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Abstract

The integrity of the interferon (IFN)-vy circuit is necessary to mount an effective immune response
to intra-macrophagic pathogens, especially Mycobacteria. Inherited monogenic defects in this

circuit that disrupt the production of, or response to, IFN-y underlie a primary immunodeficiency
known as Mendelian susceptibility to mycobacterial disease (MSMD). Otherwise healthy patients
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display a selective susceptibility to clinical disease caused by poorly-virulent mycobacteria such as
BCG (bacille Calmette-Guérin) vaccines and environmental mycobacteria, and more rarely by
other intra-macrophagic pathogens, particularly Sa/monellaand M. tuberculosis. There is high
genetic and allelic heterogeneity, with 19 genetic etiologies due to mutations in 10 genes that
account for only about half of the patients reported. An efficient laboratory diagnostic approach to
suspected MSMD patients is important, because it enables the establishment of specific
therapeutic measures that will improve the patient’s prognosis and quality of life. Moreover, it is
essential to offer genetic counseling to affected families. Herein, we review the various genetic and
immunological diagnostic approaches that can be used in concert to reach a molecular and cellular
diagnosis in patients with MSMD.
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Mycobacteria; intracellular pathogens; interferon gamma; primary immunodeficiency; diagnosis;
MSMD

Introduction

Mendelian susceptibility to mycobacterial disease (MSMD) is a primary immunodeficiency
(PID) characterized by a selective predisposition in otherwise healthy individuals to disease
when infected by bacille Calmette-Guérin (BCG) vaccines or environmental mycobacteria
[1,2]. Itis included in the PID classification by the IUIS (International Union of
Immunology Societies) in the VIt group of defects in Intrinsic and Innate immunity [3].
Immunity to mycobacteria relies on the IFN-y (interferon) circuit (Figure 1), as shown by
the study of mice both /n vitro and in vivo, and by the study of humans with MSMD. Pattern
recognition receptors are important sensors of mycobacteria after infection; however, their
role in generating a protective response is apparently redundant [4,5]. After bacilli/us
phagocytosis, antigen-presenting cells (APC), including macrophages, are activated and
produce tumor necrosis factor (TNF)-a,, interferon-stimulated gene (1SG) 15, and interleukin
(IL)-12p70, which induce T helper (Th) cells to produce IFN-y and differentiate into Thl
cells. This creates a positive loop between the T cell and the APC, which enhances the
former’s microbicidal capacity through production of oxygen reactive species (ROS) [6-10].

IL-12 (IL-12p70) is a heterodimer composed of a p40 subunit (in common with IL-23) and a
p35 subunit that bind 1L-12RB1 and IL-12RB2, respectively, activating both natural killer
(NK) and Th cells [11]. Janus-associated kinase 2 (JAK2) binds to IL-12RB2 subunit and
tyrosine kinase 2 (TYK?2) to IL-12RB1 subunit. After IL-12p70 binds to the IL-12 receptor
(IL-12RP1-I1L-12RP2 dimer), TYK2 and JAK2 come closer and JAKS are trans-
phosphorylated, thereby phosphorylating the receptor chains. Signal transducer and activator
of transcription 4 (STAT4) binds to phosphorylated IL-12Rp2, becomes auto-
phosphorylated, and dimerizes. Then, STAT4 homodimers translocate to the nucleus, where
they bind to the /FNG promoter, inducing its transcription [12]. In parallel, secreted free
ISG15 from APCs also promotes IFN-y production by T cells and CD3'CD56* NK cells,
which are considered the key 1SG15-responder leukocytes [7,13]. Thus, ISG15 and
IL-12p70 act synergistically to induce IFN-y production.
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IFN-+y response in APCs, especially in macrophages, is mediated by its binding to IFN-y
receptor (IFN-yR) 1 and IFN-yR2, followed by internalization and signalization via the
receptor complex. After IFN-y binding, the two subunits of the receptor, as well as JAK1
(bonded to IFN-yR1) and JAK2 (bonded to IFN-yR2) come closer. JAK1 and JAK2 then
cross-phosphorylate and phosphorylate IFN-yR2, creating a docking site for STAT1. After
binding, STATL1 is activated by phosphorylation of tyrosine 701 and dimerizes, forming -
activated factor (GAF) and translocating to the nucleus where it binds to y-interferon-
activated site (GAS) of ISG, promoting its expression [14,15]. MSMD is caused by
monogenic defects in different steps of this circuit (Figure 1), which impair the production
of, or the response to, IFN-vy, thereby disrupting protective immunity to mycobacterial
infection.

Although the first clinical description of MSMD was published in 1951 [16], it was not until
1996 that the first genetic etiology of MSMD, autosomal recessive (AR) IFN-yR1
deficiency, was described in an infant with fatal BCG infection [17,18]. Afterwards, defects
in other genes encoding proteins involved in IFN-y immunity have been discovered,
affecting both IFN-y production (/L12RB1 [19-21], /L12B[22,23], ISG15[7,24], NEMO
[25], /RF8[26], and TYKZ2[27]), and cellular responses to IFN-y (/FNGRI[17,19,28-31],
IFNGRZ2[32,33], STAT1[34-36], /RF8[26] and CYBB [25,37,38]). There are currently 19
different genetic etiologies of MSMD that involve the impact of the mutation (null or
hypomorphic), the mode of transmission in the family (dominant or recessive), the
expression of the mutant allele (absent or detectable), or the function affected by the
mutation (one domain or another, in the case of a detectable protein); the most common
defect is IL-12RB1 deficiency, and the second most common, IFN-yR1 deficiency [2,27,39].
The number of genetic etiologies is likely to increase in the coming years. With so many
forms, the clinical boundaries of MSMD syndrome and of each genetic etiology are not yet
fully defined; the disease spectrum ranges from the complete forms of IFN-yR deficiencies
in the most severe cases of MSMD, with an outcome that leads to death if hematopoietic
stem cell transplantation (HSCT) is not performed [17,40], to other defects (for example,
IL-12RB1 or IL-12p40 deficiencies), in which patients can be treated with exogenous human
recombinant IFN-y (hrIFN-vy) in addition to antibiotics [20,21]. For this reason, accurate
genetic diagnosis, and the distinction between complete and partial defects, as well as the
careful description of the immunological signs, are of the utmost importance to ensure the
best possible management of MSMD patients.

