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Abstract

Objective—Electrodermal activity (EDA) is a non-invasive measure of sympathetic activation 

often used to study emotions, decision-making, and health. The use of “ambulatory” EDA in 

everyday life presents novel challenges—frequent artifacts and long recordings—with inconsistent 

methods available for efficiently and accurately assessing data quality. We developed and validated 

a simple, transparent, flexible, and automated quality assessment procedure for ambulatory EDA 

data.

Methods—Twenty individuals with autism (5 females, 5–13 years) provided a combined 181 

hours of EDA data in their home using the Affectiva Q Sensor across 8 weeks. Our procedure 

identified invalid data using four rules: (1) EDA out of range; (2) EDA changes too quickly; (3) 

temperature suggests the sensor is not being worn; and (4) transitional data surrounding segments 
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identified as invalid via the preceding rules. We identified invalid portions of a pseudo-random 

subset of our data (32.8 hours, 18%) using our automated procedure and independent visual 

inspection by five EDA experts.

Results—Our automated procedure identified 420 minutes (21%) of invalid data. The five 

experts agreed strongly with each other (agreement: 98%, Cohen’s κ: 0.87) and thus were 

averaged into a “consensus” rating. Our procedure exhibited excellent agreement with the 

consensus rating (sensitivity: 91%, specificity: 99%, accuracy: 92%, κ: 0.739 [95% CI=0.738, 

0.740]).

Conclusion—We developed a simple, transparent, flexible, and automated quality assessment 

procedure for ambulatory EDA data.

Significance—Our procedure can be used beyond this study to enhance efficiency, transparency, 

and reproducibility of EDA analyses, with free software available at http://www.cbslab.org/

EDAQA.

Index Terms

Electrodermal activity; data quality assessment; quality control; wearables

I. INTRODUCTION

Electrodermal activity (EDA) is a non-invasive peripheral measure of sympathetic nervous 

system activation commonly used to assess physiological arousal [2]. EDA is typically 

measured using a recording device containing two small sensors placed on the skin of the 

fingers, palm, feet, or other parts of the body [3, 4]. The sensors complete a circuit passing 

through the skin (a resistor) and the EDA recording device measures the fluctuations in 

conductance of the skin due to changes in the amount of sweat in eccrine gland ducts, which 

are controlled by the sympathetic nervous system. EDA is conventionally decomposed into 

background or tonic skin conductance level (SCL), which encompasses relatively slow and 

continuous changes in EDA over tens of seconds, and skin conductance responses (SCRs), 

which are relatively fast and discrete events superimposed on the SCL (by convention, an 

SCR is typically considered an increase in EDA of at least 0.05 µS over 1–3 sec followed by 

a slower decrease in EDA toward its pre-SCR level over 3–15 sec) [4–6]. However, EDA is 

not a perfect measure of sympathetic nervous system activation because eccrine sweat gland 

density differs across sites on the body [3], EDA does not necessarily reflect sympathetic 

activation to other organs in the periphery [7], and EDA is affected by non-sympathetic 

factors such as environmental temperature and humidity [2].

Despite these limitations, EDA can be recorded easily and non-invasively and thus has been 

used extensively to study physiological arousal in emotion [8], attention [9], decision-

making [10], pain [11], stress [12], autism [13], phobias [14], panic disorder [15], attention 

deficit disorders [16], side-effects from cancer treatments [17], and other psychological 

phenomena (for a review, see [2]). Traditionally, studies using EDA have been performed in 

carefully controlled laboratory settings with brief recording durations (often a few minutes 

per participant) with procedures to minimize participant movement and variations in 

temperature and humidity, and utilizing pre-selected, time-locked stimuli or tasks. Recent 
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advances in mobile sensing technology [18] have enabled broader use of “ambulatory” EDA 

in everyday life [19]. Ambulatory EDA studies provide enormous amounts of data—e.g., 

tens of hours per participant—and capture open-ended naturalistic settings such as life at 

home, school, work, or during stressful events. The advances afforded by ambulatory EDA 

have enhanced ecological validity by revealing whether laboratory-based phenomena also 

occur in naturalistic settings, and provided a window into phenomena that do not occur in 

controlled laboratory environments [18], such as individuals with flight phobia flying in an 

airplane [14]. More generally, recording EDA in both laboratory and naturalistic settings 

enables one to explain environment-specific variance.

