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Abstract

We consider the task of learning a dynamical system from high-dimensional time-course data. For 

instance, we might wish to estimate a gene regulatory network from gene expression data 

measured at discrete time points. We model the dynamical system nonparametrically as a system 

of additive ordinary differential equations. Most existing methods for parameter estimation in 

ordinary differential equations estimate the derivatives from noisy observations. This is known to 

be challenging and inefficient. We propose a novel approach that does not involve derivative 

estimation. We show that the proposed method can consistently recover the true network structure 

even in high dimensions, and we demonstrate empirical improvement over competing approaches. 
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1. Introduction

Ordinary differential equations (ODEs) have been widely used to model dynamical systems 

in many fields, including chemical engineering (Biegler, Damiano, and Blau 1986), 

genomics (Chou and Voit 2009), neuroscience (Izhikevich 2007), and infectious diseases 

(Wu 2005). A system of ODEs takes the form
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X′(t; θ) ≡

dX1(t; θ)
dt
⋮

dXp(t; θ)
dt

=
f 1(X(t; θ), θ)

⋮
f p(X(t; θ), θ)

≡ f (X(t; θ), θ); t ∈ [0, 1], (1)

where X(t; θ) = (X1(t; θ), …, Xp(t; θ))T denotes a set of variables, and the form of the 

functions f = (f1, …, fp)T may be known or unknown. In (1), t indexes time. Typically, there 

is also an initial condition of the form X(0; θ) = C, where C is a p-vector. In practice, the 

system (1) is often observed on discrete time points subject to measurement errors. Let Yi ∈ 
ℝp be the measurement of the system at time ti such that

Y i = X(ti; θ∗) + εi, i = 1, …, n, (2)

where θ∗ denotes the true set of parameter values and the random p-vector εi represents 

independent measurement errors. In what follows, for notational simplicity, we sometimes 

suppress the dependence of X(t; θ) on θ, that is, X(t) ≡ X(t; θ) in (1) and X∗(t) ≡ X(t; θ∗) in 

(2).

In the context of high-dimensional time-course data arising from biology, it can be of 

interest to recover the structure of a system of ODEs—that is, to determine which features 

regulate each other. If fj in (1) is a function of Xk, then we say that Xk regulates Xj in the 

sense that Xk controls the changes of Xj through its derivative X j′. For instance, biologists 

might want to infer gene regulatory networks from noisy time-course gene expression data. 

In this case, the number of variables p exceeds the number of time points n; we refer to this 

as the high-dimensional setting.

In high-dimensional statistics, sparsity-inducing penalties such as the lasso (Tibshirani 1996) 

and the group lasso (Yuan and Lin 2006) have been well-studied. Such penalties have also 

been extensively used to recover the structure of probabilistic graphical models (e.g., Yuan 

and Lin 2007; Friedman, Hastie, and Tibshirani 2008; Meinshausen and Bühlmann 2010; 

Voorman, Shojaie, and Witten 2014). However, model selection in high-dimensional ODEs 

remains a relatively open problem, with the exception of some notable recent work (Lu et al. 

2011; Henderson and Michailidis 2014; Wu et al. 2014). In fact, the tasks of parameter 

estimation and model selection in ODEs from noisy data are very challenging, even in the 

classical statistical setting where n > p (see, e.g., Ramsay et al. 2007; Brunel 2008; Liang 

and Wu 2008; Qi and Zhao 2010; Xue, Miao, and Wu 2010; Gugushvili and Klaassen 2012; 

Hall and Ma 2014; Zhang, Cao, and Carroll 2015). Moreover, the problem of high-

dimensionality is compounded if the form of the function f in (1) is unknown, leading to 

both statistical and computational issues.

In this article, we propose an efficient procedure for structure recovery of an ODE system of 

the form (1) from noisy observations of the form (2), in the setting where the functional 
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form of f is unknown. In Section 2, we review existing methods. In Section 3, we propose a 

new structure recovery procedure. In Section 4, we study the theoretical properties of our 

proposal. In Section 5, we apply our procedure to simulated data. In Section 6, we apply it to 

in silico gene expression data generated by GeneNetWeaver (Schaffter, Marbach, and 

Floreano 2011) and to calcium imaging data. We conclude with a discussion in Section 7. 

Proofs and additional details are provided in the supplementary material.

2. Literature Review

In this section, we review existing statistical methods for parameter estimation and/or model 

selection in ODEs. Most of the methods reviewed in this section are proposed for the low-

dimensional setting. Even though they may not be directly applicable to the high-

dimensional setting, they lay the foundation for the development of model selection 

procedures in high-dimensional additive ODEs.

2.1. Notation

Without loss of generality, assume that 0 = t1 < t2 < ⋯ < tn = 1. We let Yij indicate the 

observation of the jth variable at the ith time point, ti. We use 𝒳(h) to denote a nonparametric 

class of functions on [0, 1] indexed by some smoothing parameter(s) h. We use Z(·) to 

represent an arbitrary function belonging to 𝒳( · ). We use ‖·‖2 to denote the ℓ2-norm of a 

vector or a matrix, and ||| f ||| to denote the ℓ2-norm of a function f on the interval [0, 1], that 

is, | | | f | | |2 ≡ ∫0

1
f 2(t)dt. We use an asterisk to denote true values—for instance, θ∗ denotes 

the true value of θ in (1). We use Λmin(A) and Λmax(A) to denote the minimum and 

maximum eigenvalues of a square matrix A, respectively.