Published immunological approaches for the molecular and cellular diagnosis of MSMD are
diverse. Some are complex and results, even among healthy controls, can be highly variable.
[19,21,23,30,39]. Nevertheless, they are necessary, since they facilitate targeted gene
sequencing and the prediction of effectiveness of adjuvant therapies such as exogenous
hrIFN-y. Our main aim is to summarize the current warning signs of MSMD, as well as the
functional and genetic approaches available for the study of the IFN-y circuit, both in
clinical practice and in research, and their limitations, in order to guide physicians and
immunologists in the diagnosis of MSMD.
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Infectious spectrum of MSMD

Patients affected with MSMD are otherwise usually healthy and can present a wide range of
severity of the disease, from local and recurrent to disseminated and lethal. The severity of
the disease depends on the type of underlying defect (complete or partial). Clinical disease is
usually caused by environmental mycobacteria (EM), and BCG after infant vaccination,
which is the most common, and sometimes the only, infectious event [2,41]. Some patients
are also susceptible to Mycobacterium tuberculosis [42]. Different etiologies of MSMD,
especially 1L-12RB1 [2,42,43], IFN-yR1[2,29], STAT1[2,34], and I1L-12p40 [2,23]
deficiencies, were found in patients with severe tuberculosis (TB) (disseminated/
extrapulmonary or recurrent TB). There are currently 23 reported patients with tuberculosis
due to inborn errors of IFN-y, 13 of whom are IL-12RB1-deficient; these include six who
did not suffer from any other mycobacterial disease (BCG, EM)[2,42,43]. Interestingly,
MSMD underlying Mycobacterium tuberculosis infection restricted to the lung has been
described not only in IL-12RB1 deficiency, but also in IFN-yR1 deficiency [30,44,45].
Besides mycobacteria, there is a wide range of causative organisms of disease that includes
Salmonella, fungi (especially Candlida), other intra-macrophagic bacteria, and parasites
(Lefshmania, Toxoplasma [46]). MSMD usually, but not always, manifests in childhood [2].

Interestingly, specific clinical manifestations have been associated with specific gene
defects: the correlation of pathogens and/or clinical forms with all described genetic
etiologies of MSMD was nicely reviewed by Bustamante et al. [2]. Briefly, patients with
IFN-+y production defects caused by mutations in /L12RB1 and /L12B (encoding IL-12Rp1
and IL-12p40, respectively) commonly suffer from disease caused by Sa/monella (recurrent
or not) and, to a lesser extent, by Candida. Patients with IFN-y production defects do not
usually present with viral infections. Regarding IFN-y response defects, the presence of
multifocal osteomyelitis should raise the suspicion of a partial autosomal dominant (AD)
IFN-yR1, partial AR, or AD STAT1 loss of function (LOF) [36,47-53]. Patients with
complete deficiency in IFN-yR1 and IFN-yR2, abolishing IFN-y response, are more prone
to viral diseases such as cytomegalovirus, respiratory syncytial virus and varicella-Zoster
virus, among others [2].

Laboratory testing

Who should be tested?

Children or adults without any other hemato-immunological conditions who develop
recurrent or severe/disseminated mycobacterial infectious disease caused by BCG, EM, M.
tuberculosis, or Salmonella alone or in combination with other intracellular pathogens or
viruses should be tested. Specific warning signs of MSMD are presented in Table 1.

Defects in the IFN-vy circuit are not the only PID predisposing to mycobacterial disease
[3,42]. Before performing specific MSMD tests, severe combined immunodeficiency,
combined immunodeficiency and chronic granulomatous disease must be ruled out [54],
because they are more common than MSMD and they confer susceptibility to various
infectious diseases including mycobacteria.
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Other less common PIDs confer susceptibility to various infectious diseases including
mycobacteria and should also be ruled out in parallel with MSMD testing: 1) X-linked NF-
kB deficiency: anhidrotic ectodermal dysplasia with immunodeficiency (XR-EDA-ID)
syndrome. Patients suffering XR-EDA-ID are susceptible to a wide range of pathogens
(pyogenic bacteria, viruses) including mycobacteria. Immunologically, these patients present
altered NK cell mediated cytotoxicity and TNF-a production after Toll-like receptor
(TLR)-4 lipopolysaccharide (LPS) stimulation [2,55-57]; 2) GATA2 deficiency, particularly
in otherwise healthy adults with disseminated EM infections [58,59]. Patients with GATA2
deficiency show susceptibility to viral infections and mycobacteria and usually present with
severe circulating monocytopenia (78% of patients), and B (86% of patients) and NK (82%
of patients) [58,59] lymphopenias. Characteristically, patients with GATA2 deficiency show
specific loss of the CD5619M sybset [60]. Due to these characteristic myeloid and lymphoid
cytopenias, consideration of GATA?2 deficiency as a genetic etiology of MSMD is currently
open to debate, because MSMD-causing defects occur in otherwise healthy subjects without
other significant immune abnormalities except for the defect in the IFN-+y circuit; 3) severe
innate PID, predisposing to mycobacteria and viruses (AR STAT1, AR STAT2, AR JAK1,
and AR interferon regulatory factor 8 (IRF8) deficiencies [26,61-68]) or mycobacteria and
fungi (AR RAR related orphan receptor C (RORC) deficiency [69]).

