partly with model-based 

analyses from cancer intervention and surveillance modeling network (CISNET), which assumed 

perfect compliance to screening.

Methods—As part of CISNET, we developed a microsimulation model for lung cancer (LC) 

screening and calibrated and validated it using data from NLST and the prostate, lung, colorectal, 

and ovarian cancer screening trial (PLCO), respectively. We evaluated population-level outcomes 

of the lifetime screening program recommended by the USPSTF by varying screening compliance 

levels.

Results—Validation using PLCO shows that our model reproduces observed PLCO outcomes, 

predicting 884 LC cases [Expected(E)/Observed(O) = 0.99; CI 0.92–1.06] and 563 LC deaths 

(E/O = 0.94 CI 0.87–1.03) in the screening arm that has an average compliance rate of 87.9% over 

four annual screening rounds. We predict that perfect compliance to the USPSTF recommendation 

saves 501 LC deaths per 100,000 persons in the 1950 U.S. birth cohort; however, assuming that 

compliance behaviors extrapolated and varied from PLCO reduces the number of LC deaths 

avoided to 258, 230, and 175 as the average compliance rate over 26 annual screening rounds 

changes from 100 to 46, 39, and 29%, respectively.
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Conclusion—The implementation of the USPSTF recommendation is expected to contribute to a 

reduction in LC deaths, but the magnitude of the reduction will likely be heavily influenced by 

screening compliance.
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Introduction

Lung cancer (LC) is the leading cause of cancer-related death in the United States. Smoking 

is the strongest known risk factor for LC accounting for 80–90% of LC cases [1]. Recently 

national lung screening trial (NLST) showed that low-dose computed tomography (LDCT) 

is effective in reducing LC-specific mortality [2]. An individual aged from 55 to 74 years 

with at least 30 pack-years of smoking, and less than 15 years since smoking cessation (for 

former smokers), was eligible to participate in the trial, and each person enrolled was 

screened annually for 3 years either by LDCT or chest X-ray (CXR). The study showed that 

LDCT reduced LC-specific mortality by 20% compared to CXR.

The US Preventive Services Task Force (USPSTF) recently updated their national LC 

screening guidelines, recommending a person aged 55–80 years with at least 30 pack-years 

and less than 15 years since smoking cessation to be screened annually by LDCT. They 

extended the stopping age for screening from 74 to 80 compared to the NLST [3]. This 

decision was made partly based on the analyses provided by the cancer intervention and 

surveillance modeling network (CISNET) consortium [4, 5]. CISNET is an NCI-sponsored 

consortium that uses a comparative statistical modeling approach to estimate the population-

level impact of cancer control strategies, and thereby help guide public health decision 

making.

As part of the CISNET lung group, we developed a microsimulation model that simulates 

LC initiation, progression, detection, and survival in the presence and absence of screening. 

This model was used to analyze the relative effectiveness of 576 lifetime LDCT screening 

strategies in the general US population and to aid the decision making of the USPSTF, 

together with four comparative simulation models [4, 5]. While high-level comparisons 

across the CISNET LC screening simulation models have been reported [4–6], the 

procedures and results of the calibration and validation of our individual microsimulation 

have not been fully described. Here we briefly describe these aspects of our model (with 

more details in the Supplement) then focus on the application of our model to an analysis of 

screening compliance. A limitation of previous CISNET analysis [4, 6] was the assumption 

of perfect compliance; the CISNET analysis assumed that every screen-eligible individual in 

the given population would comply with lifetime screening guidelines that could extend over 

20 years. Violation of this assumption would likely impact the outcomes on the relative 

effectiveness among screening scenarios.

In this article, we apply our microsimulation model to study the impact of various 

compliance levels on the effectiveness of a lung screening program as recommended by the 

USPSTF. We compare the efficiency of the USPSTF recommendation to an “NLST-like” 
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screening strategy, which stops screening at 74 instead of 80; this is a screening program 

based on NLST eligibility criteria extending three-year annual screenings to scheduled 

annual screenings between the ages of 55–74. Our analysis contributes to the evaluation of 

more realistic outcome of the recommended LC screening program in the US population by 

taking into account possible screening compliance changes over one’s lifetime. We provide 

insight into whether or not efforts would be needed to ensure high-risk individuals adhere to 

screenings in order to realize the relative benefits of the USPSTF-recommended screening 

program.