Analysis of ambulatory EDA data requires tremendous care given the unique challenges it 

presents—such as frequent artifacts and varied data quality throughout long recordings—

which occur due to greater movement in daily life. Recording artifacts can arise from a 

variety of sources, such as: (1) movement artifacts from pressure or movement of the 

electrodes relative to the skin [20]; (2) participants intentionally or unintentionally touching 

the sensors (especially for individuals with sensory sensitivity conditions such as autism); or 

(3) contextual factors (e.g., air humidity, temperature) that cause excessive sweating that 

increases the EDA signal beyond a device’s capabilities (i.e., “bridging,” “ceiling effect,” 

“saturation”) [1]. These issues are further compounded by the fact that ambulatory EDA 

recordings are typically extremely long, sometimes with tens of hours per participant. 

Whereas traditional quality assessment of laboratory-based EDA data can be performed by 

rigorous and methodical visual inspection and human coding, this time-consuming process 

does not scale well to ambulatory EDA datasets. Although the technology to acquire 

ambulatory EDA data has increased rapidly, the development of software to perform 

automated quality assessment on ambulatory EDA data has not kept pace.

There is a critical need for simple, transparent, and flexible automated quality assessment 

procedures for ambulatory EDA data. There are several extant software programs to help 

detect and analyze individual SCRs (e.g., MindWare EDA Program, Biopac AcqKnowledge, 

[21–23]), and emerging software programs to help distinguish SCRs from artifacts (e.g., [24, 

25]). However, these analytic tools were developed for laboratory-acquired EDA data, 

typically recorded under conditions of little to no participant movement. Fewer tools are 

available for automated quality assessment of ambulatory EDA data beyond identification 

and analysis of SCRs, and existing tools have only recently begun to appear in the literature 

(e.g., [26–28]). These tools, although automated and somewhat flexible, are still being 

optimized and are neither simple nor entirely transparent, making independent interpretation 

and replication by others difficult. Simplicity is desirable (although not essential) to help 

researchers and readers gain a mutual understanding of the methods used so they can be 

evaluated, built upon, and easily adapted to match recording parameters of different devices. 

If a technique is not transparent, it can hinder reproducibility and lead to undetected artifacts 

that can influence results and subsequent interpretations. For example, in recent work by 

Taylor et al. [28], automated EDA quality assessments were made using a machine learning 

algorithm to distinguish “valid” vs. “invalid” 5-sec segments of EDA data according to 

ratings by two human EDA experts. The machine learning algorithm had access to 14 

different EDA features (mean EDA, maximum slope, etc.) and performed well (96% 

accuracy) in replicating decisions of human EDA experts when the two experts agreed with 
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each other (although performance suffered when EDA experts disagreed on EDA data 

validity). Although sophisticated, the authors did not indicate what rules the machine 

learning model used to identify any portion of EDA data as “valid” or “invalid” based on a 

complex 14-dimensional EDA feature space. This problem is significant for researchers 

trying to understand why certain portions of their EDA data are invalid (e.g., to provide 

better instructions to researchers and participants to improve data quality, for building a 

sensor that is more robust to specific types of artifacts). The lack of transparency is also 

problematic for replicating findings. In the current world of “big data”—including 

longitudinal ambulatory EDA studies—the need for transparent automated methods has 

never been greater. Indeed, the National Institutes of Health (NIH) recently released an 

initiative designed to support greater rigor and reproducibility in biomedical research [29].

The goal of the current study was to develop and evaluate a simple, transparent, and flexible 

automated quality assessment procedure for ambulatory EDA data. The contributions of this 

work include: (1) development of an automated EDA quality assessment procedure using 

four simple and adjustable rules; (2) demonstration that results from our automated 

procedure agree with results from the human EDA raters; and (3) demonstration of better 

agreement with human raters than an extant alternative approach by Taylor et al. [28]. We 

tested our automated procedure on a large ambulatory EDA dataset acquired in the home 

from 20 children and adolescents with autism. We used home-based data because it provided 

a wide range of EDA features without knowledge of context—where EDA quality decisions 

had to be made based on EDA data alone—which was precisely the condition for which we 

designed our procedure. Next, to obtain quality assessment of the same EDA data, five 

independent human EDA raters (all with substantial prior expertise evaluating EDA data 

quality) identified invalid portions of data by visual inspection of raw EDA signals. We 

evaluated our automated procedure by comparing its performance to that of five human 

raters and to that of Taylor et al. [28]. Our free, open-source software is available at http://

www.cbslab.org/EDAQA.