Beyond PID, other causative conditions such as immunosuppressive drug exposure,
including anti-TNFa antibodies, azathioprine, cyclophosphamide, mycophenolate, and
cyclosporine, need to be ruled out [70,71]. In addition, long-term potent oral steroids can
lead to secondary mycobacterial infection [72]. Also, acquired immunodeficiency by HIV
infection [42,71,73] and malignancies such as hairy cell leukemia need to be tested for [74—
77]. Finally, patients who have neutralizing anti-IFN-y autoantibodies can develop MSMD-
like clinical manifestations; they are included in group IX of the IUIS classification, which is
called PID phenocopies [3]. Patients with neutralizing anti-IFN-y autoantibodies have
impaired IFN-y production and STAT1 phosphorylation in the presence of autologous serum
that is rescued after lavage. This phenomenon has been mostly, but not exclusively, observed
in adult Asian populations [78-81].

Baseline IFN-y in plasma

Detection of baseline IFN-y in plasma by enzyme-linked immunosorbent assay (ELISA) is a
simple technique that can help to rapidly identify patients with complete IFN-yR deficiency
[2,82,83]. These patients present with increased levels of IFN-y in plasma; patients with
partial recessive forms of IFN-yR deficiency present with detectable levels of IFN-y while it
is undetectable in other MSMD forms and in healthy controls [30,33,40,82-84]. The
threshold to consider a patient with a complete defect as a candidate for HSCT was defined
as 2 standard deviations above the mean level in patients with partial AR IFN-yR1 defects
(>80 pg/mL), while observed levels in complete IFN-yR deficiency were 150 1700 pg/mL
[82,83]. Several years later [82], Sologuren et al. published a case series of partial AR IFN-
vR1 defects showing a range of baseline IFN-y of 51 222 pg/mL, with an outlier of 925
pg/mL [30]. They suggested that the very high concentration of baseline IFN-y observed in
the outlier could reflect an acute mycobacterial disease. Thus, the infectious state of the
patient needs to be considered, as baseline IFN-y plasma levels may vary in acute infection
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compared with the convalescent phase [30], making it possible that levels may overlap in
partial AR IFN-yR1 or IFN-yR2 deficiency in rare cases [30,33,83]. Therefore, if possible,
baseline IFN-vy should be measured at least one month after resolution of acute infection. In
any case, no IFN-y is usually detected in the plasma of healthy individuals [82,83]. Plasma
samples need to be diluted at least 1:2 to avoid interference from other proteins such as
fibrinogen.

To optimize the ELISA technique, IFN-y measurements on patients’ plasma samples should
be batched. Then the cost of an individual determination of IFN-y can range from 1-12€,
depending on the kit used. The selection of the ELISA kit will also determine the hands-on
time required (3 h to approximately 6-8 h), depending on whether or not an overnight
sensitization step is required. Optimization can lead to an increased response time (turn-
around time) when returning the results to the clinician if the number of patients is low.

Cytokine production

The gold standard for the study of IFN-y circuit integrity, cytokine production, was
developed by Feinberg et al. [19]. This assay is based in the measurement of 1L-12p40,
IL-12p70 and IFN-vy after stimulation of whole blood or peripheral blood mononuclear cells
(PBMCs). Stimulation conditions comprise live BCG stimulation at a multiplicity of
infection of 20 BCG/leukocyte with or without hrlL-12p70 (20 ng/mL), or hrIFN-y (5000
IU/mL) co-stimulation for 18 h (for IL-12 measurement) or 48 h (for IFN-y and I1L-12
measurements).

For healthcare practices and laboratories subject to ISO 15189 European regulations, the use
of BCG as a stimulus impedes the standardization of the protocol. An alternative that avoids
the use of BCG is the use of mitogens as follows: phytohemagglutinin (PHA; 1%) [85] or
LPS (from Salmonella minesotta; 100 ng/mL) in combination with hrIL-12p70 or hrIFN-vy
(102, 103 and 104 1U/mL) [30]. The output of both BCG and mitogen whole blood or PBMC
stimulation is similar (measurement of IL-12p40, IL-12p70 and IFN-vy). Detection of the
cytokines produced may be performed with ELISA or multiplex assays by means of flow
cytometry (Luminex Technology (Luminex, Austin, TX, USA) or cytometric bead array
systems [19,30,40]. As the interval between blood extraction and performance of testing
reduces the cytokine production [21], it is important to take this into account when analyzing
the results in samples that are assayed 24 h after the blood extraction.

Results obtained from the cytokine production assay will help to distinguish between IFN-y
response defects and IFN-y production defects. Complete forms of IFN-yR1, IFN-yR2,
IL-12RB1 or IL-12p40 can be detected with this approach; however, some genetic etiologies
of MSMD, such as CYBB or AD IRF8 deficiency, will show normal responses to this
stimulation [26,37,86]. IFN-y production defects are characterized by the absence or low
production of IFN-vy after BCG stimulation. If there is no recovery of IFN-y after
hrlL-12p70 co-stimulation, IL-12Rp1 deficiency should be studied first [21], followed by
ISG15 or TYK2 deficiencies [7,27]. Patients with IL-12p40 deficiency produce low or very
low levels of IFN-y in response to BCG stimulation, which can be rescued, at least partially,
with exogenous hrlL-12p70. In complete IFN-y response defects (complete IFN-yR1 and
IFN-yR2 deficiencies), there is no response to hrIFN-y in terms of IL-12 production
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[19,29,85,87-92]. On the other hand, in partial IFN-y response defects (partial AR IFN-
vYR1/IFN-yR2 and partial AD STAT1 LOF deficiency), the response to hrIFN-+y is impaired
in a dose-dependent manner, but not abolished [28-30,34,36,45,93-98].

In nuclear factor-kappa B essential modulator (NEMO)-deficient patients, IL-12 production
is normal after BCG stimulation but impaired after PHA/CD3 PBMC stimulation [38,99].