Methods

Microsimulation model

The purpose of our microsimulation model is to evaluate the population-level impact of LC 

screening. At the core of our simulation model, we simulate individual-level LC-related 

events including incidence age in the absence of screening, the tumor growth rate, and 

progression to lethal metastases and histologic subtype. We then impose a specific screening 

intervention to each individual and estimate individual-level survival outcomes. The 

individual-level outcomes are aggregated to estimate the population-level outcomes of the 

given screening strategy. We describe the key components of our microsimulation model for 

LC screening next.

Target population characteristics—Key inputs to the microsimulation model describe 

the target population at the individual level including sex, smoking history (e.g., pack-years 

and age for starting/quitting smoking), and age at entering a screening program. 

Supplemental Table S1 shows the example profiles of four individuals with different age, 

sex, and smoking histories.

Lung cancer incidence model—Given smoking history, sex, and age at entry, the 

annual hazard for LC detection in the absence of screening is predicted using the two-stage 

clonal expansion (TSCE) model, which is a commonly used model for investigating cancer 

incidence based on environmental risk factors [7–9]. The parameters of the TSCE model we 

used were estimated and validated on data from nurses’ health study/health professionals 

follow-up study (NHS/HPFS) [7]. However, multiple, potentially unmeasured, cohort-

specific factors may influence LC risk providing somewhat different predictions for the 

different cohorts. Hence predictions based on this model were adjusted through calibrations 

(See “Model calibration to NLST”). This adjustment is a new feature to our model compared 

to the one used in the previous reports [4, 5]. Using annual hazards estimated from this 

model, the age-specific LC incidence in the absence of screening is predicted for each 

individual (See Supplemental Table S1 for example). We note that this incidence of LC in 

the absence of screening is due to detection promoted by symptoms (i.e., clinical detection) 

as opposed to screen detection that will be mentioned later in this section. For each LC case, 

a histologic subtype (namely, adenocarcinoma, squamous, large cell or small cell) was 

assigned by sampling from the observed proportions from SEER (See Supplemental Table 

S2).
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Natural history model of lung cancer—The natural history model is used to predict 

individual’s tumor growth history over time conditioning on sex and histologic subtype and 

provides estimates of unobservable features including tumor volume doubling time, time for 

onset of metastasis, and observable features such as tumor size at clinical detection, and 

survival time [10]. More details of the natural history model are provided in Supplemental 

Material S1–2. The parameters of the natural history model were estimated using National 

cancer institute surveillance, epidemiology and end results (SEER) staging and survival data. 

Examples of these outputs of the natural history model are provided in Supplemental Table 

S1.

Modeling screening, follow-up, and treatment

Screening: For each individual, screening is imposed based on the type of screening 

program varying by duration, interval between screens, and screening mode (LDCT vs. 

CXR). To model the effect of screening, a screening detection threshold (for LDCT and 

CXR) is estimated, such that if the tumor size at a given screen time is larger than a given 

detection threshold, the tumor is screen detected (See example profiles in Supplemental 

Table S1). Concurrently, sampling the screen detection thresholds from a Weibull 

distribution introduces stochastic variability among individuals, as previously shown [11]. 

The mean screen detection threshold was expected to be in the range of 2–5 mm for LDCT 

and 20–25 mm for CXR based on previous trial data [12] and clinical expertise (AL), then 

calibrated to NLST data (See “Calibration to NLST”).

Diagnostic follow-up: For tumors that are screen detected but whose sizes are less than 10 

mm, the Fleischner society guidelines are provided as a standard [13]. In our 

microsimulation model, we used a modified version of these guidelines in order to most 

closely capture observations in the NLST. We assumed that a patient with tumor (or nodule) 

size ≤4 mm is scheduled for next screening without being assigned diagnostic follow-up as 

in the NLST [2]. Moreover, we assumed that patients with a positive screening exam adhere 

perfectly to the follow-up strategy. While follow-ups are scheduled according to the 

Fleischner society guidelines, no final diagnosis is made until it reaches a certain size 

threshold that was determined by calibration to NLST data (See “Calibration to NLST”).

