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Abstract

Many traits that are sexually dimorphic, appearing either differently or uniquely in one sex, are 

also sensitive to an organism’s condition. This phenomenon seems to have evolved to limit genetic 

conflict between traits that are under different selective pressures in each sex. Recent work has 

shed light on the molecular and developmental mechanisms that govern this condition sensitive 

growth, and this work has now expanded to encompass both sexual dimorphism as well as 

conditionally plastic growth, as it seems the two phenomena are linked on a molecular level. In all 

cases studied the gene doublesex, a conserved regulator of sex differentiation, controls both sexual 

dimorphism as well as the condition-dependent plastic responses common to these traits. However, 

the advent of next-generation -omics technologies has allowed researchers to decipher the 

common and diverged mechanisms of sexually dimorphic plasticity and expand investigations 

beyond the foundation laid by studies utilizing beetle weapons.

The evolution of sexually dimorphic plasticity

Across the animal kingdom, males and females adopt differences in morphology and 

behavior known as sexual dimorphism. Anisogamy, or the evolution of differently sized 

gametes, has provided a strong framework for investigations of the evolution of almost all 

sexual behaviors [1]. Differential costs in energy production of the gametes have been used 
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to explain the evolution of sexual dimorphism as well as the evolution of selection for these 

differences. As organisms move away from having similarly sized gametes (isogamy), they 

open up the ability to engage in differential reproductive avenues and thus provide the 

foundation for the evolution of sex-based differences in somatic tissue [2], but see [3].

Sexual dimorphism, however, presents a potential problem for organismal fitness, as in most 

cases male and female organisms possess the same or similar genotype, and selective forces 

acting on genes that enhance fitness in one sex may reduce the fitness of the same genes in 

the opposite sex, and thus in many cases males and females will have different optimal 

fitness for sexually dimorphic traits, leading to genetic conflict. This situation has been 

documented in flies [4] and crickets [5], as well as in vertebrates [6,7] but is potentially 

universal [8]. In many cases, organisms can resolve this conflict by linking the expression of 

sexually dimorphic traits to other cues, such as organism condition [8]. By using organism 

condition to regulate the expression of the more exaggerated sexually dimorphic structures, 

organisms can not only reduce the genetic cost of the trait, but also the physiological cost 

[9], as many of these structures are energetically expensive to produce and maintain [10–13], 

but see [14–16]. Thus, by regulating the expression of sexually dimorphic traits through both 

sex-specific loci and the use of condition-dependent plasticity, organisms can achieve the 

best of both worlds- that is, they ensure that the strongest, healthiest organisms display the 

most prominently dimorphic structures [8,9] and they reduce the cost of these traits in the 

opposite sex.

There are many examples of insects whose sexually dimorphic traits exhibit condition-

dependent, plastic responses. The most well-studied from a molecular point of view are 

scarab beetles, and particular attention has been paid to dung beetles in the family 

Scarabaeidae [17], stag beetles in the family Lucanidae [18,19], and rhinoceros beetles in 

the subfamily Dynastinae [20], although Gnatocerus flour beetles (family Tenebrionidae) 

[21] and the dipteran stalk-eyed flies (family Diopsidae) [22,23] have also been the subject 

of much research. Each of these groups contain members that exhibit striking sexual 

dimorphism, exhibiting weaponry that is conspicuously absent or greatly reduced in size in 

females while being exaggerated in males (but see O. sagittarius, [24]). In addition, in all of 

these organisms the final size of these structures is incredibly plastic, generally being 

determined by the level of access to food available to developing larvae [13,18,20,22,23,25–

27], although in some cases the plastic response is mediated by infection status [28], with 

infected males having smaller weaponry than uninfected males. This review will focus 

predominantly on the insights gained through the study of beetle weaponry, but we will 

summarize what is known from other species where appropriate, and we also suggest new 

avenues of investigation that build on the foundation provided through the study of beetle 

weaponry that can serve as an important contrast to the data reviewed below.