II. MATERIALS AND METHODS

A. Participants

Twenty children and adolescents with a confirmed diagnosis of autism spectrum disorder 

from a licensed clinician at the Center for Autism and the Developing Brain (CADB) and 

their families were recruited to participate (5 females, age range 5–13 years, mean age = 8 

years). All caregivers provided informed consent and children and adolescents seven years 

of age and older provided assent in accordance with the Institutional Review Board at Weill 

Cornell Medicine.

B. Procedures

The participants and their caregivers participated for a total of eight weeks. There was a total 

of three clinic visits to CADB during weeks 1, 4, and 8. During the first clinic visit, 

caregivers were trained how to operate the Q Sensor (Affectiva, Inc.; Waltham, MA) and 

were provided with detailed instructions for turning on/off the device, synchronizing the 

sensor clock to Universal Time, placing electrodes on their child’s wrist to optimize signal 
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quality, and charging the device after each use. The Q Sensor acquired EDA, temperature, 

and 3-axis accelerometer data at a sampling frequency of either 16 Hz or 32 Hz. To enhance 

sensitivity, solid conductive adhesive hydrogel Ag/AgCl electrodes were used (22 mm 

square; model A10040-5 from Vermed; Buffalo, NY). The Q Sensor was positioned on the 

ventral surface (underside) of the non-dominant wrist. Caregivers were provided with an 

athletic sweatband to place over the Q Sensor to prevent the child from touching it, 

mistakenly turning the device off, or moving the electrodes. At home, caregivers were 

instructed to put the Q Sensor on their child for three separate days during the week 

following their clinic visit for approximately 1.5 hours per day. Caregivers were told the 

child should go about their daily activities as usual, but to remove the device before bathing 

or showering. Caregivers were also given written instructions on how to operate the device, 

and a research assistant periodically checked in with the family to address any issues.

In addition to the Q Sensor, caregivers were provided with a mobile application on their 

smartphone to provide daily feedback about their child’s behavior (mood, irritability, and 

disruptive behaviors) and the children wore a Language Environment Analysis (LENA) 

device to record their spoken language. Data from these measures are beyond the scope of 

this study and will be presented elsewhere.

C. Developing the automated quality assessment procedure

The in-home data consisted of 181 hours of EDA data across 195 recordings. Fig. 1 shows a 

flow chart of our automated quality assessment procedure. First, we used a low-pass 

“despiking” filter to remove noise, as recommended by [2]. Specifically, we used a low-pass 

FIR filter of length 2,057 (symmetric around zero) with cutoff frequencies at 0 and 0.35 Hz 

and designed for a sampling frequency of 32 Hz. Because the filter is FIR and symmetric, 

the phase response is linear and this corresponds to a constant group delay of 1,028 samples. 

We selected this filter to capture the (low frequency) changes in SCL and potential SCRs, 

which vary from approximately 3–15 sec. After filtering, we tested whether each data point 

was valid or invalid based on the four rules shown in Table 1.

Data marked invalid by these four rules are not likely to be associated with any physiological 

abnormalities or pathology. Specifically, whereas certain conditions such as clinical anxiety 

have been associated with modest increases in EDA level or EDA slope at rest and in 

response to laboratory stimuli [2], these changes are small compared to the physiologically 

unrealistic values indicated by the rules in Table 1.

D. Quality assessment by human EDA experts

To test the performance of our automated procedure against assessments of EDA experts, we 

pseudo-randomly selected 100 approximately 20-min-long segments of data. The procedure 

selected a 20-min segment starting at least 10 min into a recording (to ensure that stable 

contact between the Q Sensor and the skin was established) from a random subset of files, 

where each file was a single recording session from a specific participant and recording day. 

We started with files at least 30 min long, and obtained all 94, 20-min segments; we then 

chose 6 more files and extracted segments ranging from 11.7 to 19.2 min. The total duration 
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of data for automated and human quality assessment was 1,972.3 min (average file duration 

of 19.7 min).