2.2. Methods that Assume a Known Form of f

2.2.1. Gold Standard Approach—To begin, we suppose that the function f in (1) takes a 

known form. Benson (1979) and Biegler, Damiano, and Blau (1986) proposed to estimate 

the unknown parameter θ∗ in (2) by solving the problem

θgold = arg min
θ

∑
i = 1

n
‖Y i − X(ti; θ)‖2

2 (3a)

subject to X′(t; θ) = f (X(t; θ), θ), t ∈ [0, 1] . (3b)

Note that X(·; θ) in (3) is a fixed function given θ, although an analytic expression may not 

be available. The resulting estimator θgold has appealing theoretical properties: for instance, 

when the measurement errors εi in (2) are Gaussian, then θgold is the maximum likelihood 

estimator, and is n − consistent. In this sense, (3) can thus be considered the gold standard 
approach. However, solving (3) is often computationally challenging.
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2.2.2. Two-Step Collocation Methods—To overcome the computational challenges 

associated with solving (3), collocation methods have been employed by a number of 

authors (Varah 1982; Ellner, Seifu, and Smith 2002; Ramsay et al. 2007; Brunel 2008; Cao 

and Zhao 2008; Liang and Wu 2008; Cao, Wang, and Xu 2011; Lu et al. 2011; Gugushvili 

and Klaassen 2012; Brunel, Clairon, and d’Alché Buc 2014; Hall and Ma 2014; Henderson 

and Michailidis 2014; Wu et al. 2014; Dattner and Klaassen 2015; Zhang, Cao, and Carroll 

2015).

The two-step collocation procedure first proposed by Varah (1982) involves fitting a 

smoothing estimate X( · ; h) to the observations Y1, …,Yn in (2) with a smoothing parameter 

h, and then plugging X( · ; h) and its derivative with respect to t into (1) to estimate θ. This 

amounts to solving the optimization problem

θTS = arg min
θ

∫
0

1
‖X′(t; h) − f (X(t; h), θ)‖2

2dt, (4a)

where

X( · ; h) = arg min
Z( · ) ∈ 𝒳(h)

∑
i = 1

n
‖Y i − Z(ti)‖2

2 . (4b)

The two-step procedure (4) has a clear advantage over the gold standard approach (3) 

because the former decouples the estimation of θ and X. However, this advantage comes at a 

cost: due to the presence of X′ in (4a), the properties of the estimator θTS in (4) rely heavily 

on the smoothing estimates obtained in (4b), and n − consistency has only been shown for 

certain values of the smoothing parameter h that are hard to choose in practice (Brunel 2008; 

Liang and Wu 2008; Gugushvili and Klaassen 2012).

Dattner and Klaassen (2015) proposed an improvement to (4) for a special case of (1). To be 

more specific, they assume that fj(X(t), θ) in (1) is a linear function of θ, which leads to

X′(t) ≡

dX1(t)
dt
⋮

dXp(t)
dt

=
g1

T(X(t))θ
⋮

gp
T(X(t))θ

≡ g(X(t))θ; t ∈ [0, 1], (5)

where g(X(t)) is a known function of X(t). Integrating both sides of (5) gives

X(t) = ∫
0

t
g(X(u))du θ + C, (6)
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where C ≡ X(0; θ). The unknown parameter θ∗ is estimated by solving

θLM = arg min
θ

∫
0

1
X(t; h) − ∫

0

t
g(X(u; h))du θ − C

2

2
dt, (7a)

where

X( · ; h) = arg min
Z( · ) ∈ 𝒳(h)

∑
i = 1

n
‖Y i − Z(ti)‖2

2 . (7b)

The optimization problem (7a) has an analytical solution, given the smoothing estimates 

from (7b). Compared with the two-step procedure (4), this approach requires an estimate of 

the integral, ∫0

t
g(X(u; h))du in (7a), rather than an estimate of the derivative, X′(t; h). This has 

profound effects on the asymptotic behavior of the estimator θLM. n − consistency of θLM

has been established under mild conditions, and it has been found that the choice of 

smoothing parameter h is less crucial than for other methods (Gugushvili and Klaassen 

2012).

Recently, Brunel, Clairon, and d’Alché Buc (2014) and Hall and Ma (2014) had considered 

alternatives to the loss function in (4a). Let ℂ1(0, 1) be the set of functions that are first-

order differentiable on (0, 1) and equal zero on the boundary points 0 and 1. Then (1) 

implies that, for any ϕ ∈ ℂ1(0, 1),

∫
0

1
f (X(t), θ)ϕ(t)dt + ∫

0

1
X(t)ϕ′(t)dt = 0. (8)

Equation (8) is referred to as the variational formulation of the ODE. A least-square loss 

based on (8) takes the form

θV = arg min
θ

1
L ∑

l = 1

L ∫
0

1
f (X(t; h), θ)ϕl(t)dt+∫

0

1
X(t; h)ϕl′(t)dt

2

2
, (9)

where X(t; h) is defined in (4b) and {ϕl, l = 1, …, L} is a finite set of functions in ℂ1(0, 1) 

(Brunel, Clairon, and d’Alché Buc 2014). In Hall and Ma (2014), the loss function is the 

sum of the loss functions in (4b) and (9), so that θ and the optimal bandwidth h are 

estimated simultaneously. It is immediately clear that the derivative X′ (·; θ) is not needed in 

(9), which can lead to substantial improvement compared to the two-step procedure in (4). A 

minor drawback of (9) is that the variational formulation (8) is enforced on a finite set of 

functions {ϕl, l = 1, …, L} rather than on the whole class ℂ1(0, 1). Under suitable 
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assumptions, the estimator θV is n − consistent (Brunel, Clairon, and d’Alché Buc 2014; 

Hall and Ma 2014).

2.2.3. The Generalized Profiling Method—Another collocation-based method is the 

generalized profiling method of Ramsay et al. (2007). Instead of the smoothing estimate 

X( · ; h) in (4b), the generalized profiling method uses a smoothing estimate X( · ; h, θ) that 

minimizes the weighted sum of a data-fitting loss and a model-fitting loss for any given θ. In 

greater detail,

θ λ
GP = arg min

θ
∑
i = 1

n
Y i − X(ti; h, θ)

2

2
, (10a)

where

X( · ; h, θ) = arg min
Z( · ) ∈ 𝒳(h)

1
n ∑

i = 1

n
‖Y i − Z(ti)‖2

2 + λ∫
0

1
‖Z′(t) − f (Z(t), θ)‖2

2dt . (10b)

In Ramsay et al. (2007), the authors solve (10a) iteratively for a nondecreasing sequence of 

λ’s in (10b). n − consistency of the limiting estimator was later established by Qi and Zhao 

(2010). Zhang, Cao, and Carroll (2015) proposed a model selection procedure by applying 

an ad hoc lasso procedure (Wang and Leng 2007) to the estimates from (10).