Dsx links organism condition to sexually dimorphic trait expression

In insect, as in other organisms, sex-determination can be achieved by incredible diversity of 

genetic and environmental signals, but downstream effectors are relatively well conserved 

[29–31]. The most critical gene appears to be the transcription factor doublesex (dsx), an 

evolutionarily conserved key regulator of sex differentiation. Most insect species 
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investigated possess only one dsx gene in their genome, yet express multiple dsx splice 

variants via sexspecific alternative splicing. Sex-specific Dsx isoforms promote sexual 

differentiation through the regulation of diverse gene sets [31,32] (Figure. 1).

Mandible growth in male stag beetles is promoted by increased levels of juvenile hormone 

(JH) in high condition males, while female mandibles do not respond to JH [18]. Through a 

combination of dsx RNAi knockdown and ectopic JH analog (JHA) treatment, Gotoh et al 

demonstrated that this sexually dimorphic response is regulated by Dsx. In dsx knockdown 

females, mandibles respond to JHA treatment and show exaggerated growth compared to 

GFP knockdown control females [19]. In males, both dsx knockdown and GFP knockdown 

individuals respond to ectopic JH treatment. These results suggest that the developmental 

“default” state can respond to JH, and thus exhibit plasticity, but that female-specific Dsx 

isoforms inhibit responsiveness. Thus, the sexually dimorphic plastic response of mandibles 

to JH is ultimately regulated through sex-specific Dsx isoforms [19]

In dung beetles, dsx also mediates sexually dimorphic plasticity. Kijimoto and colleagues 

[33], showed that knockdown of the dsx gene in Onthophagus taurus reduced the size of 

male horns in a condition-dependent manner. That is, larger males had a larger reduction in 

horn size after dsx RNAi than smaller males. In addition, females injected with dsx double-

stranded RNA were induced to grow horns, and the size of these new horns was regulated by 

their body size. Unlike stag beetles, however, large and small males differed significantly in 

their level of expression of dsx in horn tissue. This suggests that male-specific horn 

plasticity in dung beetles is regulated by dsx expression levels, unlike in stag beetles where 

Dsx isoforms instead modulate the response to endocrine signals of condition. Thus, we now 

have two possible mechanisms through which a conserved signaling gene, dsx, can link the 

expression of sexually dimorphic traits to organism condition- either through limiting the 

response to a signal of condition, or alternatively through differences in expression level of 

sex-specific transcripts in response to condition (Figure 1).

The recent advances in understanding the developmental regulation of weaponed beetles 

described above have revealed that dsx may functions as a master switch gene for the 

development of sexually dimorphic plasticity in insects. However, many important 

mechanistic questions remain. For example, the precise mechanism through how Dsx 

inhibits responsiveness to JH is unknown. It is possible that expression of sex-specific forms 

of Dsx ultimately exert their action on sexually dimorphic plasticity by affecting the 

expression of the JH receptor, methoprene-tolerant. In addition, as Dsx is a transcription 

factor, it regulates the expression of various genes in both a positive and negative manner 

[34–36]. Thus, to fully understand the developmental mechanisms underlying sexually 

dimorphic plasticity, the identification of downstream developmental pathways regulated by 

Dsx is critical.

Screening of downstream targets of Dsx via Next-Generation Sequencing

The revolution of next-generation sequencing has allowed researchers to search for potential 

Dsx regulated genes through large-scale screening of gene expression data. The first 

investigation of the role of Dsx regulation during the development of sexually dimorphic 
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plasticity was conducted by Ledón-Rettig and co-authors using RNA-seq analysis of dsx 
knockdowns in O. taurus [37].