It is difficult to establish cut-off values for diagnosis, because published cases cannot always
be compared due to differences in the techniques used for cytokine production
determination. There have been attempts to study cohorts of IL-12RB1 and IL-12p40
patients [19,23,100] functionally: i) in IL-12Rp1 deficient patients, 1L-12p70 production
was normal but IFN-y production was low or null after BCG (4 — 726 pg/mL) and did not
increase after IL-12p70 co-stimulation [19,21]; ii) IL-12p40 deficient patients showed no
IL-12p70 production and a decreased IFN-y production that in most cases was undetectable
or below 100 pg/mL; only one patient showed IFN-y production of 1000 pg/mL [19,23].
Patients with complete deficiency of IFN-yR1 or IFN-yR2 showed normal production of
IFN-+y but failed to induce I1L-12p70 after BCG or BCG + IFN-vy. Expected results of
cytokine production in the different genetic forms of the IFN-vy circuit are summarized in
Tables 2 and 3.

The main advantage of this technique is that it is the test that most closely assesses the
patients’ real immune function. However, it also has limitations: by itself, it only clearly
detects complete defects, while partial defect identification can be difficult. To date, the
specification of cut-off values to define disease for routine healthcare practice has not been
possible. Although it has limitations, cytokine detection after whole blood/PBMC culture is
a powerful option with room for improvement.

The culture itself takes 48 h, but the hands-on time is limited, and depends on if it is
performed in whole blood (30-45 min) or in PBMCs (120-165 min). Depending on the
concentration and the source of the stimuli used, the costs may vary. In this technique, an
economic limitation may be the acquisition of the stimuli for the first time, because some are
expensive, but they can be used for many tests. For the detection of secreted cytokines, the
most economic option is to perform ELISA for IFN-y and for IL-12p70, with an estimated
cost from around 6-7€ to 80-100€ per individual?, but it will vary depending on the
duplicates run, the assay conditions and the chosen kit. This technique requires the same
hands-on time as IFN-y baseline detection, including the possibility that optimization of the
technique by batching of patients can lead to increased response timesP.

aApproximate costs of the different techniques are calculated for each sample processed to which the cost of healthy (normal)
control/s sample/s must be added; only reagent-derived costs are included. It is important to take into account that prices are
approximate and that they may vary depending on the supplier/country or type of kit used. Moreover, when evaluating the costs of
implementing these techniques, other costs need to be considered, such as sample preservation, including frozen PBMCs and plasma,
DNA extraction and preservation, and general materials such as phosphate buffer saline, plastic materials and culture media. Because
all laboratories may not have a flow cytometer, they may need to use flow cytometry facilities, which likely charge the users for the
use of the cytometers and for technical assistance. This is an important variable to consider in all flow cytometry techniques as it may
significantly increase the final cost.

Hands-on time is an estimation of the time needed to perform the technique; however, the response time (turn-around time) can vary
depending on different factors including i) the need to batch patient samples, ii) the number of patient samples, and iii) the time
required for analysis (from receipt of specimen to reporting the result).
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Cytometric detection of extracellular receptors

IFN-yR1/IFN-yR2 expression—IFN-yR detection by flow cytometry is a fast technique
for the detection of complete forms of AR IFN-yR1 and AR IFN-yR2 deficiency with
absent protein expression in the membrane of monocytes; it can be performed in both WB
and PBMC:s (Figure 2). However, different mutations in /FNGRI and /FNGRZ can lead to
distinct patterns of expression (Table 1). In partial AR IFN-yR1 defects, there is usually a
weak expression of the receptor [2,30], and partial AD IFN-yR1 deficiency leads to
increased protein expression due to mutations in the recycling motif [2,31]. In case of
expression of the receptor, its detection could be affected by the antibody used: for example,
IFN-yR1 in cells of patients with the C77Y complete AR IFN-yR1 defect would be detected
with the gR99 clone but not with the gR38 clone [28]. Similarly, there are some AR IFN-
YR2 defects with protein expression, and partial AD/AR defects show low but detectable
IFN-yR2 in the membrane of monocytes [2,33,92]. The currently-available antibodies for
the evaluation of IFN-yR2 expression are not optimal.

We estimate that cytometric evaluation of IFN-yR1 should allow the identification of
approximately 80% of complete AR IFN-yR1 deficiencies; however, normal expression of
IFN-yR does not exclude a deficiency. In such cases of expression of normal receptors but
suspected MSMD, other techniques that evaluate cellular responses to IFN-vy, such as
IL-12p70 production, STAT1 phosphorylation in response to increasing doses of IFN-y or
IFN-vy binding studies, should be used.

Flow cytometry staining for the usual number of samples (1-2 patients and a control) takes
about 90 min of hands-on timeP. The cost of antibodies is around 8€ per individual@, but as
for all techniques, it can vary depending on the laboratory provider and region.

IL-12RB1 expression—IL-12RP1 deficiency is the most common genetic form of MSMD
[2]. IL-12RB1 expression detection with flow cytometry is performed in PBMCs after 72 h
of stimulation with PHA [21] (Figure 2). As stated for IFN-yR, not all IL-12RB1 described
defects have an absence of IL-12RB1 in the membrane of activated lymphocytes (Table 3)
[21,101]. Only two mutations lead to a detectable but nonfunctional expression of IL-12RB1
protein in the membrane; one is a large deletion (700 + 362_1619-944del) in /L12RB1
[102], and the other is caused by an N-terminal signal peptide stop-gain homozygous
mutation [103]. Cytometric determination of IL-12RB1 expression is a powerful and easy-
to-perform technique that allows the detection of more than 99% of the described mutations.
In the absence of the protein in the membrane of activated lymphocytes, genetic studies of
/L 12RpB1 need to be performed, but its presence does not rule out a defect. In such cases, an
evaluation of cellular responses to 1L-12 is needed.

From receipt of the blood to the acquisition of results, this technique takes 4 days, with a
hands-on time of approximately 2 h and 15 min (90 min on day 1 for the PBMCs isolation
and stimulation, and approximately 45 min for the staining and acquisition in the cytometer
on day 3P, The estimated antibody cost is around 10€ per individual®.