2.3. Methods that do not Assume the Form of f

A few authors have recently considered modeling large-scale dynamical systems from 

biology using ODEs (Henderson and Michailidis 2014; Wu et al. 2014), under the 

assumption that the right-hand side of (1) is additive,

X j′(t) = θ j0 + ∑
k = 1

p
f jk(Xk(t)), θ j0 ∈ ℝ . (11)

Henderson and Michailidis (2014) and Wu et al. (2014) approximated the unknown fjk with 

a truncated basis expansion. Consider a finite basis, ψ(x) = (ψ1(x), …, ψM(x))T, such that

f jk(ak) = ψ(ak)Tθ jk + δ jk(ak), θ jk ∈ ℝM, (12)

where δjk(ak) denotes the residual. Using (12), a system of additive ODEs of the form (11) 

can be written as
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X j′(t) = θ j0 + ∑
k = 1

p
ψ(Xk(t))Tθ jk + ∑

k = 1

p
δ jk(Xk(t)), j = 1, …, p . (13)

Henderson and Michailidis (2014) and Wu et al. (2014) considered the problem of 

estimating and selecting the nonzero elements θjk in (13). Roughly speaking, they proposed 

to solve optimization problems of the form

θ j
NP = arg min

θ j0 ∈ ℝ, θ jk ∈ ℝM
∫

0

1
X j′(t; h) − θ j0 − ∑

k = 1

p
ψ(Xk(t; h))Tθ jk

2

2
dt

+ λn ∑
k = 1

p ∫
0

1
{ψ(Xk(t; h))Tθ jk}

2
dt

1/2
,

(14a)

for j = 1, …, p, where

X( · ; h) = arg min
Z( · ) ∈ 𝒳(h)

∑
i = 1

n
‖Y i − Z(ti)‖2

2 . (14b)

In (14a), a standardized group lasso penalty forces all elements in θjk to be either zero or 

nonzero when λn is large, thereby providing variable selection.

The proposals by Henderson and Michailidis (2014) and Wu et al. (2014) are slightly more 

involved than (14): an extra ℓ2-penalty is applied to the θjk’s in (14a) in Henderson and 

Michailidis (2014), whereas in Wu et al. (2014) (14a) is followed by tuning parameter 

selection using Bayesian information criterion (BIC), an adaptive group lasso regression, 

and a regular lasso. We refer the reader to Henderson and Michailidis (2014) and Wu et al. 

(2014) for further details.

3. Proposed Approach

We consider the problem of model selection in high-dimensional ODEs. As in Henderson 

and Michailidis (2014) and Wu et al. (2014), we assume an additive ODE model (11). We 

use a finite basis ψ(·) to approximate the additive components fjk as in (12), leading to an 

ODE system that is linear in the unknown parameters (13). Following the example by 

Dattner and Klaassen (2015), we exploit this linearity by integrating both sides of (13), 

which yields

X j(t) = X j(0) + θ j0t + ∑
k = 1

p
Ψk(t)Tθ jk + ∑

k = 1

p ∫
0

t
δ jk(Xk(u))du, (15)
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where Ψk(t) denotes the integrated basis such that

Ψk(t) = (Ψk1(t), …, ΨkM(t))T

= ∫
0

t
ψ(Xk(u))du, k = 1, …, p,

(16)

and Ψ0(t) = t. Our method, called graph reconstruction via additive differential equations 
(GRADE), then solves the following problem for j = 1, …, p:

θ j = arg min
C j0 ∈ ℝ, θ j0 ∈ ℝ, θ j1, …,θ jp ∈ ℝM

1
2n

× ∑
i = 1

n
Y i j − C j0 − θ j0Ψ0(ti) − ∑

k = 1

p
θ jk

T Ψk(ti)
2

+ λn, j ∑
k = 1

p 1
n ∑

i = 1

n
{θ jk

T Ψk(ti)}
2

1/2
,

(17a)

where

X( · ; h) = arg min
Z( · ) ∈ 𝒳(h)

∑
i = 1

n
‖Y i − Z(ti)‖2

2, (17b)

and

Ψ0(t) = t; Ψk(t) = ∫
0

t
ψ(Xk(u; h))du, k = 1, …, p . (17c)

In (17a), λn,j is a nonnegative sparsity-inducing tuning parameter. We may sometimes use 

λn,j ≡ λn for j = 1, …, p for simplicity. If the true function f jk
∗  in (11) is nonzero, we say that 

the kth variable Xk
∗ is a true regulator of X j

∗. We let S j ≡ {k:‖ f jk
∗ ‖2 ≠ 0, k = 1, …, p} denote the 

set of true regulators. We let the estimated index set of regulators be 

S j ≡ {k:‖θ jk‖2 ≠ 0, k = 1, …, p}. We then reconstruct the network using Ŝj, j = 1, …, p.