This study identified over 400 potential Dsx targets uniquely expressed during growth of 

horns, with very few Dsx targets expressed in genitals and brain tissue, indicating that Dsx 

functions to coordinate growth of condition dependent sexually dimorphic tissues, but 

perhaps plays a much smaller role during development of sexually dimorphic structures that 

do not display condition dependence (i.e. genitals). However, as genital primordium is 

formed earlier than structures such as horns, the precise role of Dsx during genital 

development cannot be completely inferred from this experiment. Interestingly, the 

candidate genes identified through this analysis included members of the ecdysteroid and 

Hedgehog pathways, both of which have been previously implicated in condition dependent 

dimorphic growth [38,39]. Furthermore, using the list of putative Dsx targets identified in 

Onthophagus and comparing them to a list of genes differentially expressed between male 

and female horn tissue in the rhinoceros beetle Trypoxylus dichotomus [38, in revision] 

reveals 77 putative Dsx targets also differentially expressed in rhinoceros beetle horns, 

including the gene cubitus interruptus, another member of the Hedgehog pathway, further 

implicating both Dsx targets as well as the Hedgehog pathway as regulators of condition-

dependent sexually dimorphic growth of weapons. The finding that members of the 

Hedgehog pathway both contain putative Dsx binding sites and are differentially expressed 

in two different beetle species suggest a role for this pathway not only for condition 

dependent plastic responses, but also sexually dimorphic plasticity, and further supporting 

that Hedgehog signaling is a downstream target of Dsx during the development of sexually 

dimorphic plasticity.

Another approach to identify the downstream target genes is through the identification of 

Dsx binding sites in an organism’s genome. In Drosophila, for example, the Dsx binding 

sequence was experimentally identified via genome wide screening [34,36]. These 

screenings led to the detection of specific genes involved with sexually dimorphic trait 

development and evolution [35,36]. Based on a genome-wide enrichment analysis of 

putative binding sequences in insect species with increasing phylogenetic distances to fruit 

flies, Luo et al suggested that the proposed 13-nucleotide sequence present in Drosophila is 

unlikely to be conserved outside of the Diptera [34]. However, although the binding 

sequence might not be completely identical, the similarity of the binding sequence between 

Drosophila and Coleoptera was predicted, allowing the application of computational 

prediction of putative Dsx binding sites as seen in [37,41]. Moreover, the whole genome of 

at least one of the organisms described above is in process (Onthophagus taurus; [42,43]), 

therefore, genome-wide screening of Dsx binding sites can be achieved by using techniques 

already applied in studies of Drosophila Dsx, such as ChIP-seq [36]. However, considering 

the poor availability of antibodies in non-model organisms, antibody-independent methods 

such as genomic SELEX which utilizes tagged recombinant DNA-binding protein and 

fragmented genomic DNA to identify target sites of a given focal binding protein (such as 

Dsx), could be used instead [44,45].

These direct screening approaches should be combined with the current wealth of 

transcription level based RNA-seq screening on focal traits in beetles, this data is available 
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in O. taurus [37,46,47]; and is becoming available for at least one other beetle species [40], 

which can narrow down candidate genes to those regulated by Dsx. These large screening 

based approaches can shed light on the development of sexually dimorphic traits and the 

underlying mechanisms that generate plastic responses in these traits in the future. 

Importantly, combining large-scale screening efforts with functional investigations across a 

variety of beetles can help to understand the evolutionary history behind doublesex’s link to 

nutritional condition. Did this interaction evolve through gains of a Dsx binding site? If so, 

what kind of genes have gained Dsx binding sites? As described above, it seems as though 

genes in the Hedgehog signaling pathway may represent a universal acquisition of Dsx 

regulation to generate sexually dimorphic plasticity, but in order to fully answer this 

question we must leverage the quickly falling costs of next-generation sequencing [48] to 

investigate patterns of Dsx regulation across a larger variety of sexually dimorphic plastic 

weapons.