IFN-y binding studies—Because some defects in IFN-yR do not affect their membrane
expression, IFN-y binding studies can help to evaluate their functionality. These techniques
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may be performed with radiolabeled 122IFN-y or by flow cytometry [30-32]. For flow
cytometry, PBMCs are first incubated with hrIFN-y for 30 min, and then washed and
incubated for 20 min with an anti-IFN-y antibody. If the anti-IFN-y antibody is
fluorescence-labeled, cells can be directly acquired with a flow cytometer [32]; otherwise,
further steps are needed [30]. With this technique, membrane-expressing IFN-yR1 defects
can be easily detected. IFN-y-binding assays with flow cytometry do not yield consistent
results with Epstein-Barr virus-transformed B cells (EBV-B cells), and when using PBMCs,
gating on monocytes is required [30]. Some MSMD etiologies (AD IFN-yR1 deficiency)
will escape this detection [31].

This technique, performed in PBMCs, includes four incubation steps. From receipt of the
blood sample to acquisition of results in the cytometer, the technique can be performed in
approximately 5 h for a patient sample, a health control and a negative control (medium),
and the cost of consumables is approximately 34€2. However, this technique was specifically
developed to analyze whether a particular mutation in the IFN-yR1 confers a partial
recessive or a complete recessive deficiency, and increasing doses of IFN-y (1-10,000
IU/mL) are required for this analysis; in such a case, the cost and the hours of work may
increase to 120€2 and 6-6.5 hP, respectively. To our knowledge, only three patients and three
healthy controls have been evaluated so far. Therefore, it is particularly difficult to provide
sensitivity and reference ranges for this non-radioactive and flow cytometry-based
technique. In addition, the antibodies used, and the model of the flow cytometer and its
configuration may significantly affect the results. In our hands, mean fluorescence intensity
(MFI, binding of the anti-IFN-y antibody to monocytes) increases 4- tol7-fold in cells
incubated with as low as 1 IU IFN-y/mL compared to cells incubated with medium alone.
No or a very low MFI is observed in cells from patients with partial AR IFN-yR1 deficiency
at the same concentrations of IFN-y. At high IFN-y concentrations, binding (MFI) is similar
to or only slightly diminished in cells from patients with partial AR IFN-yR1 deficiency
compared to cells from healthy controls.

Cytometric detection of phosphorylated STAT molecules

STAT proteins play a crucial role in cytokine signaling. They bind to activated extracellular
receptors, and then phosphorylate, dimerize, and translocate to the nucleus to bind to
specific DNA regions and activate gene transcription [14,15,104]. The two most relevant
STAT molecules implicated in the IFN-vy circuit are STAT1, which is activated after IFN--y/
IFN-a stimulation, and STAT4, which is activated after IL-12p70 stimulation [105]. Flow
cytometric determination of STAT1 phosphorylation can be performed in both whole blood
and isolated PBMCs, while STAT4 phosphorylation in response to IL-12p70 needs to be
performed in activated lymphocytes. First, cells are stimulated with different cytokine
concentrations for 15-30 min. Then cells are fixed and permeabilized with special buffers
that maintain the phosphorylation state of the cell, are stained with anti-phosphorylated
STAT antibodies in conjunction with the extracellular antibodies of choice, and are acquired
with a flow cytometer [34,36,102,106] (Figure 2). It should be stressed that when working
with anti-STAT antibodies, proper negative controls are mandatory, and, if possible, the
results should be corroborated by other techniques such as western blot, to avoid artifacts.
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Of note, STAT4 phosphorylation evaluation is limited by the lack of a proper antibody to
detect total STAT4.

STAT1 phosphorylation—STAT1 phosphorylation is a useful technique to test the
response to IFN-y, as /FNGR mutations may or may not lead to abolished receptor
expression on the surface of monocytes [2,28,30,31,33,92]. Complete defects in /FNGR1
and /FNGRZ2 genes lead to abolished STAT1 phosphorylation in response to hrlIFN-y and
normal phosphorylation in response to hrIFN-a, respectively [32,88,92,107], while partial
defects lead to impaired, but not abolished, STAT1 phosphorylation in a dose-dependent
manner, with normal responses at high doses [30,33,92,94,95,107-109]. When stimulating
cells for STAT1 phosphorylation analysis, the IFN-y dosage is a key factor to consider; a
range from 10-10° 1U/mL of hrIFN-y or hrIFN-a is used, with 103 IU/mL and 10° 1U/mL
being the most common concentrations [30,31,34,35,62,93,96,107].

It is not only mutations affecting STAT1 phosphorylation that cause loss of function.
Although Tyr701 phosphorylation is the first step for STAT1 function, mutations on other
STAT1 domains implicated in later events can also impair its function. AD STATI LOF
mutations in the tail segment domain or SH2 domain (with the exception of the M654K
mutation [106]) lead to impaired STAT1 phosphorylation in response to hrlIFN-y but not
hrIFN-a [35,36,93]. In contrast, mutations in the DNA-binding domain can lead to both
normal (E320Q and Q463H mutations [34]) and altered (E157K and G250E mutations
[110]) STAT1 phosphorylation. Impaired or abolished phosphorylation to both hrlIFN-y and
hrIFN-a suggests a STAT1 deficiency (which is considered a combined immunodeficiency if
itis AR or an MSMD if it is AD), while normal phosphorylation does not exclude it. STAT1
phosphorylation after low-dose IFN-y stimulation will detect almost all IFN-yR defects and
approximately 70% of STAT1 defects. Furthermore, it has been recently reported that
patients with AD STAT1 gain of function mutations, who usually develop chronic
mucocutaneous candidiasis, can also develop mycobacterial infectious disease [110].

STAT1 phosphorylation determination is a very informative technique that can be performed
in approximately 4 hb, depending on the number of tubes to be processed, with consumable
costs of about 40€ per individual? tested.