Treatment, survival, and death from other causes: Surgery is assumed for early-stage 

disease and surgery-related death rate is assumed to be 1% based on literature [14]; status of 

surgery-related death was assigned by sampling from 0 or 1 using this rate.

A survival time for each LC patient is predicted using the natural history model in the 

absence of screening (See Supplemental Materials S1). According to our natural history 

model, a patient can survive from LC if detection, diagnosis, and treatment of their tumor 

occur before the onset of lethal metastasis (called “cure threshold”; See Supplemental 

Materials S1 and Supplemental Table S1 for example). In this case, the age of death of this 

person is determined by other cause of mortality, which is predicted using a model 

developed by Meza [4], conditioned on smoking history and sex. We note that our model can 

also adequately handle the possibility that a patient may be cured from LC but suffer from a 

LC recurrence at a later data. This is possible because we used the survival data from SEER 
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for estimating the parameters of our model, which include patients who have LC recurrence 

after their cancers are resected. Example profiles that include survival information are 

provided in Supplemental Table S1.

Aggregation and comparisons of screening strategies—After conducting a 

microsimulation to generate individual-level outcomes such as LC status, detection mode, 

survival time, and cause of death, we calculate study-level outcomes (when individuals are 

simulated for a specific clinical trial study) or population-level outcomes (when individuals 

are simulated for a general population) for a given screening program by aggregating 

individual-level outcomes. For example, LC-specific mortality rate of a certain screening 

program can be estimated by computing the number of individuals who died from LC 

divided by the total number of individuals simulated.

Calibration to NLST

While the main purpose of our microsimulation model is to evaluate the population-level 

outcomes of LDCT under various screening strategies for guiding health policy decision, 

model calibration to trial data is necessary for estimating screening-related practice patterns. 

Such calibration enables reliable extrapolation of clinical trial-level results to the population 

level. We conducted a calibration by systematically adjusting key screening-related 

parameters of our microsimulation model using the NLST data, which include CT detection 

threshold, CXR detection threshold, and tumor size threshold for diagnostic follow-up, LC 

clinical detection time adjustments (see Supplemental Table S4 and Supplemental Materials 

S3 for more details). A description for the NLST data is provided elsewhere [2]. The 

eligibility criteria for an enrollment of the NLST was based on age (55–74) and smoking 

exposure (≥30 pack-years and ≤15 years since quitting smoking for former smokers). Each 

enrolled individual received three annual screens using either LDCT (screen arm) or CXR 

(control arm) after randomization, and the screening results were followed up for 6 years.

Calibration method—The calibration method is based on a multivariate grid-search 

algorithm. A specified range of each calibration target parameter is partitioned into grids. 

We use each combination of grid points formed as input parameters and simulate the NLST 

comparing the model’s estimates with the observed NLST outcomes. A set of parameters 

that provides the best fit to the data is chosen as the final set of parameters to be used for the 

subsequent analyses.

Validation using PLCO

After a final set of calibration parameters was obtained using the NLST data, we validated 

our microsimulation model using PLCO data without any further adjustment of the 

parameters in the model. The full description of PLCO is provided elsewhere [15]. We 

conducted microsimulation analysis using all participants’ data from PLCO, as well as the 

subset of participants who meet the NLST smoking criteria (aka “NLST-eligible.”) For this 

validation exercise we used PLCO data from years 1 to 10. To measure goodness-of-fit to 

data, E/O ratio was calculated over study time along with its confidence interval, addressing 

parameter uncertainty and Monte Carlo error, calculated based on the Poisson distribution 
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[16], where O is the observed count of LC incidence or mortality from data and E is the 

predicted count using our microsimulation model.

Evaluation of the USPSTF-recommended and the NLST-like screening program with 
lifetime screening and follow-up

After validating the microsimulation model using PLCO, we extrapolated our model by 

simulating the lifetime screening program recommended by the USPSTF in the general US 

population. Recall that USPSTF recommends a person aged 55–80 years with at least 30 

pack-years and less than 15 years since cessation of smoking to be screened annually. We 

note that the screening and follow-up are based on an individual’s lifetime as the horizon in 

this simulation, which is different from that in the NLST simulation (3-year screening and 6-

year follow-up) and the PLCO simulation (4-year screening and 10-year follow-up).