Perspectives

Much progress has been made in understanding the molecular basis of sexually dimorphic 

plasticity, at least in the Coleoptera, including understanding the physiology of upstream 

signals of condition [18,21,24,38,49], disentangling the plastic response of master regulator 

genes such as dsx to signals of condition [19,33,37,50], and identifying the downstream 

targets (such as the Hedgehog pathway) of master regulator genes [37,39]. However, there 

are many important questions remaining, and the current body of literature remains 

incredibly focused on beetle weaponry [51], possibly owing to the ease of RNAi knockdown 

in these insects, and the variability of RNAi effectiveness across other insect taxa [52]. We 

propose two new research foci for understanding the mechanisms of sexually dimorphic 

plasticity, namely an investigation into the interaction between infection status and Dsx 

function during development of beetle weaponry as well as breaking ground on a tractable 

insect model to find out if insights from beetle weapons are also shared by sexually 

dimorphic ornaments.

On the one hand, while it seems clear that Dsx is a critical link between nutritional condition 

and sexual dimorphism in beetle weaponry, nutrition is not the sole indicator of organismal 

condition. For example, while Dsx does control the development of condition dependent 

weaponry in Gnatocerus cornutus [53], the weaponry in this beetle demonstrates plastic 

responses to both nutrition condition (better-fed males developing larger mandible weapons, 

[12]) as well as infection status (males with a higher parasite load had smaller mandible 

weapons, [28]). Thus, to understand if Dsx is a universal link between sexually dimorphic 

traits and organismal condition, it is critical to understand how infection status interacts with 

Dsx, and we think that Gnatocerus represents an attractive model to understand this 

interaction.

On the other hand, many traits that exhibit sexually dimorphic plasticity in insects are 

ornaments or signals, not beetle weapons, and are not expected to play by the same rules 

[54]. Examples of condition-dependent ornaments include wing pigmentation in damselflies 

[55,56], wing melanization in dragonflies [57], forelimbs in grasshoppers [58], calling songs 

in crickets [59], and pheromone production in beetles [60]. Unfortunately, the function of 
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dsx itself, much less the effect of this gene on sexually dimorphic plasticity has been little 

studied outside of the context of condition-dependent weaponry and the evolution of insect 

sexual differentiation. One interesting model presents itself in the form of the sexually 

dimorphic, condition-dependent structures known as coremata present in many species of 

tiger moths [61]. The final size of these structures is dependent on the amount of 

pyrrolizidine alkaloids present in the larval diet [62,63], and they are used by male moths to 

release pheromones to attract females. Knockdown of sex-specific isoforms of Dsx in the 

model moth Bombyx mori led to disruption of sexually dimorphic traits [64], and it is likely 

that coremata development is similarly governed by sex-specific dsx splicing. As these 

structures are ornaments and not weapons, investigation of whether Dsx regulates sexually 

dimorphic plasticity in this organism would provide valuable insights into the universality of 

Dsx as a master regulator of plastic responses in insects, or determine whether the function 

of Dsx is only to link condition to the growth of weapons. Critically, the developmental 

morphology and histology of these structures has been well described for at least one moth 

species [65], RNA interference appears tractable in this moth family [66], and it also seems 

as though similar mechanisms to those seen in beetle weaponry (i.e. ecdysone signaling) 

may be critical for proliferation of these structures [67], thus making them an attractive new 

avenue of research.

It is also important to ask whether or not the mechanisms described above ultimately resolve 

genetic conflict as theory predicts [8]. One way to answer this question is to investigate 

whether there is evidence of large-scale sex bias in gene expression in traits demonstrating 

sexually dimorphic plasticity compared to other traits [68–70]. Next-generation sequencing 

data from dung beetles and stalk-eyed flies suggests that this is the case [47,68]. However, 

there is evidence from Gnatocerus beetles that the evolution of sexually dimorphic plastic 

responses does not, ultimately, resolve genetic conflict [71].