Both (17a) and (17b) can be implemented efficiently using existing software (see, e.g., 

software methods in Loader 1999; Meier, van de Geer, and Bühlmann 2008). In our 

theoretical analysis in Section 4, we use local polynomial regression to obtain the smoothing 

estimate in (17b). We use generalized cross-validation (GCV) on the loss (17b) to select the 

smoothing tuning parameter h. We use BIC to select the number of bases M for ψ and Ψ in 

(17c), and the sparsity tuning parameter λn in (17a).
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In some studies, time-course data are collected from multiple samples, or experiments. Let R 
denote the total number of experiments, and Y(r) the observations in the rth experiment. We 

assume that the same ODE system (13) applies across all experiments with the same true 

parameter θ jk
∗ . We allow a different set of initial values for each experiment. Assume that 

each experiment consists of measurements on the same set of time points. This leads us to 

modify (17) as follows:

θ j = arg min
C j0

(r) ∈ ℝ, θ j0 ∈ ℝ, θ j1, …,θ jp ∈ ℝM

1
2Rn ∑

r = 1

R
∑
i = 1

n

× Y i j
(r) − C j0

(r) − θ j0Ψ0(ti) − ∑
k = 1

p
θ jk

T Ψk
(r)(ti)

2

+ λn ∑
k = 1

p 1
Rn ∑

r = 1

R
∑
i = 1

n
{θ jk

T Ψk
(r)(ti)}

2 1/2
,

(18)

where

X(r)( · ; h) = arg min
Z( · ) ∈ 𝒳(h)

∑
i = 1

n
‖Yi

(r) − Z(ti)‖2
2, r = 1, …, R,

Ψ0(t) = t; Ψk
(r)(t) = ∫0

t
ψ(Xk

(r)(u; h))du, k = 1, …, p .

In Sections 4, 5.1, and 5.2, we will assume that only one experiment is available, so that our 

proposal takes the form (17). In Sections 5.3 and 6, we will apply our proposal to data from 

multiple experiments using (18).

Remark 1

To facilitate the comparison of GRADE (17) with other methods, we introduce an 

intermediate variable,

X∼ j(t; h, θ) ≡ C j0 + θ j0t + ∑
k = 1

p
θ jk

T Ψk(t), (19)

following from (15). Plugging (19) into the loss function in (17a) yields 

∑i = 1
n {Y i j − X∼ j(ti; h, θ)}2. In the gold standard (3), the ODE system (1) is strictly satisfied 

due to the constraint in (3b). In the two-step procedure (4a) and (14a), the smoothing 

estimate X( · ; h) does not satisfy (1). GRADE stands in between: the initial estimate X( · ; h)
in (17b) is solely based on the observations, while the intermediate estimate X∼( · ; h, θ) is 

calculated by plugging X( · ; h) into the additive ODE (13).
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4. Theoretical Properties

In this section, we establish variable selection consistency of the GRADE estimator (17). 

Technical proofs of the statements in this section are available in Section A in the 

supplementary material. We use sj to denote the cardinality of Sj, and set s = maxj{sj}. For 

ease of presentation, we let S j
0 = {0} ∪ S j, so that Ψ

S j
0(t) = (Ψ0(t), ΨS j

T (t))T = (t, ΨS j
T (t))T is an 

(sjM + 1)-vector.

The proposed method (17) differs from the standard sparse additive model (Ravikumar et al. 

2009) in that the regressors Ψk(t) in (17c) are estimated from smoothing estimates X( · ; h)

(17b) instead of the true trajectories X∗ in (2). We use local polynomial regression to 

compute X( · ; h) in (17b) (see, e.g., eq. (1.67) of Tsybakov 2009 for details on 

parameterization). To establish variable selection consistency, it is necessary to obtain a 

bound for the difference between X( · ; h) and X∗. This is addressed in Theorem 1. Using the 

bound in Theorem 1, we then establish variable selection consistency of the estimator in (17) 

for high-dimensional ODEs in Theorem 2.

In this study, we assume that the measurement errors in (2) are normally distributed. 

Generalizations to bounded or sub-Gaussian errors are straightforward.

Assumption 1

The measurement errors in (2) are independent, and εij ∼ N(0, σ2), i = 1, …, n, j = 1, …, p.

We also require the true trajectories X j
∗ in (2) to be smooth.

Assumption 2

Assume that the solutions X j
∗, 1 ≤ j ≤ p, belong to a Hölder class Σ(β1, L1), where β1 ≥ 3.

In addition, we need some regularity assumptions to hold for the smoothing estimation 

(17b). These assumptions are common and not crucial to this study, and are hence deferred 

to Section A.2 in the supplementary material (or see sec. 1.6.1 in Tsybakov 2009). We arrive 

at the following concentration inequality for | | | X − X∗ | | |.

Theorem 1

Suppose that Assumptions 1–2 and S1–S3 in the supplementary material are satisfied. Let X j

in (17b) be the local polynomial regression estimator of order ℓ= ⌊β1⌋ with bandwidth

hn ∝ n
(α − 1)/(2β1 + 1)

(20)

for some positive α < 1. Then, for each j = 1, …, p,
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| | | X j − X j
∗ | | |2 ≤ C2n

2β1
2β1 + 1(α − 1)

(21)

holds with probability at least 1 − 2 exp{−nα/(2C3σ2)}, for some constants C2 and C3.

The concentration inequality in Theorem 1 is derived using concentration bounds for 

Gaussian errors (Boucheron, Lugosi, and Massart 2013). Using Theorem 1, we see that the 

bound (21) holds uniformly for j = 1, …, p with probability at least 1 − 2p exp{−nα/
(2C3σ2)}. The bound in Theorem 1 thus holds uniformly for j = 1, …, p with probability 

converging to unity if p = o(exp{nα/(2C3σ2)}).

For the methods outlined in (14) (Henderson and Michailidis 2014; Wu et al. 2014), variable 

selection consistency depends on the convergence of | | | X′ − (X∗)′ | | | and | | | X − X∗ | | |. In 

contrast, our method depends only on the convergence rate of | | | X − X∗ | | |. It is known that 

the convergence of | | | X′ − (X∗)′ | | | is slower than that of | | | X − X∗ | | |, see, for example, 

Gugushvili and Klaassen (2012). As a result, the rate of convergence of θ jk from (14) is 

slower than that of our proposed method (17).

To establish the main result, we need the following additional assumptions. Recall the 

definition of Ψj(t) from (16); for convenience, we suppress the dependence of Ψ(t) on t in 

what follows.