For the target population, we chose the 1950 US birth cohort because it was considered in 

the USPSTF report [3]. The lifetime smoking histories and other cause of mortality of 

100,000 female and 100,000 male in this cohort were simulated using Smoking History 

Generator as input variables for microsimulations [17]. Our analysis focuses on individuals 

who are alive and without a cancer diagnosis at age 50. We follow each individual up to age 

90 which translates into a time horizon of 40 years. In addition to simulating the USPSTF 

recommendation, we simulated an NLST-like program, which has the NLST eligibility 

criteria, but screening is extended from three annual screenings to lifetime screenings as 

long as smoking criteria is met. Another hypothetical scenario, namely “no-screen” scenario, 

was also considered as a control program, so that the effectiveness of the above two LDCT 

screening programs can be measured.

Screening compliance—We first conducted simulations under perfect screening 

compliance, meaning that anyone who meets the given screening criteria defined by age and 

smoking receives screening as scheduled. While perfect screening compliance was assumed 

in our previous analyses considered by the USPSTF [3, 4], it may not be realistic to assume 

that everyone attends annual screening for a long duration that ranges up to 20–26 years.

In order to conduct microsimulations under more realistic setting incorporating imperfect 

compliance, we estimated compliance probabilities using data from the PLCO, focusing on 

the NLST-eligible participants. The PLCO data were used because the duration of the PLCO 

trial was longer than the NLST (10 vs. 6 years), also providing more information on 

screening compliance with four annual screening rounds compared to three annual screening 

examinations in NLST. The screening attendance rate in PLCO was obtained for each 

screening round by calculating the fraction of individuals who received screening among 

those who are eligible for each screening round.

Markov model for screening compliance and estimation of transition 
probabilities using PLCO—We develop a Markov model to simulate an individual-level 

status of screening compliance for each screening round (see Fig. 1 for an overview of this 

model). In this model, there are two possible states, “attend” or “not attend,” and a state is 

stochastically decided by the state of the previous year. More specifically, the attendance 

state of the first screening is decided by initial probability (p0) that was estimated by 
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calculating the attendance rate of the first screening in PLCO. The state of the second 

screening is then stochastically decided by the state of the first screening. We then estimated 

the transition probabilities (denoted by pA,t and pNA,t if a patient attend (A) or not (NA) 
screening at t-1, respectively, for screening round T = 1, 2, 3 using PLCO as shown in 

Supplemental Table S8.

Projection of transition probabilities and sensitivity analysis varying the 
projection of compliance levels—The PLCO data have only four screening rounds (T 
= 0, 1, 2, and 3). In an attempt to evaluate the impact of the lifetime USPSTF-recommended 

screen program that has up to 26 screening rounds (age 55–80), we extrapolated the 

transition probabilities for screening round T ≥ 4. Log-transformed probabilities pA = (p0, 

pA,1, pA,2, pA,3) and pNA = (p0, pNA,1, pNA,2, pNA,3) estimated from the PLCO data were 

regressed on time T = 0, 1, 2, and 3, respectively, and the transition probabilities for T ≥ 4 

were predicted from the two fitted regression models.

In order to take into account the parameter uncertainty raised from the crude projections that 

are based only on four data points, we conducted sensitivity analysis varying the levels of 

compliance probabilities. In particular, we obtained four different compliance levels by 

fitting log-transformed regressions considering, beyond the PLCO data points, an additional 

hypothetical data point at time T = 20 with varying values of 0.6, 0.7, 0.8, and 0.9 to 

establish four different compliance levels (denoted as Levels 1–4, respectively).