In summary, the evolutionary developmental model of beetle weaponry has provided a rich 

framework for the investigations into the molecular mechanisms underlying the development 

of sexually dimorphic plastic traits in insects. However, these studies have generally focused 

on the influence of a single signal of condition, nutrition, and it remains to be seen whether 

the results obtained in beetle weaponry can be generalized to other conditional signals, or to 

sexually dimorphic plastic traits that are not weapons. There is also much left unknown 

about the downstream targets of Dsx regulation and the precise mechanisms through which 

Dsx and endocrine signals of condition interact, although recent studies have also laid a 

strong foundation for further investigation of this question.
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Box 1

“Plasticity” is defined here as a nature of trait(s) whose expression pattern varies in 

response to an organism’s condition.

An organism’s condition is the sum of an organism’s genotype, physiological state, and 

epigenomic state [9,79].

When the response pattern of a trait is different between sexes, we defined such 

phenomena as “sexually dimorphic plasticity”.
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Highlights

• Sexually dimorphic plasticity has evolved to limit the impact of sexual 

conflict.

• Many insects have traits that are sexually dimorphic and plastically responsive 

to condition.

• Signals of condition and the downstream responses to condition differ 

between species.

• The gene doublesex seems to be critical to sexually dimorphic plasticity in all 

organisms studied.

• Next-generation technology allows the investigation of regulatory responses 

to doublesex.
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Figure 1. 
Sexually dimorphic plastic trait(s) develop downstream of both sexual regulation (mediated 

by Dsx) and environmental regulation (mediated by hormonal pathway(s)).

A variety of initial genetic signals determine the sex through upstream initiation of the sex 

determination cascade in insects. Examples include, X chromosome dose in Drosophila 
melanogaster [72], maternal input of transformer (tra) mRNA in Nasonia vitripennis [73], 

W-linked fem piRNA in Bombyx mori [74], the Y-linked M-factor, Mdmd in Musca 
domestica [75], and haplodiploidy and the csd allelic combination in Apis mellifera [76]. 

However, in all studied insects, these different determination signals converge on the 

conserved transcription factor Dsx, which functions as a downstream master switch gene for 

both sex determination and differentiation (see text). Various environmental factors can 

affect an animal’s physiological state, typically via hormonal regulation, and these endocrine 

signals the expression of various plastic traits. Accordingly, many traits that are both sex-

specific and plastic are also under the control of this endocrine regulation, and thus these 

endocrine signals interact with Dsx in a variety of ways to ultimately generate trait 

expression that is sensitive not only to an organism’s sex, but also their condition.

Arrows 1–4 indicate various outcomes of Dsx regulation across insects. Dsx can regulate 

sexually dimorphic traits that do not exhibit plastic responses, such as yolk protein for ovary 

development and the gene lozenge during Drophila female genital disk development ([77], 

arrow 1), or through regulation of the gene bric-a-brac during development of abdominal 

pigmentation in Drosophila ([78], arrow 2). Critically to this review, Dsx can regulate the 
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expression of sexually dimorphic plastic traits in two ways, either directly through changes 

in expression levels of dsx as in dung beetle horns ([33], arrow 3), or through sex-specific 

splice variants regulating responsiveness to endocrine signals ([19], arrow 4). It is possible, 

as suggested by the morph-specific expression patterns of Dsx target genes in dung beetle 

horns [33] that dsx may itself be regulated by endocrine signals (arrow 5), although there is 

no direct evidence of this relationship. It is important to note that, while the specific genes 

targeted by Dsx during the regulation of sexually dimorphic plasticity are unknown, 

evidence from next-generation sequencing experiments have suggested that developmental 

toolkit genes such as hedgehog may be directly regulated by Dsx expression level (arrow 3), 

and it is likely that JH signaling genes may also be regulated by Dsx (arrow 4). However, in 

both cases these predictions need to be confirmed through both functional experiments and 

through the use of techniques such as gSELEX, which allow for more targeted investigation 

of the binding sites regulated by Dsx, as well as allowing the investigation of genes that are 

regulated by Dsx that are not involved in the development of sexually dimorphic plastic 

traits (arrows 1 and 2).
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