Assumption 3

For j = 1, …, p, (X j
∗)′ is an additive function of Xk

∗, k = 1, …, p. In other words,

(X j
∗)′(t) = θ j0

∗ + ∑
k = 1

p
f jk

∗ (Xk
∗(t)), θ j0

∗ ∈ ℝ, j = 1, …, p, (22)

where ∫0

1
f jk
∗ (Xk

∗(t))dt = 0 for all j, k. Furthermore, the functions f jk
∗ (1 ≤ j, k ≤ p) belong to a 

Sobolev class W (β2, L2) on a finite interval with β2 ≥ 3.

Assumption 4

The eigenvalues of ∫0

1
Ψ

S j
0Ψ

S j
0

T dt are bounded from above by Cmax and bounded from below 

by a positive number Cmin, and for k ∈S j
0, the eigenvalues of ∫0

1
ΨkΨk

Tdt are bounded from 

below by Cmin. In other words,
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0 < Cmin ≤ Λmin ∫
0

1
Ψ

S j
0Ψ

S j
0

T dt

≤ Λmax ∫
0

1
Ψ

S j
0Ψ

S j
0

T dt ≤ Cmax,

(23)

and

Cmin ≤ Λmin ∫
0

1
ΨkΨk

Tdt , for k ∈S j
0 . (24)

Assumption 5

Assume that

max
k ∈S j

0 ∫
0

1
ΨkΨ

S j
0

T dt ∫
0

1
Ψ

S j
0Ψ

S j
0

T dt
−1

2
≤ ξ . (25)

The first part of Assumption 4 ensures identifiability among the sj + 1 elements in the set 

{t, XS j
∗ }, and the second part ensures that Ψk is nondegenerate for k ∈S j

0. Assumption 5 

restricts the association between the elements in the set {t, XS j
∗ } and the elements in the set 

X
S j

c
∗ . Note that in order for the parameters in an additive model such as (13) to be 

identifiable, there must be no concurvity among the variables (Buja, Hastie, and Tibshirani 

1989). This is guaranteed by Assumptions 4 and 5, which appear often in the literature of 

lasso regression (Meinshausen and Bühlmann 2006; Zhao and Yu 2006; Ravikumar et al. 

2009; Wainwright 2009; Lee, Sun, and Taylor 2013). We refer the readers to Miao et al. 

(2011) for a detailed discussion of the identifiability of the parameters in an ODE model.

The next assumption characterizes the relationships between the quantities in Assumptions 4 

and 5 and the sparsity tuning parameter λn in (17a). Similar assumptions have been made in 

lasso-type regression (Meinshausen and Bühlmann 2006; Zhao and Yu 2006; Ravikumar et 

al. 2009; Wainwright 2009; Lee, Sun, and Taylor 2013).

Assumption 6

Assume that

f min > λn
4 2sCmax

Cmin
and ξ < 1

4
Cmin

sCmax
,
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where f min ≡ mink ∈ S j
{∫0

1
[ f jk

∗ (Xk
∗(t))]2dt}

1/2
 is the minimum regulatory effect.

Furthermore, we impose some regularity conditions on the bases ψ(·); these are deferred to 

Assumption S4 in the supplementary material.

We arrive at the following theorem.

Theorem 2

Suppose that Assumptions 1–6 and S1–S4 in the supplementary material hold, and let

hn ∝ n
(α − 1)/(2β1 + 1)

, M ∝ n

2β1(1 − α)
(2β1 + 1)(2β2 + 1)

,

λn ∝ n
−

β1(2β2 − 1)(1 − α)
(2β1 + 1)(2β2 + 1) + 2γ

,

where 0 < α < 1, 0 < γ < H1(β1, β2, α), and H1(β1, β2, α) is a constant that depends only on 

β1, β2 and α. Then as n increases, the proposed procedure (17) correctly recovers the true 

graph, that is, Ŝj = Sj for all j = 1, …, p, with probability converging to 1, if s = O(nγ) and pn 
exp(−C4nα/σ2) = o(1) for some constant C4.

Because the regressors Ψ are estimated, establishing variable selection consistency requires 

extra attention. To prove Theorem 2, we must first establish variable selection consistency of 

group lasso regression with errors in variables. This generalizes the recent work on errors in 

variables for lasso regression (Loh and Wainwright 2012). Theorem 2 ensures that the 

proposed method is able to recover the true graph exactly, given sufficiently dense 

observations in a finite time interval if the graph is sparse. The number of variables in the 

system can grow exponentially fast with respect to n, which means that the result holds for 

the “large p, small n” scenario.

Theorem 2 does not provide us with practical guidance for selecting the bandwidth hn for the 

local polynomial regression estimator X j. The next result mirrors Theorem 2 for the 

bandwidths selected by cross-validation or GCV, which converge to hn ∝ n
−1/(2β1 + 1)

asymptotically (see Xia and Li 2002; Tsybakov 2009 for details).

Proposition 1

Suppose that Assumptions 1–6 and S1–S4 in the supplementary material hold, and let

hn ∝ n
−1/(2β1 + 1)

, M ∝ n

1
2β2 + 1(

2β1
2β1 + 1 − α)

, and

λn ∝ n
−

2β2 − 1
4β2 + 2(

2β1
2β1 + 1 − α) + 2γ

,
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where 0 < α <
2β1

2β1 + 1 , 0 < γ < H2(β1, β2, α), and H2(β1, β2, α) is a constant that depends 

only on β1, β2, and α. Then as n increases, the proposed procedure (17) correctly recovers 

the true graph, that is, Ŝj = Sj for all j = 1, …, p, with probability converging to 1, if s = 

O(nγ) and pn exp(−C4nα/σ2) = o(1) for some constant C4.

We note that selecting the values of M and λn that yield the rate specified in Proposition 1 is 

challenging in practice. The rate of convergence of the sparsity tuning parameter λn is 

slower in Proposition 1 compared to Theorem 2. This results in an increase in the minimum 

regulatory effect fmin because of the relation between fmin and λn in Assumption 6.