STAT4 phosphorylation—STAT4 is an essential part of the downstream signaling
cascade that occurs after IL-12 stimulation. After IL-12 binding to the IL-12 receptor,
IL-12RpB1 binds TYK2 and IL-12RB2 associates with JAK2, which initiates trans-
phosphorylation of the receptors, creating docking sites for STAT4. At these sites, STAT4 is
phosphorylated at tyrosine 693, dimerizes, and undergoes nuclear translocation where it
binds to its target DNA sequences [12]. The STAT4 phosphorylation cytometric assay needs
to be performed in stimulated PBMCs cultured with IL-2 and then stimulated with
hrlL-12p70; the whole assay takes approximately 1 week [102,111]. Abolished STAT4
phosphorylation in response to rhiL-12p70 has been observed in both IL-12Rp1-[101,102]
and TYKZ2-deficient patients [27]. Of interest, STAT4 phosphorylation after IFN-a. is normal
in IL-12RpB1-deficient patients [102] and impaired in TYK2 deficient patients [27].
However, STAT4 phosphorylation results must be interpreted with caution due to the lack of
a proper STAT4 antibody to assess total STAT4 in the cell with flow cytometry. Bi-allelic
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mutations in STAT4 have not been described to date. For this reason, STAT4 is meant to help
only in the diagnosis of other forms of MSMD.

As explained above, a pre-stimulation step is needed for the detection of phosphorylated
STAT4 in response to IL-12p70. For this reason, the technique takes 7 d, with a hands-on
time of approximately 90 min on day 1 for PBMC isolation and pre-stimulation, 15 min on
day 4 for change of medium, and approximately 4 h for stimulation, staining and acquisition
in the flow cytometerb, with a cost of approximately 30€ per individual?.

Detection of anti-IFN-y autoantibodies

Another form of MSMD-like susceptibility to mycobacteria is due to the presence of
neutralizing anti-IFN-y autoantibodies in the blood of affected patients. Although it is not
strictly an MSMD-diagnosis technique, we have included it in this review because this
condition is a phenocopy of MSMD and should be included in the differential diagnosis of
MSMD, especially, but not exclusively, in adults of Asian descent. The most direct approach
for detecting IFN-y autoantibodies is by using an ELISA system and by observing IFN-y
level recovery after the addition of exogenous IFN-vy to patient serum. In both situations, the
level of autoantibodies can be titrated by performing an ELISA against anti-IFN-y-
antibodies with different serum dilutions or by increasing the concentration of exogenous
IFN-7y in the recovery strategy [78-80,112-114]. In addition, it has been shown recently that
undetectable or very low IFN-y production in the QuantiFERON-TB Gold In-tube assay
(Quiagen, Hilden, Germany) is a warning sign for the presence of anti-IFN-vy antibodies[81].
If performed with ELISA, the cost? and the timeP needed to perform the test may be similar
to those required for the detection of baseline IFN-y levels in plasma.

Particular considerations in some MSMD

Some genetic defects of MSMD present with characteristic immunological features. For
example, in partial AD IRF8 deficiency, there is a loss of CD11c¢*CD1c* blood myeloid
dendritic cells [26]. MSMD patients with CYBB deficiencies present an abolished
respiratory burst in monocyte-derived macrophages in response to purified protein derivative
(PPD) or BCG, and in EBV-B cells. However, this oxidative burst defect cannot be detected
in a routine dihydrorhodamine test, since monocytes, neutrophils, and monocyte-derived
dendritic cells have normal responses [37,115]. Although these are not common tests for
MSMD diagnosis, it is important to have these special features in mind in suggestive
patients.

Interpretation of results

Cytokine production is the gold standard in the diagnostic pursuit of an inborn error of 1FN-
v underlying MSMD. Complete defects often lead to abolished production of, or response
to, IFN-y (Tables 2 and 3). However, although it has not been possible to establish broad
cut-off values, it may be possible to have in-house healthy-control range values. In the case
of blood samples that have to be shipped, samples from a healthy control are required. As
there is great variability in this control group, the lower 101 percentile of the control cohort
may define a weak response. Cytokine production data is robust for complete deficiencies
but may show limitations in partial defects.
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Cytometric determination of receptor presence can be a fast, easy tool to detect complete
forms of IFN-yR1, IFN-yR2, and IL-12RpB1 deficiencies, as their absence confirms the
defect. However, the presence of these receptors does not exclude an underlying defect.
Functionally, normal phosphorylation of STAT1 in response to IFN-vy rules out complete
defects of /FINGR1 and /FNGRZ, and virtually all partial defects. Partial /FNGRI and
IFNGRZ may present STAT1-phosphorylation but only at high concentrations of hrlIFN-y.
Abolished STAT1 phosphorylation in response to both hrIFN-y and hrIFN-a is a sign of AR
STAT1 defect. If phosphorylation is abolished only after hrIFN-y stimulation, IFN-yR
deficiency must be suspected; in contrast, if it is abolished or impaired after hrIFN-a
stimulation, the 7YK2gene may be studied. Abolished STAT4 phosphorylation after
IL-12p70 stimulation suggests a defect in IL-12p70 receptor or in TYK2 (Figure 3). The
presence or absence of IL-12RB1 and STAT1 phosphorylation after hrIFN-a will help to
differentiate between these two defects.

