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Abstract

CD8+ T cells and NK cells are both cytotoxic effector cells of the immune system, but the 

recognition, specificity, sensitivity, and memory mechanisms are drastically different. While many 

of these topics have been extensively studied in CD8+ T cells, very little is known about NK cells. 

Current cancer immunotherapies mainly focus on CD8+ T cells, but have many issues of toxicity 

and efficacy. Given the heterogeneous nature of cancer, personalized cancer immunotherapy that 

integrates the power of both CD8+ T cells in adaptive immunity and NK cells in innate immunity 

might be the future direction, along with precision targeting and effective delivery of tumor-

specific, memory CD8+ T cells and NK cells.
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Introduction

With cancer incidence rates at an all-time high[1] and immunology research booming, the 

prospect of cancer immunotherapies is becoming a major topic of interest in biological and 

chemical engineering fields. The most widely studied cell type for cellular immunotherapy 

is the T cell, a central component of adaptive immunity. The advent of T-cell checkpoint 

inhibitors, such as anti-PD-1 and anti-CTLA4 therapies [2], and chimeric antigen receptor 

(CAR) T-cells, such as the recently FDA-approved CD19 CAR-T cell [3], has shifted the 

paradigm of cancer treatment to widely applicable therapy options. However, these 

therapeutic strategies may precipitate autoreactive T cell responses: checkpoint inhibitors 

override peripheral tolerance mechanisms, and CARs cross-react with healthy tissues. Many 

clinical studies have unfortunately fallen short of expectations; the nature of cancer causes it 

to generate large heterogeneities among patients and to mutate away from its immune 

attackers, resulting in non-response or relapse [4–6]. This has lead researchers to investigate 

the use of natural killer (NK) cells, another cytotoxic immune cell, for cancer therapy. In 

contrast to the single dominant T cell receptor (TCR) on T cells, NK cells have a wide array 

of activating and inhibitory receptors that act as a balance to determine functional activity, 

presenting an equally large collection of potential targets. Some of these receptors, such as 

Ly49C and KIR2DL1, recognize a “missing-self” status: the expression of appropriate 

number of major histocompatibility complex class I (MHC-1) molecules represents normal 

self-cells and elicits an inhibitory signal to NK cells. Downregulation of MHC-1 is often 

evolved in tumor cells as a mechanism of immune-evasion from T cells, which require 

MHC-1 signaling for activation, and therefore NK cell intervention could be used as a potent 

relapse therapy [7]. NK cells are now considered a bridge between innate and adaptive 

immunity, as it was discovered that NK cells gain memory functional phenotypes after 

encountering target cells [8–10], similar to T cells. In this review, we will compare and 
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contrast two cytotoxic cells, CD8+ T cells in adaptive immunity and NK cells in innate 

immunity, and further discuss recent advances in cancer immunotherapy involving these two 

cells.

CD8+ T cells versus NK cells in Basic Immunology

Recognition

CD8+ T cells and NK cells have different mechanisms of target recognition and signaling 

cascades to achieve very similar goals: to kill infected and transformed cells. The antigen 

recognition by T cells has been extensively studied (Fig. 1A). CD8+ T cells use their T cell 

antigen receptors (TCRs) to recognize peptide-major histocompatibility complexes (pMHC) 

presented on the antigen-presenting cell surface [11]. The coreceptor CD8 assists the TCR 

recognition by binding to the same MHC-I molecule [12,13]. The association of TCR and 

CD8 with the pMHC triggers the phosphorylation of CD3 immunoreceptor tyrosine-based 

activation motifs (ITAMs) by Lck, a tyrosine kinase associated with the cytoplasmic region 

of CD8 [14]. The phosphorylated CD3 results in the recruitment and activation of ZAP-70, 

which in turn phosphorylates LAT. LAT kinase concatenates with TCR to facilitate signaling 

during activation [15]. LAT has a quite extensive signalosome, and transmits a myriad of 

cellular responses, including cytokine release and metabolic adjustments [14]. In addition to 

the TCR, a T cell has a number of accessory molecules including co-stimulatory and co- 

inhibitory receptors (Fig. 2A) [16]. These receptors together control the activation, 

differentiation and function of the T cell.

