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Abstract

Alzheimer’s disease (AD) is one of the most common causes of dementia. Despite several decades 

of serious research in AD there is no standard disease modifying therapy available. Stem cells hold 

immense potential to regenerate tissue systems and are studied in a number of brain-related 

disorders. For various untreatable neurodegenerative disorders, such as Alzheimer’s disease (AD), 

amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) (current-approved drugs provide 

only symptomatic relief), stem cell therapy holds a great promise and provides a great research 

opportunity. Here we review several stem cell transplantation studies with reference to both 

preclinical and clinical approaches. We focus on different sources of stem cells in a number of 

animal models and on molecular mechanisms involved in possible treatment of neurodegenerative 

disorders. The clinical studies reviewed suggest safety efficacy and translational potential of stem 

cell therapy. The therapeutic outcome of stem cell transplantation has been promising in many 

studies but no unifying hypothesis exists for an underlying mechanism. Some studies reported 

paracrine effects exerted by these cells via release of neurotrophic factors, while other studies 

reported immunomodulatory effects by transplanted cells. There are also reports supporting stem 

cell transplantation causing endogenous cell proliferation or replacement of diseased cells at the 

site of degeneration. In animal models of AD, stem cell transplantation is also believed to increase 

expression of synaptic proteins. A number of stem cell transplantation studies point out great 

potential for this novel approach in preventing or halting several neurodegenerative diseases. The 

current challenge is to clearly define the molecular mechanism by which stem cells operate and 

the extent of actual contribution by the exogenous and/or endogenous cells in the rescue of 

disease.
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INTRODUCTION: THE POTENTIAL OF STEM CELL TRANSPLANTATION IN 

ALZHEIMER’S DISEASE

A number of neurodegenerative disorders, such as Alzheimer’s disease (AD), Amyotrophic 

lateral sclerosis (ALS) and Parkinson’s disease (PD) are untreatable, and they progressively 

worsen with age, resulting in death. The world Alzheimer Repot 2015 reported over 46 

million individuals in the world’s population suffer from dementia, and this number is 

estimated to increase upto 131.5 million by 2050 [1]. Dementia is associated with multiple 

causes that include alcoholism, AD, stroke, PD and drug/medication intoxication. It is the 

fifth leading cause of death in the US with age of 65 years or above. In 2015 AD prevalence 

in USA was estimated to be close to 5.3 million, and this is expected to rise up to 11 to 16 

million in 2050 [2]. In India, the number of individuals which are suffering from AD and 

other dementia is estimated to be approximate 3.7 million and this number is expected to 

double by the year 2030 [3].

The most common form of dementia, AD, is characterized by different stages of cognitive 

and functional impairment. Patients suffering from AD lose autonomy in their daily normal 

activities, and this progressively deteriorates with age. In 1901, Alois Alzheimer, a German 

psychiatrist, diagnosed a 51 year-old woman with a condition he called “amnestic writing 

disorder” [4]. Her psychosocial abnormalities included aphasia and memory impairment. 

Later, in 1910 when Alzheimer’s supervisor published his book Psychiatrie, he reported this 

case and mentioned this condition as Alzheimer’s disease [4]. Since then, extensive research 

has progressed worldwide to understand several aspects of the disease, ranging from its 

pathology, disease onset, prevalence, diagnosis and treatment in various cellular, pre-clinical 

and clinical studies. Currently, AD pathophysiology is based on several important 

hypotheses i.e., including the cholinergic hypothesis, protein misfolding, and amyloid 

cascade hypotheses [5–7].

The hippocampus plays a significant role in memory encoding and retrieval. Hippocampus is 

the first region of the brain to be affected in AD. Injury to brain tissue has not been seriously 

considered for treatment by cell replacement strategies as compared to the other organs e.g. 