Results

Model calibration to NLST

The calibrated parameters are shown in Supplemental Table S4. We used the calibrated 

microsimulation model to reproduce the outcomes of NLST. The comparisons of the 

predicted LC outcomes using the model versus observed outcomes from the NLST data are 

presented in Supplemental Table S5. Our model predicts 638 screen-detected (SD) cases as 

compared to 649 SD cases observed in the CT screening arm (E/O ratio: 0.98, 95% CI 0.91–

1.06) with a 6-year follow-up. The CXR screening arm also had a reasonably good fit for LC 

incidence with E/O ratio 1.01 (0.9–1.14) for SD cases and E/O ratio 1.06 (0.98–1.14) for ID 

cases (see Supplemental Table S5). For LC-specific mortality, 227 LC deaths were predicted 

as compared to 215 observed deaths among SD cases in the CT arm (E/O ratio: 1.06 CI 

0.93–1.2). Mortality reduction using CT compared to CXR using our model was 19.2% as 

compared to 18.6% from data (up to follow-up year 6). Cumulative incidence and mortality 

results are shown in Figs. 2 and Supplemental Figure S3 for CT and CXR arms, respectively.

Validation of the microsimulation model using PLCO

We validated our microsimulation model using data from PLCO (focusing on the NLST-

eligible participants) without further adjustments of the model parameters (see Table 1). The 

prediction in the usual-care arm (no screening) shows that the model closely reproduces 

observations both for LC incidence (cumulative E/O: 1.03 CI 0.93–1.07) and mortality 

(cumulative E/O: 0.95, CI 0.88–1.03) with a 10-year follow-up. According to the results for 

the CXR arm, the model predicts 202 SD cases compared to 200 observed SD cases with 
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E/O ratio = 0.99 (CI 0.86–1.13), and 683 ID cases compared to 693 ID cases with E/O ratio 

0.98 (CI 0.91–1.06). Cumulative incidence and mortality results are shown in Fig. 3 and 

Supplemental Figure S4 for the CXR and usual-care arms, respectively. Similar results were 

observed for validating our model using data from all participants in PLCO (See 

Supplemental Table S6).

Evaluation of the USPSTF-recommended and the NLST-like screening programs under 
varied compliance to screening

Perfect compliance—Upon validation on PLCO, we used our model to simulate lifetime 

screening programs under the USPSTF-recommended and the NLST-like screening 

scenarios in the 1950 U.S. birth cohort. The population-level LC outcomes of the two 

screening programs are shown in Table 2 (second column), for which perfect compliance to 

screening was assumed, i.e., everyone in the cohort who meets the given screening criteria 

receives annual screening as scheduled. The NLST-like program saves 455 LC deaths per 

100,000 persons in the cohort, with 9.27% LC-specific mortality reduction compared to the 

no-screen program. The benefit of extending the screening stopping age from 74 to 80 is 

shown in the USPSTF scenario, which has a 10.1% increase in LC deaths saved (455 vs. 501 

LC deaths). The percent of early-stage (I–II) cases is also higher in the USPSTF scenario 

(49.11%) than the NLST-like (46.71%). Overall, the USPSTF screening program showed 

increased benefits on LC outcomes compared to the NLST-like under perfect compliance.

Imperfect compliance—We further evaluate the impact of the lifetime screening 

programs under a more realistic setting, incorporating imperfect compliance. The annual 

screening attendance rates (compliance rates) of PLCO are 94.8, 89, 85.8, and 82.1% for the 

first, second, third, and fourth screening round, respectively (see Supplemental Table S7), 

supporting that the perfect compliance assumption may not be realistic, especially for 

programs with long active screening horizon.

The transition probabilities representing the likelihood of attending current screening based 

on the previous year’s attendance status (“attended” or “not attended”) are shown in Fig. 1 

and Supplemental Table S8. We used the transition probabilities to simulate the compliance 

status of every individual in our simulation model. The rapid drop of pNA (i.e., the 

probability of attending current screening given that the individual did not attend (NA) the 

previous year’s screening) is notable, where the probability is 0.673 for second screening 

round versus 0.270 for fourth round. This rapid drop of pNA implies that the probability of 

attending screening decreases more rapidly among participants who do not attend the 

previous year’s screening compared to participants who attend the previous year’s screening 

(with 0.904 for second round and 0.890 for fourth round).

We conducted microsimulations under the imperfect screen compliance using the transition 

probability estimated using PLCO and projected for time T ≥ 4 (see the red curve in Fig. 4). 