NK cell recognition is much less understood (Fig. 1B). In stark contrast to T cells, there is 

no single dominant receptor to mediate NK cell recognition. Rather, NK cells express an 

array of innate activating and inhibitory receptors (Fig. 2B) to sense their environment and 

respond to alterations caused by infections, stress and transformation [17]. Although it is 

generally believed that the balance between activating and inhibitory receptor engagements 

determines the activation of an NK cell, the molecular mechanism of NK cell recognition 

remains unclear and different models have been proposed [18–22]. The most well 

characterized model is the ‘missing-self’ mechanism, proposed by Klas Kärre in 1985 

[7,23,24]. This mechanism describes NK cells recognition of the self-identifying MHC-I 

molecules by Ly49 family receptors to inhibit NK cell activation in mice. In primates, Ly49 

is replaced by killer-cell immunoglobulin-like receptors (KIRs), which bind to HLA 

molecules to transduce inhibitory signal. The reduction or loss of MHC or HLA expression 

may lead to NK cell activation in a missing-self manner. In another recognition mechanism, 

antibody-dependent cellular cytotoxicity (ADCC), NK cell receptors FcγRIIIA and/or 

FcγRIIIC bind to the Fc portions of antibodies bound to a target cell, transduce an activating 

signals, and lead to NK cell activation [25]. Finally, the effector functions of NK cells can be 

enhanced by cytokines [17,26–29], and certain cytokine stimulations alone are sufficient to 

activate NK cells [30]. Other receptors involved in NK cell recognition include the NKG2 

family, thought to regulate activity, and natural cytotoxicity receptors (NCRs), which are 

expressed in both humans and mice and may be regulated by cytokines. Therefore, while, 

many models of NK cell recognition have been proposed, these mechanisms most likely 
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function synchronously, and more comprehensive research is needed to elucidate the 

recognition mechanism of NK cells.

Specificity, Sensitivity, and Speed

Antigen-specific targeting is essential for adaptive immunity. TCRs can discriminate closely 

related peptides, and even one amino acid change in the peptide can lead to distinct T cell 

responses [31–33]. T cells are incredibly sensitive in antigen detection – even a single 

pMHC is sufficient to trigger T cell calcium signaling and three pMHCs can lead to CD8+ T 

cells killing [34–36]. There are many models of T cell activation to explain the high 

specificity and sensitivity of T cells [37,38]. Part of this specificity and sensitivity arises 

from the binding structures of the pMHC-TCR interactions itself and the resulting kinetics, 

forces, and signals. The structure and signaling of the TCR and accessory molecules is 

shown in Figure 1A. It is not entirely clear why T cells have such a high specificity and 

sensitivity. In our opinion, the binding of a TCR to the pMHC may lead to a conformational 

change within the TCR. The conformational change enables the TCR to precisely decipher 

subtle structural differences among peptides and proportionally propagate the recognition 

signals to CD3 cytoplasmic domains via mechanical force, ensuring the extraordinary 

specificity [39–46]. Meanwhile, multiple TCRs serially engage with a single pMHC, which 

allows accumulation of enough stimulatory signals to reach the threshold of T-cell 

activation, accounting for the exquisite sensitivity [31,47–50]. However, direct experimental 

evidences with enough spatiotemporal resolution are needed to test such a hypothesis, and 

other mechanisms may be involved [37].

Like other aspects of NK cells, the specificity and sensitivity of NK cells are much less 

studied than those of T cells. The main theory for NK cell specificity is the sheer number of 

receptors on the NK cell surface, as NK cells transmit a range of responses rather than a 

simple dichotomy for specific recognition. This is hypothesized to be due to the integration 

of multiple activating and inhibitory signals received from target cells (Fig. 1B) [19,20]. In 

addition, NK cells are known to react to the environment; if a signal persists, NK cells will 

downregulate the response for that interaction. Thus far, no studies are able to determine the 

exact threshold of activation versus inhibition when an NK cell comes in contact with its 

target cell. For example, if a virus-infected cell is down-regulating its MHC I expression 

rather than ablating it, this is sufficient to activate an NK cell. How this changes if other 

inhibitory or activating ligands are also present has not yet been deciphered, nor how this 

response differs between NK cell subtypes. Quantitative analysis of NK cell specificity and 

sensitivity, though important, has not been established.