Genetic approaches

For a full diagnosis and genetic counseling, genetic studies are needed. Sanger sequencing is
a good option if functional tests have identified specific candidate genes. Otherwise, next
generation sequencing (NGS) will be less time-consuming and may cost less [116]. For
healthcare practice, gene panels with known genes are the option with the best cost-
efficiency ratio. However, a great proportion of patients with clinical signs suggestive of
MSMD do not show mutations in the known disease-causing genes [2]. In such cases, whole
exome sequencing (WES) or whole genome sequencing (WGS) may be required. WGS may
reveal mutations in non-coding regulatory regions that would be undetectable by WES, but
WGS is more expensive and difficult to interpret than WES. It is important to emphasize that
new mutations require further functional confirmation. Different strategies are proposed in
order to study the deleterious effects of specific mutations [110]. Recommended guidelines
for considering single-patient mutations to be disease-causing have been recently published
[117]. An increasingly-used approach for the evaluation of PID (including MSMD) is to
start with NGS either with a gene panel or with WES/WGS and then to perform functional
tests to confirm the mutations found. Genetic filiation of patients (achievement of a genetic
diagnosis) is of utmost importance, as it will condition treatment of the current or future
infection and/or prophylaxis. For WES, the cost would be around 500€ but it depends on the
coverage. However, analysis of WES studies requires specialized staff. Prices for genetic
studies, especially for NGS, are changing rapidly with the development of new technologies
and the expansion of their use.

Other useful tests in research

Intracellular detection of IFN-y producing T-cell blasts can be measured after activation
with rhIL-12 in T-cell blasts cultured with PHA; PMA/ionomycin can be used as a positive
control for the assay. T-cell blasts are fixed and permeabilized for subsequent intracellular
staining with anti-human monoclonal IFN-y or isotype-matched negative control. Some
patients with defects in IFN-y production (such as IL-12RB1 deficiency) may present with
normal or only slightly diminished values so that its diagnostic value is limited, particularly
in the absence of the analysis of IFN-y production with PHA or BCG in culture
supernatants.
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Because samples of primary cells from patients are not infinitely available, some tests have
been adapted to the use of patient-derived cell lines. EBV-B cells, herpes virus saimiri-
transformed T cells (T-saimiri cells), and immortalized SV-40 fibroblasts are the most
common cell lines used [27,30,31,33,107,109,118]. Additional commonly-used cells and
techniques are summarized in Table 4. This group of tests requires a laboratory with
experience in the field of MSMD and is usually performed in a research laboratory.

Defects in IFN-y response are caused by diverse genetic etiologies. Assessment of the effect
of the different mutations in the response to IFN-vy is crucial to determine treatment and
patient management; for this reason, techniques other than STAT1 phosphorylation may be
needed. For example, expression of activation markers such as HLA-DR and CD64 after
stimulation with different hrlFN-y concentrations may be used to determine response to
IFN-vy, both in primary cells and in transformed SV40-fibroblasts and EBV-B cells
[45,97,107], as not all defects in STAT1 lead to altered phosphorylation in response to
hrIFN-y. To prove that a mutation in STATZ with normal phosphorylation is pathogenic,
other tests showing defective response to IFN-y are needed. The electrophoretic mobility
shift assay (EMSA,) is useful to detect forms of IFN-yR and AD STAT1 LOF deficiencies
with the presence of phosphorylation, as it reveals STAT1 translocation and DNA binding. In
addition, it can help to identify AD STAT1 gain of function deficiencies [35,93]. In the same
line, it is possible to study induction of GAS in response to IFN-y. Specifically, expression
of CXCL9 and CXCL10, among others, or the activation of GAS elements by luciferase
detection [30,34,62,93,106,110] can help to determine the effect of specific mutations. These
approaches are usually used in research rather than in healthcare practice.

Other advanced research techniques are used for the characterization of new mutations in
newly-discovered genes or mutations causing MSMD. These methods for the confirmation
of a pathogenic effect of new mutations are beyond the scope of this review, and they have
been carefully reviewed elsewhere [117]. Briefly, transfection of different cell lines with
wild-type or mutated genes may be useful for the evaluation of a mutated allele in terms of
protein expression and function. It is possible to perform expression assays, as disease-
causing variations commonly have altered expression. Also, transfection of a wild-type copy
of the mutated gene into patient cells (for example, in EBV-B or T-saimiri cells) that restores
protein function can reveal a possible loss-of-function mutation [119]. Furthermore, new
techniques such as CRISPR/Cas9 open up the possibility of reversing the mutation in patient
cells or mutating control cells, especially in the event that no cells are available from the
patient, to confirm that the phenotype that is observed in the patient is due to the mutation.

Discussion

Tuberculosis was thought by many to be a hereditary disease until the discovery of the
characteristic bacterium by Koch in 1882 [120]. It was not until the middle of the 20t
century that infections after BCG vaccination were understood to be related to inborn errors
of immunity [16], and only in 1996 did Jouanguy [17] and Newport [18] et al. show for the
first time that inheritable single monogenic defects in the IFN--y circuit conferred
susceptibility to mycobacterial infection rather than to a broad range of pathogens.
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These findings boosted the concept of atypical PID in which monogenic defects confer
selective susceptibility to specific pathogens [121,122]. Twenty years and ten disease-
causing genes later, MSMD diagnosis is still a clinical challenge. In the present review, we
provide an overview of the different assays available for the study of suspected defects in the
IFN-y circuit that can be performed in diagnostic and research laboratories. Table 5
summarizes their advantages and disadvantages.

Some issues in MSMD diagnosis need to be resolved. First, there is a need for awareness
about MSMD, so that physicians taking care of children or adults can suspect this disorder.
Knowledge of the specific warning signs is of utmost importance, as well as knowledge of
other conditions that can lead to susceptibility to mycobacterial diseases and that must be
included in the differential diagnosis: patients, especially children, with BCG-itis or BCG-
osis, EM infections, or severe tuberculosis, alone or in combination with other intracellular
infections, are to be suspected of having MSMD. Global frequency of MSMD has been
estimated to be at least 1/50,000, although it was previously thought to be rare.