The results in Table 2 show that the number of LC deaths avoided due to screening under the 

USPSTF programs decreases to 175 compared to 501 under perfect compliance. It is notable 

that assuming imperfect compliance also reduces the benefit of extending the screening 

stopping age from 74 to 80 in the USPSTF scenario versus the NLST-like (hence increasing 
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the number of maximum screening rounds from 20 to 26). While the USPSTF program 

saves 10.1% more LC deaths compared to the NLST-like under perfect compliance, this rate 

drops down to 0.56% assuming imperfect compliance. This finding occurs because the 

attendance rate (proportion of attendants among eligible participants) becomes low as the 

programs run over 20–26 years (see Supplemental Figure S5) and hence the low attendance 

for screening after year 20 through year 26 does not contribute much to the benefits of 

extending the screening stopping age from age 74 to 80.

Sensitivity analysis varying compliance levels—In order to take into account 

uncertainty raised from the crude extrapolation based on small number of data points, we 

conducted sensitivity analysis varying the levels of the transition probability (pA) to Levels 

1–4 (See Fig. 4). As shown in this figure, pA, 20 (i.e., the probability of attending the 20th 

screening round given the person attended the 19th screening) is around 41% based on the 

projection using the PLCO data (red curve), and it varied to 60, 70, 80, and 90% for Level 1, 

Level 2, Level 3, and Level 4, respectively (see Fig. 4). The microsimulations under these 

four scenarios in Table 2 show that the average attendance rates over 26 rounds of screening 

in the USPSTF scenario are 70, 56, 46, and 39% for Level 4–Level 1, respectively; these are 

lower than those under the NLST-like scenario (72, 61, 52, and 47%) that are based on 20 

screening rounds, implying that the attendance rates after 20 screening rounds in the 

USPSTF scenario reduce the overall average attendance rates.

The results of sensitivity analysis in Table 2 show that the benefits of extending the 

screening stopping age from 74 to 80 in the USPSTF program versus the NLST-like is 

markedly influenced by levels of screening compliance assumed (pA). In high level of 

compliance (Level 4), the percent increase of LC-specific mortality reduction is 9.01% 

compared to the NLST-like, and it drops to 7.13, 4.1, and 3.13% for Level 3, Level 2, and 

Level 1, respectively, as the compliance level decreases. The percent of early-stage (I–II) LC 

cases in the USPSTF program decreases from 44.2% to 41.5, 38.9, and 37.5% from Level 4 

to Level 1, which shows that the benefits of screening are reduced as assumed compliance 

level decreases.

Discussion

In this report, our microsimulation model was used to assess the impact of the USPSTF-

recommended screening program by varying screening compliance. Our analysis shows that 

while perfect compliance to the USPSTF recommendation saves 501 LC deaths per 100,000 

persons in the 1950 US birth cohort, the number of LC deaths avoided reduces markedly as 

screening compliance decreases. In particular, as the compliance rate, averaged over 26 

annual screening rounds, changes from 100 to 46, 39, and 29%, the number of LC deaths 

avoided drops from 501 to 258, 230, and 175 per 100,000 persons, respectively, implying 

that the long-term benefits of the USPSTF-recommended program heavily depend on 

screening compliance.

We compared the outcomes of the USPSTF-recommended scenario to those under the 

NLST-like screening program, which stops screening at 74 instead of 80. The results show 

that the benefits of extending the stopping age from 74 to 80 (and hence increasing the 
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maximum screening rounds from 20 to 26) also substantially reduce as screening 

compliance level declines. Assuming perfect compliance, the USPSTF-recommended 

program prevents 10.1% more LC deaths compared to the NLST-like, whereas this benefit 

rate decreases to 4.1, 3.1, and 0.6% by assuming compliance rates of 46, 39, and 29%, 

respectively. Compliance among screen-eligible individuals would be expected to be lower 

among this older versus younger age groups, primarily due to increased comorbidity rates at 

older ages. Hence, extending the screening stopping age may not contribute much to the 

benefits of screening in the presence of comorbidity. Even though decreased compliance 

affects LC outcomes in both screening programs, by lowering the number of LC deaths 

prevented, it also reduces the “ratio” of the number of LC deaths prevented in the USPSTF 

versus the respective number in the NLST-like scenario. This implies that the relative loss 

from decreased compliance is larger in the USPSTF strategy compared to the NLST-like 

strategy. It is important to note however that, the compliance rate in the 75–80 age group is 

expected to be significantly higher in the early years of a screening program. That is due to 

the fact that many individuals from that age group (from various birth cohorts) would 

become screen eligible for the first time and seek screening. Therefore, our results, although 

specific to individuals with long screening history, may underestimate the effectiveness of 

the USPSTF program at the early years of implementation when individuals undergo 

screening for the first time. However, as the screening program matures our estimates should 

become more applicable.