skin and liver tissues. Earlier, neuroanatomists considered that the nervous system is 

incapable of regeneration. In 1962 Joseph Altman provided the first evidence of 

neurogenesis in the cerebral cortex and later, in 1963 he showed the occurrence of 

neurogenesis in the dentate gyrus of rat and cat hippocampus [8]. In some animals, neuronal 

precursors originate from the subventricular zone (SVZ) to the main olfactory bulb via 

specialized migratory route known as the rostral migratory stream (RMS). More recently, 

various strategies are being employed to activate these lesser population of stem cells by 

various methods [9]. Currently available FDA-approved drugs for AD provide symptomatic 

relief to the patients without alleviating elusive disease pathology. Alternative strategies such 
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as herbal remedies [10–12] and cell based therapies [13, 14] are being tested in preclinical 

settings with the hope of halting disease progression. The underlying mechanism is either 

replacement of degenerating neurons or exerting neuroprotection by the paracrine effect of 

transplanted cells by the secretion of neurotrophic factors (Fig. 1) [15]. The efficacy of stem 

cells has been studied in various pre-clinical studies by transplanting these cells into the 

disease- specific animal models. However, there is a gap of knowledge describing the 

underlying molecular mechanisms involved in the rescue of disease by transplanted cells.

PATHOPHYSIOLOGICAL FEATURES IN ALZHEIMER’S DISEASE

Several animal studies and human brain biopsies have revealed the pathological hallmarks of 

AD, including extracellular amyloid-β (Aβ) plaque deposits and formation of intracellular 

neurofibrillary tangles (NFT). NFT are misfolded structures produced by aberrant 

phosphorylation of microtubule-stabilizing tau proteins. The process of Aβ formation is 

known to play a significant role in AD etiology [16]. Amyloid plaques may trigger a 

pathological cascade resulting in neurofibrillary tangles and neuroinflammation causing 

neuritic dysfunction, which ultimately leads to neuronal death. In AD patients, excessive 

accumulation of amyloid plaques is likely to be due to dysregulation of activity of β-site 

Amyloid Precursor Protein-Cleaving Enzyme 1 (BACE1). BACE1 gives rise to Aβ from the 

membrane-spanning Aβ precursor protein (APP). This is the rate limiting step of Aβ 
production. This cleavage occurs at the N-terminus of Aβ to form soluble APPβ, and the C-

terminus is further cleaved by γ-secretase complex, which yields Aβ40/42 [17]. Aβ 
fragments thus generated aggregate to form amyloid fibrils. Aβ40 (with 40 amino acid 

residue) is the predominant form but Aβ42 (with 42 residues) is more fibrillogenic than the 

shorter species and is involved in disease pathology.

Several environmental factors cause epigenetic changes in individuals. It plays a significant 

role in regulating the gene expression via modification of DNA and histone protein 

modification leading to genetic dysregulation thereby causing various disease pathologies. In 

AD, amyloid fibril-induced neuroinflammation is believed to increase expression of 

epigenetic factors such as. methyl-CpG-binding protein 2 and histone deacetylase 2 and their 

interaction further suppresses the expression of synaptic protein leading to amyloid induced 

memory deficiency [18].

Tau is an intracellular microtubule associated protein that plays an essential role in 

microtubule stabilization. Abnormal phosphorylation of tau leads to microtubule disruption. 

The formation of neurofibrillary tangles may be triggered by amyloid plaque. In addition, 

the cholinergic hypothesis postulates a reduction in neurotransmitter acetylcholine in the AD 

patients [19] as the primary cause of AD. Besides amyloid plaque deposition and 

neurofibrillary tangle formation, vascular dysfunction also appears in AD pathophysiology.

Both genetic and environmental factors contribute to etiology of AD. Genetic factors linked 

to autosomal dominant inherited mutations include presenilin 1 (PS1), presenilin 2 (PS2), 

APP and enzymes involved in amyloid processing, such as BACE1. This genetic form, also 

called familial AD (FAD) contributes marginally towards prevalence (no more than 5% of 

AD cases [20]), whereas most AD cases are sporadic, with an unknown cause. The E4 
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variant of APOE is largely known as a major genetic risk factor for the late onset of AD 

[21]. Studies suggest that there are some interactions with amyloid to cause this dramatic 

effect [22]. Some studies also propose that sporadic cases are the result of various 

environmental and epigenetic factors which lead to an etiology based upon “Latent Early-

life Associated Regulation” (LEARn). LEARn describes effects resulting from exposure of 

stressors in early life e.g. nutritional imbalance, toxic metals (such as lead) and other 

stressors, which induce epigenetic alterations on disease associated gene chromatin or 

histones [23]. These changes remain latent as (de)methylation of promoter or chromatin 

modifications by (de)acetylation, (de)methylation and (de)phosphorylation. Upon one or 

more additional hits in the later life, expression of modified gene(s) alters sufficiently to 

induce pathology.