CD8+ T cells and NK cells response rates are also quite different. As one of the hallmarks of 

innate immunity, innate immune cells are the first responders to sites of infection. Therefore, 

NK cells are much quicker to establish a robust response than CD8+ T cells[8].

This is also exemplified by the NK cell ability to recruit T cells and other adaptive 

responders to sites of infection[51].
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Memory

Once effector T cells and NK cells come in contact with a target cell that elicits a response, 

alterations must be made to this signal such that a secondary encounter with the same target 

cell may elicit a faster response [52]. This memory response is an evolutionary advantage, 

and works in different ways between T cells and NK cells.

Following exposure to target cells, CD8+ T cells undergo massive clonal expansion, 

followed by a contraction of about 95% [53]. The 5% of remaining CD8+ T cells then 

become memory T cells. Reinfection causes these memory cells to proliferate more rapidly 

than the initial naïve T cells [54]. Memory T cells are known to secrete more cytokines than 

effector T cells, and they also display different surface markers [52,55]. Memory T cells are 

further divided into central memory and effector memory based on the presence or absence 

of the CCR7 marker; CCR7− T cells are effector memory T cells, which have receptors to 

migrate to inflamed tissues and display immediate effector capabilities, whereas CCR7+ T 

cells are central memory T cells which instead stimulate dendritic cells before differentiating 

into CCR7− cells [56]. These subsets are further divided based on specific surface markers 

[57]. There are also evidences suggesting that cytokines and chemokines are required for the 

reactivation of memory cells, which may be secreted by supporting innate cells [58].

NK cells had been previously classified as innate immunity due to the quick response time 

and lack of somatic rearrangement of receptor genes, but they have since been found to 

possess certain qualities of adaptive immunity [8,29,59–64]. In a seminal study by the 

Lanier group, it was found that NK cells undergo phases of expansion, contraction, and 

retention similar to that of T cells [59]. This study also found that the retained cells at the 

end of the contraction resulted in a robust response following a secondary exposure to 

infection, indicating that these cells represent NK cell memory. Mechanistically, NK cell 

memory has been studied mostly in the murine cytomegalovirus (MCMV) model. One of 

these studies found that pro-inflammatory cytokines, like IL-12, IL-18, type I IFNs, and 

IFN-γ, are produced upon acute infection [65]. NK cells will then undergo a proliferation 

phase, although it is unclear whether this phase results in a heterogeneous population [61]. 

The contraction phase then results in long-lasting memory NK cells that have a profound 

response following a secondary encounter. It is not entirely clear whether NK cell memory is 

antigen-specific, though Lanier group has elegantly shown that NK cells can generate 

antigen-specific memory using the MCMV mouse model [59]. In addition, significant data 

have been collected suggesting a critical role of cytokines in the generation of memory cells 

[62]. Studies have shown that even cytokine activated NK cells can generate memory cells 

that remember polarizing cytokine signals [18]. However, further studies in real diseases 

such as cancer, as well as in humans, are needed to fully understand NK cell memory.

CD8+ T cells versus NK cells in Cancer Immunotherapies

Current Immunotherapies

CD8+ T cells play a critical role in current cancer immunotherapies (Table 1). For example, 

as tumors evolve, some cancer cells upregulate the expression of PD-L1, interacting with 

PD-1 on CD8+ T cells, suppressing T cell function and proliferation.
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Checkpoint inhibitor anti-PD-1/PD-L1 therapy blocks this interaction, reinvigorating the 

killing function of CD8+ T cells [66–72]. Another checkpoint inhibitor, anti-CTLA4 

antibody, prevents tumor induced T cell anergy [70,73–76]. Cytokine therapy, such as 

treatment with IL-2 or IFN-α, is another CD8+ T cell dependent treatment, which enhances 

local T cell activity [18,26,77,78]. Studies showed a positive correlation between the amount 

of CD8+ tumor infiltrating lymphocytes and progression-free survival with immunotherapy 