5. Numerical Experiments

We study the empirical performance of our proposal in three different scenarios in the 

following subsections. In what follows, given a set of initial conditions and a system of 

ODEs, numerical solutions of the ODEs are obtained using the Euler method with step size 

0.001. Observations are drawn from the solutions at an evenly spaced time grid {iT/n; i = 1, 

…, n} with independent N(0, 1) measurement errors, unless specified otherwise. To facilitate 

the comparison of GRADE with other methods, we fit the smoothing estimates X in (17b) 

using smoothing splines with bandwidth chosen by GCV. We use cubic splines with two 

internal knots as the basis functions in (17c) in Sections 5.1 and 5.3. Linear basis functions 

are used in Section 5.2. The integral Ψk(t) = ∫0

t
ψ(Xk(u; h))du in (17c) is calculated 

numerically with step size 0.01.

5.1. Variable Selection in Additive ODEs

In this simulation, we compare GRADE with NeRDS (Henderson and Michailidis 2014) and 

SA-ODE (Wu et al. 2014) described in (14). We consider the following system of additive 

ODEs, for k = 1, …, 5:

X2k − 1′ (t) = θ2k − 1, 0 + ψ(X2k − 1(t))Tθ2k − 1, 2k − 1 + ψ(X2k(t))Tθ2k − 1, 2k

X2k′ (t) = θ2k, 0 + ψ(X2k − 1(t))Tθ2k, 2k − 1 + ψ(X2k(t))Tθ2k, 2k

, t ∈ [0, 20] (26)

where ψ(x) = (x, x2, x3)T is the cubic monomial basis. The parameters and initial conditions 

are chosen so that the solution trajectories are identifiable under an additive model (Buja, 

Hastie, and Tibshirani 1989). Detailed specification of (26) can be found in Section C of the 

supplementary material.

After generating data according to (26) and introducing noise, we apply GRADE, NeRDS, 

and SA-ODE to recover the directed graph encoded in (26). Both NeRDS and SA-ODE are 

implemented using code provided by the authors. NeRDS and SA-ODE use smoothing 

splines to estimate X and X′ in (14b), and cubic splines with two internal knots as the basis 

ψ in (14a). As mentioned briefly in Section 2, NeRDS applies an additional smoothing 

penalty that amounts to an ℓ2 penalty on θjk in (14a), controlled by a parameter selected 
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using GCV (Henderson and Michailidis 2014). We apply GRADE using the same smoothing 

estimates and basis functions as NeRDS and SA-ODE. To facilitate a direct comparison to 

NeRDS, we apply GRADE both with and without an additional ℓ2-type penalty on the θjk’s 

in (17a). We apply all methods for a range of values of the sparsity-inducing tuning 

parameter (e.g., λn in (17a)), to yield a recovery curve of varying sparsity.

We summarize the simulation results in Figure 1, where the numbers of true edges selected 

are displayed against the total numbers of selected edges over a range of sparsity tuning 

parameters. We see that GRADE outperforms the other two methods, which corroborates 

our theoretical findings in Section 4 that our proposed method is more efficient than 

methods such as NeRDS and SA-ODE, which involve derivative estimation (see, e.g., 

comments below Theorem 1).

5.2. Variable Selection in Linear ODEs

In this simulation, we compare GRADE to two recent proposals by Brunel, Clairon, and 

d’Alché Buc (2014) and Hall and Ma (2014). Recall from Section 2.2.2 that Brunel, Clairon, 

and d’Alché Buc (2014) and Hall and Ma (2014) proposed to estimate a few unknown 

parameters in an ODE system of known form. Hence, we consider a simple linear ODE 

system, for k = 1, …, 4,

X2k − 1′ (t) = 2kπX2k(t)
X2k′ (t) = − 2kπX2k − 1(t), t ∈ [0, 1] . (27)

For each k = 1, …, 4, we set the initial condition to be (X2k−1(0), X2k(0)) = (sin(yk), cos(yk)) 

where yk ∼ N(0, 1). The solutions to (27) take the form of sine and cosine functions of 

frequencies ranging from 2π to 8π. The graph corresponding to (27) is sparse, with only 

eight directed edges out of 64 possible edges. We fit the model

X′(t) = ΘX(t) + C, (28)

where Θ is an unknown 8 × 8 matrix and C is an 8-vector. We apply the method in Brunel, 

Clairon, and d’Alché Buc (2014) using the code provided by the authors. We implement the 

method in Hall and Ma (2014) in R based on the authors’ code in Fortran. Because the loss 

function in Hall and Ma (2014) is not convex, we use five sets of random initial values and 

report the best performance. Since both Brunel, Clairon, and d’Alché Buc (2014) and Hall 

and Ma (2014) yielded dense estimates for Θ in (28), to examine how well these methods 

recover the true graph, we threshold the estimates at a range of values to obtain a variable 

selection path. We apply GRADE using the linear basis function ψ(x) = x.

Results are shown in Figure 2. We can see that GRADE outperforms the methods in Brunel, 

Clairon, and d’Alché Buc (2014) and Hall and Ma (2014). This is likely because GRADE 

exploits the sparsity of the true graph with a sparsity-inducing penalty. In principle, Brunel, 

Clairon, and d’Alché Buc (2014) and Hall and Ma (2014) could be generalized to include 

penalties on the parameters. We leave this to future research.
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5.3. Robustness of GRADE to the Additivity Assumption

The GRADE method assumes that the true underlying model is additive (Assumption 3). 