CELL TYPE CONSIDERATIONS FOR DISEASE MODIFYING THERAPIES

The requirement of a suitable cell type with particular characteristics for specific disease 

types is needed for proper and effective cell transplantation. Stem cells from several tissues 

such as bone marrow and umbilical cord blood are well characterized for their proliferation 

and differentiation properties and can be an optimum source for transplantation [24, 25]. 

Current strategies emphasize culturing of isolated cells in an optimum medium with suitable 

nutrient environment to obtain the desired disease phenotype. The microenvironment also 

provides suitable niche for selective expression of desirable markers to trigger these cells for 

a specialized cell type [26, 27]. Long-term culture and characterization of primary neurons 

isolated from rodent and human fetal tissue is essential for undertaking comparative studies. 

Abundant tau and amyloid-β production in human brain cultures provides a powerful 

cellular model for AD. In a recent study Ray et al provide a well-characterized methodology 

for fetal human primary brain cell culture, which is useful to test the therapeutic efficacy of 

drugs targeting AD [28]. Cultures of induced pluripotent stem cell (iPSC) generated from 

fibroblasts of FAD patients with presenilin 1 and presenilin 2 mutations were characterized 

after acquiring neuronal lineage [29]. Apart from increased Aβ42 expression, the iPSC 

model also showed variable drug response and alleviation of stress induced response by 

docosahexaenoic acid (DHA) treatment [30]. Likewise, RNA silencing has also been used in 

this cellular model. Therapeutic strategies primarily focus on targeting production of Aβ by 

identifying key molecular regulators of BACE1 expression. The researchers have also 

elucidated the role of human micro-RNA (miR)-339-5p which negatively modulates BACE1 

in primary human brain cultures, and expression of miR-339-5p is reduced in AD patients 

[31].

PRE-CLINICAL STUDIES TO PROBE REGENERATIVE POTENTIAL OF STEM 

CELLS

At present, there are no consensus measures to accurately diagnose and monitor progression 

of AD [32]. This significantly hinders effective treatments against AD. To study AD 

pathologies and its targets, different animal models of AD have been established and tested 

in preclinical settings. These model systems range from laboratory animals like zebrafish, 

murid rodents and nonhuman primates to model invertebrates such as Drosophila and C 
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elegans. Among these, rats and mice are widely used, and their transgenic counterparts are 

the most-established system to evaluate disease pathophysiology as well as effective 

treatment strategies. Several strategies have been adopted to establish AD like pathologies 

and induced memory impairment in these models [33]. These include predetermined brain 

injury, neurotoxin induced cell loss in brain and intra-cerebroventricular injection of Aβ 
peptides [34].

Current treatments for AD includes blocking neurotransmitter degradation, which provide 

temporary symptomatic relief without alleviating the pathophysiological burden of the 

disease [35, 36]. Therefore, alternative cell based studies for transplantation have been 

carried out in the belief that either these cells replace degenerating neurons or secrete trophic 

factors that provide a protective environment to the endogenous cells. Various neurotrophic 

factors are secreted by the cells to modulate the synaptic functioning in brain. In particular, 

BDNF is synthesized by neurons and highly expressed in cortex and hippocampus; these 

regions are crucial for learning and memory in brain [37].

The animal models associated with Aβ-induced memory loss have been widely studied in 

understanding pathophysiology of AD and testing therapeutic efficacy of various drug 

targets. Prakash et al. use intracerebroventricular (ICV) injection of Aβ to study the role of 

pioglitazone, a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, on 

neurotrophic factor BDNF in a rat model of AD with neuroinflammation. Aβ-injured 

animals showed significant impairment in memory as well as reduced levels of BDNF, 

which were reversed by administration of pioglitazone [38]. Tang et al. demonstrated 

fibrillar Aβ40 induced neurotoxicity in rat hippocampus, characterized by congo red plaques 

and degenerating neurons at the site of injection. This pathological outcome was supported 

by impaired cognitive performance in the rats, tested in Morris water maze. Further, they 

have used this model to validate cell replacement efficacy of neural precursor cells derived 

from human embryonic stem cells. The neural precursor cells are partially differentiated, as 

these cells are more precisely committed to their lineage [39]. The transplanted cells were 

found to ameliorate Aβ-induced cognitive impairment in these rats and further survived, 

integrated and differentiated into GFAP and NF-200 positive neuronal cells after 16 weeks 

of transplantation [40].