[2,66,68,69,72–74,79–87]. CAR-T cells utilize the cytotoxicity of CD8+ T cells to eradicate 

cancer [3–5,88]. CARs incorporate an extracellular programmable antigen-specific binding 

region with activating intracellular signaling components, such that recognition of a 

particular antigen expressed on a tumor cell will lead the killing by the CAR-T cell. CD19 

CAR-T cell therapy has achieved gratifying success in hematological malignancies, 

including a recent FDA approval (FDA website: Kymriah) [3]. Other directions currently 

being explored are the following: include bi-specific T cell engagers [89,90], modular 

extracellular sensor architecture (MESA) receptors, and various applications of CRISPR- 

Cas9 (other CD8+ T cell therapies reviewed in [75]). MESA receptors are tunable surface 

receptors that contain easily exchangeable ligand binding and transcription factor domains; 

when bound to the ligand, the receptor cleaves the transcription factor so that it may enter 

the nucleus and elicit a cellular response [91]. CRISPR-Cas9 is being used to alter CD8+ T 

cell functions in various ways; for example, it is used to introduce engineered TCRs or 

CARs into T cells [92].

NK cell cancer immunotherapies are only recently being considered. Data have shown that 

NK cells have many anti-tumor capabilities [27,93]. Currently, CAR-NK cells are being 

engineered with the same CD3ζ chain as CAR-T cells, with similar targets (CD19, CD20, or 

others) via retroviral-based transduction or plasmid electroporation transfection [94]. One of 

the advantages of developing CAR-NK cells over CAR-T cells is that NK cells actually 

inhibit graft vs. host disease (GvHD), and therefore may confer greater safety than T cells 

[94–101]. The Rezvani group showed that NK cells could be harvested from cord blood and 

developed into CAR-NK cells that can be readily available “off the shelf” rather than 

individually tailored [98]. In addition, NK cells are present in greater numbers in peripheral 

blood than T cells are, making them more readily available for harvest for therapy [99]. The 

main limitation of current CAR-NK strategies is that they are not designed for NK cells; 

rather, they simply borrow the concepts of CAR-T and only use NK cells as a surrogate of T 

cells. The true breakthrough in developing effective CAR-NK requires a good understanding 

of the NK cell recognition mechanism to design genuine NK-based CAR therapies. 

Antibody- based therapies are being engineered such that the Fc portion can more tightly 

bind to FcγRIIIA to induce a more robust ADCC activation targeted to tumor 

cells[25,102,103]. Finally, NK cells have been shown to be involved in the T cell checkpoint 

inhibitor responses [102,104,105], and the first NK cell checkpoint inhibitors [106–108] and 

CARs [109] are now in clinical trials.

Challenges in Cancer Immunotherapy

One of the major challenges of current immunotherapies is that neither checkpoint inhibitors 

nor CAR T-cells are tumor-specific; checkpoint inhibitors will have a full body response and 

can lead to autoimmune disease, and CARs have on-target but off-tumor effects. For 
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example, anti-PD-1 and anti-CTLA-4 antibodies universally target all T cells expressing 

PD-1 and CTLA-4, causing off-target effects and may lead to the development of 

autoimmune diseases. The response rate of checkpoint inhibitors is also low at less than 

20%, which, while this is significant compared to other cancer therapies, is far from ideal 

[2,110]. Many studies are looking for biomarkers to divide responders from non- responders, 

but there will still be a large cohort for whom these therapies do not work.