We note that under perfect compliance, the LC-specific mortality reduction rate yield by the 

USPSTF program is around 10% (and 9% for NLST-like program), which is notably smaller 

than the 20% reduction rate observed from the NLST [2]. This difference can be explained 

by the difference in the target population for each calculation. In the NLST, the reduction 

rate is calculated among the participants who attended the trial, all of whom were screen 

eligible and hence screened at least once. However, for the USPSTF and the NLST-like 

programs in our analyses, this calculation is based on a cohort of 100,000 individuals from 

the general US population, only a subset of which—less than 20%—is screen eligible and 

hence screened. Therefore, the reduction rate based on the entire population is always 

smaller than the one that is based on only “screen-eligible” individuals. Indeed, our model 

estimates the mortality reduction among the screen-eligible individuals approximately at 19 

and 17% for the USPSTF and NLST-like programs, respectively.

Overall, our calibration and validation analyses demonstrated reasonable LC incidence and 

LC-specific mortality estimates. Although our LC-specific mortality estimates lay on the 

lower boundary of the 95% confidence interval at the early years, we show that our estimates 

for the remaining study period, including the total sum, are reasonably close to the observed 

data. The discrepancy during the earlier time points can be associated with differences 

between sampling errors associated with low numbers of events at the early time period; 

these types of error are often reduced as the number of events increases, as happens over 

time in our analysis.

While the extension of our model to the population setting provides a mechanism to predict 

the effects of compliance on screening outcomes, our modeling approach has some 

limitations. One limitation of our microsimulation model is that it does not incorporate 

Han et al. Page 10

Cancer Causes Control. Author manuscript; available in PMC 2018 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



radiation effect to measure harms of LDCT screenings [18]. As a result, this may affect our 

mortality reduction estimates considering that a few fatal cancer cases (LC or other type) can 

be potentially caused from radiation exposure. Considering the prolonged active screening 

period implemented by the USPSTF strategy, we anticipate that the effect of radiation 

exposure would be slightly larger in the USPSTF strategy compared to the NLST-like 

strategy. Secondly, the Markov model for compliance is simple, for which the attendance is 

influenced simply by the attendance status of the previous screen even if the prior screen 

yielded a false positive. Moreover, the projection of the transition probability of the Markov 

model for screening compliance was based only on small number of data points from PLCO, 

which may not provide a reliable prediction for lifetime compliance behaviors. Ideally, a 

more complex model could be used to dynamically model compliance; however, this was 

beyond the scope of this study. To address the uncertainty surrounding our compliance 

estimates we used this projection as a hypothetical compliance level, rather than a true 

compliance behavior, and conducted a sensitivity analysis on the compliance levels. Finally, 

screening was performed in our model for any individual who meets the smoking and age 

criteria including individuals who may have high comorbidities. In particular, our analysis 

likely overestimates the number of individuals attending each screening exam by not taking 

into account the comorbidity of each individual. We assume that screen-eligible individuals 

will attend each screening exam with a certain probability, regardless of their overall health 

condition.

Our analysis focused on mortality reduction and not life-years saved or the balance between 

benefits and harms, such as overdiagnosis which was the focus of Han et al. [6]. 

Furthermore, in this analysis we do not account for the cost implications of LC screening 

nor for the year-over-year budget impact. A cost-effectiveness and budget impact analyses of 

LC screening could shed light and answer these questions. Hence, our findings should be 

cautiously generalized given that conclusions may be different from the aforementioned 

perspectives.