Second, there is a need to facilitate the diagnosis of MSMD, once suspected. Indeed, the
detection of the genetic defect is necessary to offer the patient the best treatment options and
genetic counseling, and therefore to decrease mortality. This is exemplified by complete
deficiency of IFN-yR where the only curative treatment attempted is HSCT; most other
forms of MSMD will benefit from prolonged antibiotics to which exogenous hrlFN-y
therapy can be added - even partial defects of IFN-yR respond to exogenous hrlIFN-y
therapy [2,29,123]. When a member of a family is diagnosed with MSMD, BCG vaccination
in family members should be avoided until a genetic defect has been ruled out. It is also
important to consider that some MSMD etiologies have incomplete penetrance, meaning that
not all the individuals presenting with the mutation will present the clinical phenotype
[2,20,22]. For example, in IL-12RB1 deficiency, it is estimated that 21% of the individuals
with MSMD genotype do not show the phenotype at 20 years [2,20]. Genetic counseling in
these patients is thus challenging.

Functional tests for MSMD diagnosis are also challenging: in this review we have described
a broad array of available tests; however, some of these techniques are limited by the timing
and the requirement of qualified staff, making the full diagnosis of MSMD usually only
possible in specialized immunology laboratories. Genetic approaches are gaining ground and
could overcome these limitations. Nevertheless, genetic results usually need a functional
confirmation of the identified mutation.

Conclusions

We describe the currently-available techniques to study patients with suspected MSMD
defects in diagnostic and research laboratories. MSMD should be considered in patients with
significant infection (severe, disseminated, or recurrent) after BCG vaccination and infection
by mycobacteria, particularly EM, especially in combination with Sa/monella, Candida or
virus. When suspected, acquired causes of immunodeficiency, T cell defects and chronic
granulomatous disease first need to be ruled out. Then, MSMD-specific evaluation should be
started. The tests performed, and their order, may depend on laboratory facilities, technical
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staff, and clinical orientation. Genetic studies may be performed after functional studies
have suggested a specific defect or may be performed upfront and be followed by functional
confirmation. Given the number of different genetic etiologies causing MSMD, NGS
technologies may be especially suitable to help in the identification of new disease-causing
genes, because almost 60% of patients with suspected MSMD today have no identified
genetic cause.
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AD autosomal dominant

APC antigen presenting-cell

AR autosomal recessive

BCG bacille Calmette-Guérin

EBV-B cdlls Epstein-Barr virus-transformed B cells
ELISA enzyme-linked immunosorbent assay
EM environmental mycobacteria

EMSA electrophoretic mobility shift assay
GAF y-activated factor

GAS v interferon-activated site

hrlFN-y human recombinant IFN-y

HSCT hematopoietic stem cell transplantation
IFN interferon

IFN-yR IFN-+y receptor

IL interleukin

IRF interferon regulatory factor
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I1SG
IUIs
JAK?2
LOF
LPS
MFI
MSMD
NEMO
NGS
NK
PBMCs
PHA
PID
PPD
RORC
ROS
STAT
B

Th
TLR
TNF
T-saimiri cells
TYK2
WB
WES
WGS

XR-EDA-ID

interferon-stimulated gene

International Union of Immunology Societies
Janus-associated kinase 2

loss of function

lipopolysaccharide

mean fluorescence intensity

Mendelian susceptibility to mycobacterial disease
nuclear factor-kappa B essential modulator
next generation sequencing

natural killer

peripheral blood mononuclear cells
phytohemagglutinin

primary immunodeficiency

purified protein derivative

RAR related orphan receptor C

reactive oxygen species

signal transducer and activator of transcription
tuberculosis

T helper

Toll-like receptor

tumor necrosis factor

herpes virus saimiri-transformed T cells
tyrosine kinase 2

whole blood

whole exome sequencing

whole genome sequencing
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anhidrotic ectodermal dysplasia with immunodeficiency
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IFN-y response IFN-y production

Mycobacteria A ISG15

Macrophages and/or dendritic cells NK and T lymphocytes

Figure 1. IFN-y circuit
Summary of molecules implicated in the IFN-vy circuit. Molecules represented with bold

characters are known to cause of MSMD. GAS: y-interferon activated site; GAF: -y-
activated factor.
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Figure 2. Diagram of thelaboratory analysis of MSM D defects with examples
IFN-yR and STAT1 phosphorylation detection is performed in whole blood assay. IL-12Rp2

detection is performed in PBMCs after 72 h stimulation with PHA. STAT4 phosphorylation
detection is performed in PBMCs after 72 h stimulation with PHA and at least 48 h of
culture in the presence of IL-2 or PHA + IL-2. An example of a healthy control is shown for
each technique. Cytokine production is detected after 18 h of culture (for IL-12p70) and 48
h of culture (for IFN-y and IL-12p70) in the gold standard procedure, BCG with or without

IFN-y or IL-12p70 co-stimulation. Control cohort is shown.
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IFN-aR1

Macrophages

Figure 3. IFN-a and | FN-y signaling
GAS: -y-interferon activated site; ISRE: interferon-sensitive response element.
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Table 1

MSMD warning signs.

Sign

Description

Age at presentation

Usually in childhood, also in adolescence and adulthood

General state

Otherwise healthy individuals

Infectious spectrum

Invasive or recurrent infections by:
Mycobacteria:
BCG infection (Mycobacterium bovis vaccine strain)

Environmental mycobacteria (M. chelonae, M. fortuitum, M. mageritense, M. peregrinum, M. smegmatis, M.
scrofulaceum...)

Mycobacterium tuberculosis
Intramacrophagic bacteria (alone or in combination with mycobacteria):
Salmonella spp.
Listeria monocytogenes! Nocardia spp./ Klebsiella spp.
Fungi (in combination with mycobacteria)
Candida spp.
Histoplasma capsulatum/Paracoccides brasilensis/coccicoides spp.
Parasites (alone or in combination with mycobacteria, rare):
Leishmania spp.
Toxoplasma gondii
Virus (in combination with mycobacteria, rare)

Cytomegalovirus, human herpes virus 8, parainfluenza virus type 3, respiratory syncytial virus and varicella zoster
virus.

Other

Family history of invasive or recurrent mycobacterial infection

Undetectable or very low IFN-y production in Interferon-Gamma Release Assays (IGRAS) (i. e. QuantiFERON-TB
Gold In-Tube)
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