Blurton-Jones et al. explored the role of neural stem cell transplantation in reversal of 

memory impairment. To study the effect of neural stem cells (NSCs) in AD pathology and 

cognitive functions, these cells were transplanted into aged triple transgenic mice that 

express mutant presenilin, tau and APP with aggressive Aβ load. Remarkably, transplanted 

NSCs were found to ameliorate loss in spatial learning and memory without altering Aβ and 

tau pathologies. Further, these cells increased synaptic density in diseased brain, which was 

assisted by BDNF. Loss of function studies have revealed that NSCs exert regenerative 

effects mediated by BDNF. It was further found that restoration of memory loss occurred 

when recombinant BDNF was additionally supplemented [15]. The same group recently 

reported that when these NSCs were genetically engineered to stably release the Aβ 
degrading enzyme neprilysin (NEP), they could augment synaptic plasticity as well as 

ameliorate underlying Aβ pathology in triple transgenic mice [41]. Neuralstem, Inc. had 

announced the first data on neural stem cells transplantation studies in an animal model of 
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AD. This group reported that HK532: IGF1 (NSI-532.IGF) cells ameliorate spatial learning 

deficits and improved memory in AD mice. To generate human insulin-like growth factor 1 

(IGF-1), a cortical neural stem cell line was engineered. IGF-1 cells also impart a wide-

range of neuroprotective properties [42]. Notably, the cells, which were administered in the 

peri-hippocampal region showed survival up to ten weeks. Also, mice with stem cell 

transplantation performed better than did control mice at fourteen weeks after the surgery. It 

would be reasonable to conclude that such preliminary studies point toward a potentially 

feasible therapeutic approach to treat AD in the future, and that the therapeutic effect of stem 

cells upon transplantation into the brain is supported by a combination of approaches and 

largely mediated or at least significantly influenced by paracrine effects.

IMMUNOMODULATORY EFFECTS OF STEM CELLS TARGETING AD 

PATHOLOGY

Reports also suggest that transplanted stem cells exerts some immunomodulatory response 

at the site of injury, leading to release of cytokines that further target the underlying AD 

pathology. Jin et al. highlighted the phenomenon of crosstalk between transplanted cells and 

endogenous neuroproliferative cells by the transplantation of neural precursor cells (NPCs) 

in focal cerebral ischemia of rat brain. In their earlier study they found reduced infarct 

volume and improved behavioral outcomes upon transplantation of NPCs in middle cerebral 

artery occlusion model of rat. In a more recent study neurogenesis was shown by an increase 

in BrdU labeling and expression of neuronal migration protein doublecortin in the ipsilateral 

SVZ whereas not in contralateral SVZ or subgranular zone (SGZ) in young and aged rats 

[43]. In another study, authors have administered umbilical cord blood-derived mesenchymal 

stem cells (UCB-MSCs) in double transgenic mice of PS1 and APP, which substantially 

ameliorated loss of spatial learning and memory by microglia activation. Further, levels of 

Aβ peptide, hyperphosphorylation of tau and BACE1 activity were reduced significantly. 

This neuroprotective effect by UCB-MSCs involved modulation of neuroinflammation due 

to reduction in pro-inflammatory and increase in anti-inflammatory cytokines, induced by 

microglia activation [44]. These findings suggest that UCB-MSC may act as a therapeutic 

agent to ameliorate decline in cognitive functions in AD model mice.

Besides amyloid plaque deposition and neurofibrillary tangle formation, vascular 

dysfunction also contributes to the AD pathophysiology. Vascular endothelial growth factor 

(VEGF) is also implicated in AD related neurodegeneration. Therefore Garcia et al used the 

strategy of providing VEGF by transplantation of overexpressing bone marrow derived 

mesenchymal cells into the lateral ventricles of brain using stereotaxic surgery in double 

transgenic mouse model with APPSWE/PS1dE9 mutations [45]. Behavioral and molecular 

parameters were assessed for vascularization and amyloid plaque deposition. Outcomes 

included reducing behavioral deficit and amyloid deposition besides inducing favored 

neovascularization. Yang et al. have used cell based approach and transplanted differentiated 

neuron like cells in APP/PS1 transgenic mice. They used human mesenchymal stem cells 

derived from Wharton’s jelly of umbilical cord and transdifferentiated into neuron-like cells 