Our microsimulation model provides an analytical framework for evaluating the 

effectiveness of LDCT screening strategies by bridging between clinical trial results and 

decision-making processes for public health policies. Although the NLST showed the 

superiority of LDCT in terms of efficacy in reducing mortality compared to CXR, it may not 

indicate the optimal strategy at the population level. Different strategies with different 

starting/stopping ages, screening frequency, number of screening exams, or smoking criteria 

may lead to a larger mortality reduction and significantly affect the balance between harms 

and benefits associated with the screening program. Moreover, it has been shown that 

complementing LC screening with an adjunct smoking cessation program may amplify the 

effectiveness of the screening program [19]. Even though conducting many different clinical 

trials varying the aforementioned factors could help find solutions, this would be practically 

infeasible due to cost and time restrictions. Given these practical limitations on translating 

clinical studies into health policy, the approach of the proposed microsimulation model can 

be useful in predicting population-level outcomes under various screening strategies for 

guiding health policy decision-making processes through careful calibration and validation 

using all the available lung screening trial datasets.
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Overall, our study shows that the implementation of the USPSTF recommendation is 

expected to contribute to a reduction in LC deaths, but the magnitude of the reduction will 

likely be heavily influenced by screening compliance. In particular, the effectiveness of 

extending the screening stopping age from 74 to 80 in the USPSTF-recommended program 

will likely depend on screening compliance levels. In order to maximize the targeted 

effectiveness of the screening program by USPSTF, efforts may be needed to encourage and 

support eligible individuals to attend screenings as scheduled especially at older ages.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Diagram for a Markov model for screening compliance. The numbers in red are the 

estimates of transition probabilities using the PLCO data. Note In this Markov model, there 

are two possible states, “attend” or “not attend” and these states are influenced by the states 

of the previous year. The state of the first screening attendance is decided by initial 

probability p0 = 0.948 that is estimated using the attendance rate of the first screening from 

the PLCO data. The state of the second screening is then decided, informed by the state of 

the first screening. Among those who attended (A) the first screening, the attendance 

probability of the second screening is pA,1 = 0.904 (PLCO estimation) and 1- pA,1 (= 0.096) 

for probability of not attending the second screening. For those who did not attend (NA) the 

first screening, the attendance probability of the second screening is pNA,1 = 0.673 (PLCO 

estimation). The states of the third through fourth screening are also decided by the states of 

the screening of the previous year. The PLCO data have only four screenings (T = 0, 1, 2, 

and 3), and hence transition probabilities estimated based on four years were extrapolated 

for T ≥ to be used for evaluating the impact of the lifetime USPSTF-recommended screen 

program and varied for sensitivity analysis (see Methods “Evaluation of the USPSTF-

recommended and the NLST-like screening program with lifetime screening and follow-up”)
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Fig. 2. 
Model calibration results using the NLST data for CT arm. Cumulative lung cancer 

incidence and mortality over study time. Observed data are in blue and predicted data are in 

red. Dotted lines are 95% confidence interval. First row is for lung cancer incidence and 

second row is for lung cancer death
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Fig. 3. 
Model validation results using the PLCO data for CXR arm. Cumulative lung cancer 

incidence and mortality over study time. Observed data are in blue and predicted data are in 

red. Dotted lines are 95% confidence interval. First row is for lung cancer incidence and 

second row is for lung cancer death
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Fig. 4. 
Varying the levels of transition probability pA, t (t = 0, 1, 2,.., 25) in a Markov model for 

screening compliance for sensitivity analysis. The results on this sensitivity analysis are 

shown in Table 2. Note: PA, t is the probability of attending the screening at each time T = t 
(t = 1, 2,…, 25) given the person attended the previous screening at time T = t-1(transition 

probability). The red curve is the transition probability (pA, t) extrapolated based on the 

estimation using the PLCO data that have only four screenings (T = 0, 1, 2, and 3), and 

hence data points for T4 were predicted based on the log-transformed regression (see 

“Evaluation of the USPSTF-recommended and the NLST-like screening program with 

lifetime screening and follow-up”). In order to take into account uncertainty raised from this 

extrapolation, we conducted sensitivity analysis varying the levels of pA, t over t. The orange 

curve obtained by fitting log-transformed regression by including one hypothetical data 

point at t = 20 with a value pA, 20 = 0.6 (increased from pA, 20 = 0.41 in the red curve for the 

PLCO projection). Similarly, Level 2, Level 3, and Level 4 curves were obtained by 

restraining the value of pA, 20 as 0.7, 0.8, and 0.9, respectively. Finally the top blue line is the 

transition probability under perfect compliance
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