However, in many systems, the additivity assumption is violated; for instance, multiplicative 

effects may be present in gene regulatory networks (Ma et al. 2009). In this subsection, we 

investigate the performance of GRADE in a setting where the true model is nonadditive. We 

consider the following system of ODEs, for k = 1, …, 5,

X2k − 1′ (t) = f 2k − 1(X2k − 1(t), X2k(t)) ≡ 2X2k − 1(t) − vX2k − 1(t)X2k(t)
X2k′ (t) = f 2k(X2k − 1(t), X2k(t)) ≡ vX2k − 1(t)X2k(t) − 2X2k(t) ,t ∈ [0, 5], (29)

where v is a positive constant. For each k = 1, …, 5, the pair of Equation (29) is a special 

case of the Lotka–Volterra equations (Volterra 1928), which represent the dynamics between 

predators (X2k) and prey (X2k−1). The parameter v defines the interaction between the two 

populations. For v ≠ 0, both X2k − 1′  and X2k′  are nonadditive functions of X2k−1 and X2k. We 

define two types of directed edges, where ℰ1 ≡ {(Xj, Xj), j = 1, …, 10} and ℰ2 ≡ {(X2k−1, 

X2k), (X2k, X2k−1), k = 1, …, 5} represent the self-edges and nonself-edges, respectively. 

Figure 3(a) contains an illustration of the graph and edge types for each pair of equations. In 

what follows, we investigate how well GRADE recovers these two types of edges as we 

change the parameter v, that is, as the additivity assumption is violated.

Since measurement error is not essential to the current discussion, we generate data 

according to (29) without adding noise. To ensure that the trajectories are identifiable, we 

generate R = 2 sets of random initial values drawn from N10(0, 2I10), where I10 is a 10 × 10 

identity matrix. To quantify the amount of signal in an edge that GRADE can detect, we 

introduce the quantity

D j, k(v) = 𝔼 R∫
0

T ∂ f j
∂Xk

(t; X(0))
2
dt , (30)

where the expectation is taken with respect to the random initial values X(0) and R is the 

number of initial values. The measure Dj,k in (30) is a loose analogy to 

{∫0

1
[ f jk

∗ (Xk
∗(t))]2dt}

1/2
 used in Assumption 6. Note that if no edge is present from Xk to Xj, 

then ∂fj/∂Xk ≡ 0 and hence Dj,k(v) = 0. One immediately notes that, as R increases, the 

regulatory effect for a true edge increases proportionally to R, while the regulatory effect of 

a nonedge remains zero. For the self-edges in ℰ1 and the nonself-edges in ℰ2, we can define 

D(1)(v) and D(2)(v) as

D(1)(v) = min
k = 1, …, 10 Dk, k(v), and

D(2)(v) = min
k = 1, …, 5 {D2k − 1, 2k(v), D2k, 2k − 1(v)},

(31)
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where we use the minimum because variable selection is limited by the minimum regulatory 

effect (see Assumption 6). With a slight abuse of definition, we refer to (31) as the minimum 

regulatory effects in a nonadditive model.

We apply GRADE using the formulation in (18). The sparsity parameter λ is chosen so that 

there are 20 directed edges in the estimated network. We record the number of estimated 

edges that are in ℰ1 and ℰ2. The edge recovery performance is shown in Figure 3(b). In 

Figure 3(c), we display the minimum regulatory effects defined in (31). Edge recovery and 

minimum regulatory effects show a similar trend as a function of r in (29). This suggests that 

(31), and thus (30), is a reasonable measure of the additive components of the regulatory 

effect of the edges. The slight deviation between the trends reflects the fact that the measure 

defined in (30) is not a direct counterpart of {∫0

1
[ f jk

∗ (Xk
∗(t))]2dt}

1/2
 in a nonadditive model. 

The edge recovery improves when a larger value of R is used, though these results are 

omitted due to space constraints. Our results indicate that GRADE can recover the true 

graph even when the additivity assumption is violated, provided that the regulatory effects 

(30) for the true edges are sufficiently large.

6. Applications

6.1. Application to in Silico Gene Expression Data

GeneNetWeaver (GNW) provides an in silico benchmark for assessing the performance of 

network recovery methods (Schaffter, Marbach, and Floreano 2011), and was used in the 

third DREAM challenge (Marbach et al. 2009). GNW is based upon real gene regulatory 

networks of yeast and E. coli. It extracts sub-networks from the yeast or E. coli gene 

regulatory networks, and assigns a system of ODEs to the extracted network. This system of 

ODEs is nonadditive, and includes unobserved variables (Marbach et al. 2010). Therefore, 

the assumptions of GRADE are violated in the GNW data.

To mimic real-world laboratory experiments, GNW provides several data generation 

mechanisms. In this study, we consider data from the perturbation experiments. The 

perturbation experiments are similar to the data-generating mechanisms used in Section 5.3, 

where initial conditions of the ODE system are perturbed to emulate the diversity of 

trajectories from multiple independent experiments.

We investigate 10 networks from GNW that have been previously studied by Henderson and 

Michailidis (2014), of which five have 10 nodes and five have 100 nodes. For each network, 

GNW provides one set of noiseless gene expression data consisting of R perturbation 

experiments where the trajectories are measured at n = 21 evenly spaced time points in [0, 

1]. Here R = 10 for the five 10-node networks and R = 100 for the five 100-node networks. 

As in Henderson and Michailidis (2014), we add independent N (0, 0.0252) measurement 

errors to the data at each timepoint.

We apply NeRDS as described in Henderson and Michailidis (2014). We apply GRADE 

using the formulation (18) to handle observations from multiple experiments, with the 

smoothing estimates X in (17b) fit using smoothing splines with bandwidth chosen by GCV, 
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and using cubic splines with two internal knots as the basis functions in (17c). The integral 

Ψk(t) = ∫0

t
ψ(Xk(u; h))du in (17c) is calculated numerically with step size 0.01. Finally, we 

apply an additional ℓ2-type penalty to the θjk’s in (18) to match the setup of NeRDS. The 

tuning parameter for this penalty is set to be 0.1.

Results are shown in Table 1. Recall that the data-generating mechanism violates crucial 

assumptions for both NeRDS and GRADE. We see in Table 1 that NeRDS outperforms 

GRADE in one network, while GRADE outperforms NeRDS in the other nine networks. 

This suggests that GRADE is a competitive exploratory tool for reconstructing gene 

regulatory networks.