(HUMSC-NCs) by tricyclodecan-9-yl-xanthogenate (D609). Transplantation of HUMSC-

NCs in a transgenic APP/PS1 mouse model significantly reduced Aβ load and improved 
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cognitive functions via increase in microglial activation and expression of the NEP and Aβ 
degrading enzymes insulin-degrading enzyme (IDE). Expression of pro-inflammatory 

markers associated with the modulation of M2-like microglia (a type of microglia classified 

based on its mannose receptor and its activation by IL-4 cytokine [46]) activation was 

reduced whereas expression of anti-inflammatory markers, such as interleukin-4 (IL4), was 

found to be increased [47]. Mesenchymal stem cells derived from bone marrow of male 

Sprague–Dawley rats were transplanted in female rats by tail vein injection [48]. BM-MSCs 

were found to increase expression of nestin andcholine acetyltransferase positive cells at the 

injured area in the brain. Notably, these cells displayed a reduction in amyloid plaques in 

hippocampus.

Thus, bone marrow cells bring about their therapeutic effect by mechanisms involving anti-

apoptotic activity, immunomodulation, and neurogenic properties. Furthermore, 

neurogenesis in the subgranular zone of dentate gyrus may act as an endogenous repair 

mechanism in AD via Wnt pathway in amyloid-related neurodegeneration associated with 

AD. Researchers also investigated the role of mesenchymal stem cells on hippocampal 

neurogenesis by co-culturing with the amyloid treated neural progenitor cells. Mesenchymal 

stem cells treatment to NPC significantly enhances the expression of GFAP, Ki67, HuD c, 

SOX2, and Nestin. Transplantation of these mesenchymal stem cells in Aβ-treated animals 

increased BrdU and HuD double positive cells in hippocampus at 2 and 4 weeks as 

compared to control and Aβ-treated alone animals [49]. This shows that MSC administration 

caused hippocampal neurogenesis and increased differentiation of NPC, which is modulated 

by Wnt pathway. If proven, this may provide a better therapeutic approach for treating AD 

patients than what is offered by anticholinesterase drugs. Zhang et al realized that neural 

stem cell transplantation could provide a better approach for the therapeutic treatment of AD 

and hypothesized that the transplantation of NSCs would ameliorate cognitive impairment 

by increased expression of synaptic proteins. Therefore, they isolated NSCs from mouse 

embryo at embryonic day 14 and transplanted these cells in both hippocampi of APP/PS1 

transgenic mice. Indeed, there was enhancement in cognitive functions analyzed by better 

spatial learning and memory after 8th weeks of transplantation as compared to the control 

group. Further, the expression of synaptophysin (SYN) and GAP-43 were found to be 

increased significantly. Hence, these results suggest that NPC induced cognitive 

improvement possibly by formation of new neural circuits [50].

Studies have also been carried out to mobilize the quiescent bone marrow stem cell 

population into the peripheral blood by using stimulating factors. Prakash et al evaluated the 

effect of granulocyte colony stimulating factor (GCSF) in Aβ induced memory loss in male 

adult Wistar rats, and they found significant escalation in behavioral performance after 

GCSF elevated the progenitor population and CD34 positive cells in the brain affecting 

neurogenesis [51]. Shetty et al. demonstrated the efficacy of mesenchymal stem cells 

(MSCs) derived from umbilical cord tissue in a Parkinson disease model [52]. They have 

studied the comparative therapeutic efficacy of MSCs from umbilical tissue and bone 

marrow as well as efficacy of undifferentiated versus differentiated cells in their model and 

found better efficacy of differentiated MSCs into dopaminergic phenotype when 

transplanted. As mesenchymal stem cells lack immunomodulatory activity, these cells 

provide a novel cellular approach to treat some neurological disorders. Several sources of 
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stem cells in combination with multiple approaches tested in pre-clinical AD models are 

further discussed in Table 1.