Non-tumor specific targeting is also a significant problem of CAR T cells. For example, 

CD19 CAR-T cells not only kill malignant B cells but also eliminate healthy B cells, which 

are essential in antibody generation [111,112]. In addition, CAR-T cell treatment faces the 

challenges of low T-cell proliferation [113,114], constant tumor mutation [115], and 

frequent tumor relapse [116,117]. Another major limitation of CAR-T cells is the 

ineffectiveness to solid tumors [4,118,119], although a few studies show promising 

outcomes [120–123]. Possible reasons could be the physical barrier and immunosuppressive 

microenvironment of solid tumors that prevent lymphocyte infiltration and survival. In 

addition, there are many associated toxicities, including neurological toxicity, cytokine 

release syndrome, anaphylaxis, and GvHD, which requires T cells to be HLA matched to the 

patient [4,124,125]. Many CAR-T clinical trials have been terminated due to patient death 

[4]. Groups are attempting to make a ‘universal’ CAR-T cell that erases the need for such 

transfer mechanisms, but these still are only targeting a few selected tumor antigens, which 

the cancer will soon evolve around [126]. Finally, the exact mechanism of action of CAR-T 

cells is not well understood; it is known that both CD4+ and CD8+ CAR-T cells are required 

for tumor suppression [126], but not why, and it is also known that CAR-T cells have much 

higher affinity for their targets and therefore become exhausted much more quickly than 

endogenous T cells. These mechanisms require more attention to remedy the resulting 

effects.

Specific challenges for NK cell therapy have yet to be identified, mostly due to the lack of 

research and application of NK cell based immunotherapies. One of the known challenges is 

the low transfection efficiency and the variable expansion process of NK cells compared to T 

cells [127].

Future Cancer Immunotherapy

From a science perspective, a comprehensive and systematic understanding of the complex 

immune system and tumor microenvironment must be acquired, as effective and precise 

therapies will rely on the identification of the exact mechanisms in each cancer type, as well 

as the unique characteristics of individual patients. While some mechanisms have been 

elucidated in CD8+ T cells, much work remains to be done in NK cells [22,93,128–131]. In 

our opinion, personalized cancer immunotherapy is the future, considering each tumor and 

each patient is different. However, personalized medicine is currently both incredibly 

expensive and time consuming. Future biotechnologies and visualization techniques will 

hopefully allow for quick, inexpensive, and comprehensive analysis of patient tumors to 

better screen for potential candidates, identify the targetable mutations, and generate 

personalized treatments; we need to know who will benefit from these treatments, know 
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which treatments will be most effective for each patient, and be able to synthesize that 

personalized treatment accurately, efficiently, and inexpensively.

Clinically fast, effective, economic immunotherapies personalized to each cancer type 

should be created. Ideally, a theoretical solution could be to engineer a tunable cell to 

specifically combat tumor evolution. For example, NK cells could be engineered to express a 

specific ratio of surface receptors such that they specifically target a tumor. Alternatively, a 

CAR or TCR-engineered T cell could be created such that the antigen-recognition piece 

could be easily, quickly, and inexpensively swapped out to keep up with the evolving tumor 

as a personalized medicine technique. As technologies advance synchronously with our 

improving understanding, these feats may be monetarily feasible in the future. Another 

direction that should be taken is the combination of these therapies. While results are largely 

unimpressive for each therapy individually, it could be more effective to combine therapies 

in a manner reminiscent of the drug cocktails used to control HIV [132]. By incorporating 

aspects of both the innate and adaptive immune systems in a precisely target-specific 

manner, for example, combinatorial T cell and NK cell treatments could eradicate the cancer 

by beating the tumor evolution.

Conclusions

One central question in cancer immunology is why both CD8+ T cells in adaptive immunity 

and NK cells in innate immunity fail to recognize and attack the forming tumors. A theory 

for CD8+ T cells is that the CD4+ regulatory T cells have heightened activity in the hypoxic 

environment of the tumor, leading to increased suppression of the CD8+ cytolytic activity 

[133]. The discontinuity theory [134] states that while NK cells recognize the initial change 

in cell identity of tumor cells, the prolonged exposure (perseverance of the tumor) will cause 

desensitization and tolerance [135]. Additionally, it was recently shown that tumors might be 

converting NK effector cells into type 1 innate lymphoid cells [136]. Regardless, T- cell 

based immunotherapies such as checkpoint inhibitors have shown preliminary success in 

cancer treatments [68,74,78,82,90]. However, relapse from these therapies is generally the 

result of tumor down-regulation of MHCs, which could be combatted with a subsequent NK 

cell therapy. In addition, further understanding of memory development for both cell types 