6.2. Application to Calcium Imaging Recordings

In this section, we consider the task of learning regulatory relationships among populations 

of neurons. We investigate the calcium imaging recording data from the Allen Brain 

Observatory project conducted by the Allen Institute for Brain Science (available at http://

observatory.brain-map.org.). Here, we investigate one of the experiments in the project. In 

this experiment, calcium fluorescence levels (a surrogate for neuronal activity) are recorded 

at 30 Hz on a region of the primary visual cortex while the subject mouse is shown 40 visual 

stimuli. The 40 visual stimuli are combinations of eight spatial orientations and five 

temporal frequencies. Each stimulus lasts for 2 sec and is repeated 15 times. The recorded 

videos are processed by the Allen Institute to identify individual neurons. In this particular 

experiment, there are 575 neurons. Each neuron’s activity is defined as the average calcium 

fluorescence level of the pixels that it covers in the video.

It is known that the activities of individual neurons are noisy and sometimes misleading 

(Cunningham and Byron 2014). As an alternative, neuronal populations can be studied (see, 

e.g., Part Three of Gerstner, Kistler, Naud, and Paninski 2014). We define 25 neuronal 

populations by dividing the recording region into a 5 × 5 grid, where each population 

contains roughly 20 neurons. We use GRADE to capture the functional connectivity among 

the 25 neuronal populations. Note that functional connectivity is distinct from physical 

connectivity. Functional connectivity involves the relationships among neuronal populations 

that can be observed through neuron activities and may change across stimuli, whereas 

physical connectivity consists of synaptic interactions.

We estimate the functional connectivity corresponding to three different but related stimuli, 

consisting of frequencies of 1 Hz, 2 Hz, and 4 Hz, each at a spatial orientation of 90°. For 

each stimulus, we have calcium fluorescence levels of the p = 25 neuronal populations for 

each of R = 15 repetitions. Since each repetition spans 2 sec and the calcium fluorescence is 

recorded at 30 Hz, there are 60 timepoints per repetition. We apply GRADE using the 

formulation in (18) to reconstruct the functional connectivity under each of the three stimuli. 

We use smoothing splines with bandwidth h selected with GCV to estimate X in (17b), and 

use cubic splines with four internal knots as the basis functions ψ(·) in (17c). The sparsity 

parameter λj,n for each nodewise regression in (18) is selected using BIC for each j = 1, …, 

25. For ease of visualization, we prefer a sparse network, and so we fit GRADE using tuning 
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parameter values α(λ1,n, …, λp,n), where the scalar α is selected so that each of the 

estimated networks contains approximately 25 edges.

Estimated functional connectivities are shown in Figure 4. We see that, in all three networks, 

the 24th neuronal population regulates many other neuronal populations, indicating that this 

region may contain neurons that are sensitive to this spatial orientation. Furthermore, we see 

that the adjacent connectivity networks in Figure 4 are somewhat similar to each other, 

whereas the networks at 1 Hz and 4 Hz have few similarities. This agrees with the 

observation in neuroscience that neurons in the mouse primary visual cortex are responsive 

to a somewhat narrow range of temporal frequencies near their peak frequencies (see, e.g., 

Gao, DeAngelis, and Burkhalter 2010).

7. Discussion

In this article, we propose a new approach, GRADE, for estimating a system of high-

dimensional additive ODEs. GRADE involves estimation of an integral rather than a 

derivative. We show that estimating the integral is superior to estimating the derivatives both 

theoretically and empirically. We leave an extension of our work to nonadditive ODEs to 

future research.

In this article, we have not addressed the issue of experimental design. Given a finite set of 

resources, one may choose to design an experiment to measure n observations on a very 

dense time grid, or on a coarse time grid. Alternatively, one might choose to measure n/R 
observations for R distinct experiments from a single ODE system (1), each with a different 

initial condition. This presents a trade-off that is especially interesting in the context of 

ODEs: using a dense time grid improves the quality of the smoothing estimates X, as seen in 

Sections 5.1 and 5.2, while running multiple experiments enhances the identifiability of the 

true structure, as seen in Section 5.3. We leave a more detailed treatment of these issues to 

future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Performance of network recovery methods on the system of additive ODEs in (26), averaged 

over 400 simulations. The four curves represent SA-ODE (dashed, red line), NeRDS 

(dashed, gray line), and GRADE without (solid, red line) and with (solid, gray line) the 

additional smoothing penalty in (17a) used by NeRDS. Each point on the curves 

corresponds to average performance for a given sparsity tuning parameter λn in (14a) or 

(17a). The symbols indicate the sparsity tuning parameter λn selected using BIC (SA-ODE, 

red square, and GRADE, red circle and gray circle) or GCV (NeRDS, gray square).
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Figure 2. 
Network recovery on the system of linear ODEs (27), averaged over 200 simulated datasets. 

The three curves represent GRADE (gray line), Hall and Ma (2014) (blue line), Brunel, 

Clairon, and d’Alché Buc (2014) (green line).
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Figure 3. 
(a) The graph encoded by a pair of Lotka-Volterra equations as given in (29). Self-edges 

(solid, gray line) and nonself-edges (dashed, gray line) are shown. (b) Self-edge (solid, gray 

line) and nonself-edge (dashed, gray line) recovery of GRADE, averaged over 200 simulated 

datasets. (c) Minimum signals defined in (31), for self-edges, D(1)(·) (solid, red line), and 

nonself-edges, D(2)(·) (dashed, red line).
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Figure 4. 
Estimated functional connectivities among neuronal populations from the calcium imaging 

data described in Section 6.2. Each node is positioned near the center of the neuronal 

population it represents, with jitter added for ease of display. The three red edges are shared 

between the estimated networks at 1 Hz and 2 Hz; the two blue edges are shared between 

estimated networks at 2 Hz and 4 Hz; the single green edge is shared between the estimated 

networks at 1 Hz and 4 Hz. For reference, given two Erdös-Rènyi graphs consisting of 25 

nodes and 25 edges, the probability of having three or more shared edges is 0.07, and the 

probability of having two or more shared edges is 0.26.
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