POTENTIAL ADVERSE EFFECTS OF STEM CELL THERAPY

Niche provides the regulatory molecules and suitable physicochemical environment to 

facilitate the cells to behave in a particular fashion [53]. These cells are exploited for 

therapeutic purposes, by isolating them from their niche which can pose some unexpected or 

undesirable outcomes such as tumorigenicity, which has a major concern. Very few studies 

have reported the potential adverse effect of these stem cells upon transplantation. In one of 

the studies, investigators evaluated the long term safety efficacy of 253G1-NSs (neural stem 

cells). The 253G1-NSs were transplanted to treat spinal cord injury (SCI) in SCID-NOD 

mice. These transplanted cells were found to have temporary improvement of motor function 

assessed by rota rod experiment for upto 47 days of post transplantation; however, this was 

followed by gradual deterioration in motor functioning [54]. It has also been shown to be 

involved in enhanced proliferation of grafted cells and tumor formation. The proportion of 

nestin positive cells have been found to be increased from 47 days and 103 post-

transplantation which suggests tumor formation in the long term by the grafted cells. In an 

18-years old patient with spinal cord injury at T10-T11, an olfactory mucosal cells were 

transplanted after three years. This led to severe back pain and paraplegia after 8 years. 

Further imaging revealed a mass formation of an intramedullary spinal cord [55].

The Yamanaka study of induced pluripotent stem cells opens up a possible window for 

untreatable diseases [56] as well as for stem cell clinical trials; even though the use of iPSCs 

also carries a risk for tumors formation. The generation of iPSCs involves retroviral 

transduction by the factors i.e. Oct3/4, Sox2, Klf4 and c-Myc [57]. The retroviral 

transduction of c-Myc is believed to increase a risk for tumorigenicity, hindering its clinical 

application. Further, the approach has also shown elimination of the c-Myc factor for iPSC 

generation, which is relatively safer than the earlier approach.

Therefore, an evaluation of safety efficacy of stem cells would provide us better therapeutic 

approach and its clinical application [58, 59].

THE PUTATIVE LINK OF BDNF AND CREB BEHIND STEM CELL MEDIATED 

REGENERATION

In brain BDNF and CREB (cAMP response element-binding protein) are believed to play a 

major role in complex memory formation, consolidation and retention [60–62]. It is also 

reported in both in-vivo and in-vitro studies that Aβ induced toxicity leads to 

downregulation of BDNF and its major regulatory molecule CREB. Hota et al studied the 

phosphorylation of CREB to investigate the molecular mechanism of bacoside action. 

Administration of Bacopa monniera leaf extractin hypobaric hypoxia induced rat model 

increased learning ability and ameliorated cognitive dysfunction [63]. Tota et al. investigated 

the effect of angiotensin II on spatial memory and BDNF expression in Sprague-Dawley 

male rats. Spatial memory was reduced as assessed by Morris water maze after angiotensin 

ICV administration, and no change was observed in BDNF expression [64]. In an in-vitro 
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study, Sharma et al. have investigated the role of CREB binding protein (CREB-BP) in 

neuronal differentiation. Their deletion construct p-CREB-BP were transfected into NT2 

cells and expression profile for neuronal genes i.e. SHH, Wnt, Notch and their mutant 

counterparts were evaluated. Defects in neuronal differentiation due to aberrant interaction 

of CREB-BP with their transcriptional regulatory proteins were investigated by CHIP-PCR 

and co-immunoprecipitation. Cells that are lacking in CREB, BROMO and HAT domains 

were found to show more proliferation and less differentiation whereas cells expressing 

CREB-BP showed less proliferation and more differentiation [65]. In 2009, Verma et al. 
suggested the role of dichlorvos in memory impairment by muscarinic receptor induced 

signal transduction and phosphorylation of CREB. Dichlorvos belongs to the 

organophosphate compounds which are widely used to as insecticide and may act as 

cholinesterase inhibitor [66]. Low doses of dichlorvos impaired the signal transduction 

linked to the adenylyl cyclase pathway and reduced CREB phosphorylation, leading to 

neurobehavioral impairment [67].

Neurotrophic factors such as BDNF, NGF and GDNF, which have been earlier shown to 

rescue hypoxia induced ischemic rat brain upon intravenous transplantation of UCB cells. 