may potentiate the ability to create a life-long single-dose treatment that could remain in 

cellular memory for an extended period of time. The development NK therapies could 

therefore have huge implications both as independent therapies and as a relapse treatment 

following T cell therapies. Before these therapies can be developed, however, it is imperative 

that we discover the precise molecular mechanisms of recognition, activation, specificity, 

effector function, and memory of these cells, as well as characterize the complex interactions 

among immune cells, in order to truly progress the field of cancer immunotherapy 

[51,137,138]. In conclusion, CD8+ T cells and NK cells share many similarities in overall 

functions and cytolytic activities, but also have many differences that could be utilized 

advantageously in the treatment of cancer.
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Figure 1. (A). T Cell Recognition and Signaling
The TCR and CD8 bind a pMHC presented on the antigen-presenting cell surface, causing 

the phosphorylation of the ITAMs of the CD3 (γ, δ, ε and ζ) chains by Lck, a tyrosine 

kinase associated with the coreceptor CD8. The tyrosine kinase ZAP-70 is then recruited to 

CD3 by binding to the phosphorylated ITAMs, leading to the phosphorylation of ZAP-70 by 

Lck. The activated ZAP-70 then phosphorylates LAT. Activation of LAT leads to extensive 

cellular adjustments, including proliferation, metabolic changes, cytolytic activity, cytokine 

release, and others. (B). NK Cell Recognition and Signaling. NK cell surface activating 

and inhibitory receptor-ligand interactions mediate the recognition and signaling of an NK 

cell. Some receptors present on each NK cell are stochastic, whereas others such as NKp46 

and NKG2D are constitutive. The combinatorial threshold that must be reached to activate or 

inactivate the NK cell is largely unknown.
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Figure 2. (A). Activating (+) and inhibitory (−) Cell Surface Molecules of CD8+ T Cells
The TCR is responsible for antigen recognition. CD8 is a co-receptor to aid TCR antigen 

recognition. Fc Receptors (FcRs) are so named for being glycoproteins that bind the 

constant (Fc) region of immunoglobulins and transducing a signal. The Greek nomenclature 

denotes the class of immunoglobulin (α, γ, and ε,). Costimulatory and coinhibitory 

molecules are accessory molecules that enhance or diminish, respectively, the signal of the 

TCR. Adhesion molecules assist in bringing the target cell into tight contact with the CD8+ 

T cell. Chemokine receptors are G-protein coupled receptors (GPCRs) involved in 

chemotactic pathways such as migration and adhesion. These receptors are so named based 

on how many non-conserved residues separate the binding cysteines: CCR have two 

adjacent cysteines, whereas CX3CR have three residues between the two cysteines. Many of 

the receptors indicated here denote an entire family (e.g. CCR represents CCR1-8, 

differentially expressed on CD8+ subsets); all of these receptors have multiple possible 

ligands. Abbreviations: CD (Cluster of Differentiation); IL-_R (Interleukin _ Receptor); 

LFA (Leukocyte Function-Associated Antigen); CTLA (Cytotoxic T-Lymphocyte-

Associated); KIR (Killer Immunoglobulin-like Receptor); PD (Programmed Death); TNFR 

(Tumor Necrosis Factor Receptor). (B). Activating (+) and Inhibitory (−) Cell Surface 
Molecules of NK Cells. NK cells express an array of activating and inhibitory receptors for 

recognition. Ly49 and KIR receptors are hypothesized to be a result of convergent evolution 

due to the presence of immunoreceptor tyrosine-based activation/inhibitor motifs (ITAMs/

ITIMs, respectively). The KIR ligands are particular HLA molecules only expressed on 

distressed cells. Abbreviations: H (Human); M (Murine); GM-CSFR (Granulocyte 

Macrophage Colony Stimulating Factor Receptor); HLA (Human Leukocyte Antigen); MIC 
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(MHC Class I Chain- related); HA (Hemagluttinin); PILR (Paired Ig-like Receptor); LILR 

(Leukocyte Immunoglobulin-like Receptor); KLRG1 (Killer Cell Lectin-like Receptor G1).
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