This indicates an intrinsic role for neurotrophic factors, rather than direct differentiation, 

being significant in the stem cell mediated recovery [68]. It is pertinent to note that the role 

of BDNF has been well described in AD literature. BDNF levels are decreased when 

compared to healthy controls in the postmortem brains of AD patients [69–71]. Mature 

BDNF and its mRNA expression have also been shown to be confined to hippocampus and 

parietal cortex region of the brain [72–74]. BDNF is believed to exert neuroprotective effect 

in several neurodegenerative diseases. This may include pathologies characterized by Aβ-

induced neuronal cell death. Several studies have shown the complete reversal of 

neuroprotective effects driven by BDNF in neuronal culture death induced by Aβ in specific 

and dose-dependent manner [75–80]. BDNF induced neuroprotective effect has shown 

incorporation of the Trkβ receptor [76]. Moreover, specific Aβ42 induced neuronal cell 

death has been shown to be reversed by BDNF, in addition to other neurotrophins like IGF-1 

and GDNF [75].

Since CREB is a DNA binding protein and acts as a transcription factor for several genes, 

including c-fos, tyrosine hydroxylase, several neuronal peptides, and, importantly, 

neurotrophin BDNF, it is possible that an association exists between the role of BDNF 

expression and its regulation by CREB in rescuing learning and memory deficits [81, 82]. 

The function of CREB in the formation of spatial memory; conversion of this memory into 

long term memory and in neuronal plasticity is well documented [83]. It is well known that 

gene expression has a major role in memory consolidation as well as long term potentiation 

[83, 84]. These expression profiles are possibly activated through CREB and involvement of 

Ca++, protein kinase A (PKA) and by the activation of cAMP, but need additional studies 

[85–87]. The activated PKA would phosphorylate CREB protein which further regulates 

gene expression of several proteins [86, 88, 89]. Recently, Suzuki et al. have shown the 

effect of CREB on both short as well as long term memory. They have reported the increase 

in long term memory (LTM) as well as long term potential in hippocampus CA1 region in 

gain-of function CREB mice in which mice express dominant active CREB protein. In 

addition, they reported short term memory (STM) improvement in response to fear 
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conditioning and spatial clues, which was related with enhanced BDNF levels in these mice. 

Therefore, up-regulation of BDNF and CREB expression may mutually trigger enhancement 

of LTM and STM, suggesting that CREB mediated BDNF expression plays intrinsic role in 

memory consolidation and retrieval. (Fig. 2) [90].

CLINICAL STUDIES FOR TREATING NEURODE-GENERATIVE DISORDERS

Although a number of pre-clinical studies have been launched, very few clinical studies have 

been carried out so far. Venkataramana et al suggested the safety and effectiveness of 

autologous bone-marrow derived mesenchymal stem cells when transplanted unilaterally in 

PD patients. Notably, no adverse effects of these stem cells were seen, paving the way for 

additional studies in future [91]. In 2012, human retinal stem cells were used to treat PD 

patients. Authors isolated human retinal stem cells from retinal pigmented epithelium tissue 

from post-mortem eyes and cultured in-vitro to differentiate into dopaminergic neurons. 

These cells were then transplanted by stereotaxic operation into the post-commissural 

putamen of 12 PD patients. Interestingly, PET analysis showed a trend of increased 

dopamine release during the 6 month study [92]. In a current study of a phase I open-label 

clinical trial, authors evaluated the safety efficacy of intrathecal and intravenous 

transplantation of autologous bone marrow cells in children with cerebral palsy. Eighteen 

children with cerebral palsy, who had transplantation, were evaluated for motor and 

cognitive functions and MRI was done after the sixth month showing it was a safe procedure 

[93].

There are very few reports registered at www.clinicaltrials.gov of stem cells transplantation 

in AD patients, and their outcomes are largely unavailable. In 2011 Medipost Co Ltd. 

completed an open level, phase I safety and efficacy trial on Korean AD patients, but they 

did not post their outcome measures. Human umbilical cord blood derived MSCs were 

transplanted in AD patients at two different doses (3 million and 6 million) and endpoint 

analysis was measured by ADAS-cog scoring, PET imaging, and Aβ and tau levels in CSF 

[94]. Another group in China is currently recruiting AD patients in phase I/II trial in a 

similar study design with 30 probable AD participants, where patients are intravenously 

administered with 20 million human UCB-MSCs [95]. Medipost Co Ltd. has recently started 

a double blinded, placebo controlled, phase I/IIa trial in Korea where patients with mild to 

moderate AD will be subjected to repeated intraventricular administrations of UCB-MSCs 

and will be evaluated 24 weeks after first dose of transplantation [96].

CONCLUSION

Stem cells have promising translational significance as evident by emerging scientific data 

showing therapeutic benefits in several neurodegenerative disorders. The intrinsic pathways 

through which these cells exert their therapeutic effects still remain a challenge requiring 

thorough investigation. There are several studies describing the underlying pathways ranging 

from proliferation, differentiation, immunomodulation to cell replacement and paracrine 

effects at the site of neurodegeneration. Pre-clinical studies have shown variable effects 

depending on the types and sources of stem cells. Several studies explain this on the basis of 

paracrine effects either mediated by neurotrophic factors or endogenous cell proliferation. In 
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animal models of AD, stem cell transplantation has been shown to increase the expression of 

synaptic protein markers. Transplantation of mesenchymal stem cells has shown decrease in 

Aβ load due to microglial expression and escalation of Aβ degrading enzymes. A 

combinatorial approach, wherein stem cells are tagged with neurotransmitters or Aβ 
modifying enzymes may exhibit a substantial therapeutic outcome in AD. There is also 

insufficient literature to explain the actual relative contributions of exogenous cells and 

endogenous cells towards rescue of function after stem cell transplantation. There is absence 

of comparative studies involving different sources and types of stem cells i.e. 

undifferentiated versus differentiated cells in animal models of AD. Nevertheless, a few 

clinical studies have paved the way for clinical translation but such innovative treatments 

also carry substantial risk for tumor formation [55]. A thorough investigation is needed on 

the sources, types, stages, doses and routes of stem cell transplantation in AD model to 

validate their optimum therapeutic outcome. Moreover, the different stages of AD 

progression and other related pathologies may play a critical role in the outcome of the cell 

transplantation. Hence understanding the etiology of AD and its other pathologies is of 

paramount significance for successful clinical translation of stem cell related therapies [97].
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LIST OF ABBREVIATIONS

AD Alzheimer’s disease

APP Aβ precursor protein

Aβ Amyloid Beta

BACE1 β-Site Amyloid Precursor Protein-Cleaving Enzyme 1

BDNF Brain derived neurotrophic growth factor

BM-MSCs Bone-marrow derived mesenchymal stem cells

Brdu Bromodeoxyuridine

CHIP Chromatin Immunoprecipitation

CREB cAMP response element-binding protein

CREBBP CREB binding protein

DHA Docosahexaenoic acid

FAD Familial Alzheimer’s Disease

GCSF Granulocyte colony stimulating factor

GFAP Glial fibrillary acidic protein
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ICV Intracerebroventricular

IDE Insulin-degrading enzyme

IHC Immunohistochemistry iPSC-Induced pluripotent stem cells

LTM Long term memory

MRI Magnetic resonance imaging

NEP Neprilysin

NFT Neurofibrillary tangles

NPC Neural precursor cells

NPC Neural progenitor cells

NSC Neural stem cells

MWM Morris water maze

PD Parkinson Disease

PET Positron emission tomography

PPAR-γ peroxisome proliferator-activated receptor-γ

PS1 Presilin1

RMS Rostral migratory stream

SC Stem Cells

STM Short term memory

SVZ Subventricular zone

SYN Synaptophysin

TBI Traumatic Brain Injury

UCB-MSC Umbilical cord blood derived mesenchymal stem cells

VEGF Vascular endothelial growth factor
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Fig. 1. Outline for underlying mechanism in stem cell mediated reversal of AD pathology
Some underlying hypothesis may explain functional improvements in subjects of stem cell 

transplantation in AD. However, current experiments point to four possible explanations. A) 

Paracrine effects from release of neurotrophic factors by transplanted cells. B) 

Immunomodulatory effects by transplanted cells. C) Replacement of diseased cells by 

transplanted cells. D) Proliferation of endogenous cells. It is likely that all four processes 

operate in a coherent and synergistic manner to produce a final salutary effect(s).
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Fig. 2. Schematic showing the plausible mechanism behind stem cell mediated cognitive 
improvement in Alzheimer’s disease
We propose that the therapeutic effect of stem cells upon transplantation into the brain is 

largely mediated by the paracrine effects. The increase in neurotrophic factors, such as 

BDNF, results in increased CREB phosphorylation which in turn activates the genes that 

regulate cognitive functions and memory by involving one or other phenomena, such as 

neuroprotection, cell proliferation, differentiation, cell migration, synaptogenesis and 

neurogenesis.
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