Five raters (I.R.K., O.W.S., J.B.W., K.S.Q., M.S.G.), all with extensive expertise conducting 

EDA analyses, each provided independent manual ratings of all 1,972.3 min (100 files) of 

EDA data. The raters were instructed to use only the rules indicated in Table 1 as visual 

heuristics (not mathematical calculations), with the exception that the human raters did not 

view the temperature data. Raters used web-based software that we developed to visualize 

EDA data to select and mark invalid segments [30]. The software loads and displays EDA 

data, permits zoom in and out functionality, allows the user to highlight and add custom text 

labels to portions of EDA data, and allows the user can revisit any file at any time. Human 

raters were instructed to identify invalid data to the nearest second. The human raters also 

provided confidence ratings (high or low) for their selection of each invalid segment.

Some datasets were removed because they could not be rated by some EDA experts due to 

an error in the web-based EDA visualization software. This occurred for only 22 dataset-

rater combinations (4.4% of total data). Due to the small amount of data affected, we do not 

expect this to meaningfully bias our results. One data file had no ratings from any human 

EDA expert and thus was removed. In total, 90% of the data received ratings from all five 

EDA experts, and there was at least one human EDA expert rating for each data point in 

1,952.3 min of data (spanning 99 of the 100 files).

E. Comparing EDA ratings within raters and between raters and our automated procedure

We concatenated the data across all 99 datasets within each EDA rater to create a vector 

where each element indicates whether the data point was valid or invalid based on its rating 

(each data point reflects 1/32 sec or 1/64 sec of data, based on the sampling frequency). We 

compared raters to each other in a pairwise manner (10 pairwise comparisons) using percent 

agreement and Cohen’s κ [31], and then averaged the 10 values of percent agreement and κ. 

We also created a human consensus EDA expert based on majority vote to mark each data 

point as either valid or invalid.

We compared results from the human consensus rating to the results of our automated 

procedure to yield percent agreement, sensitivity (number of time points where both human 

consensus and the automated procedure indicated “valid” divided by the number of time 

points that human consensus indicated “valid”), specificity (number of time points where 

both human consensus and the automated procedure indicated “invalid” divided by the 

number of time points that human consensus indicated “invalid”), and κ. All calculations 

were performed using MATLAB (MathWorks; Natick, MA).

F. EDA quality assessment using EDA Explorer by Taylor et al. [28]

We analyzed our 100 datasts with the web-baesd softare from Taylor et al. [28]. We accessed 

the website, uploaded data, and completed analyses on May 8, 2017 using the version of the 

software available at the time with its default settings. Results were returned in 5-sec epochs, 

and thus comparisons between Taylor, our automated procedure, and human experts were all 

made in 5-sec epochs that each reflect majority vote (valid or invalid) across the time points 

in the epoch.
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III. RESULTS

A. Distributions of data features

Fig. 2 shows different features of our Q Sensor dataset including EDA level, EDA slope, 

temperature, and acceleration. Across all data points in the 100 data files, there was 

significant variability in all Q Sensor features. The EDA level was typically in the lower 

range of the scale (median 2.8 μS, 95% CI = 0, 65 μS), although a significant portion of data 

was outside the allowable range (0.05–60 µS). For EDA slope, the clear majority of data 

were within the allowable range of ±10 µS/sec (median 0 μS/sec, 95% CI -0.6, 0.6 μS/sec), 

but there were some points with very rapid changes in EDA. The temperature data were 

often 33–35°C (median 32.9°C, 95% CI = 28.7, 35.8°C), reflecting that the Q Sensor was 

worn for at least 10 min and no more than 30 min. Finally, the acceleration data, like the 

EDA data, were typically in the lower range of the scale (median 0.06 g, 95% CI = 0.003, 

0.52 g) with few occasions of high acceleration. This suggests that participants were more 

often sedentary or only moderately active during recording periods, although such 

designations are imperfect using only wrist-worn accelerometers [32].

B. Results from our automated procedure

Fig. 3 shows five examples of invalid portions of data automatically identified by our 

procedure. The examples include violations of Rule 1 (EDA is out of range; Fig. 3a–b), Rule 

2 (EDA changes too fast; Fig. 3c), Rule 3 (temperature is out of range; Fig. 3e), and Rule 4 

set to mark as invalid a 5-sec range of data around invalid points from rules 1–3 (Fig. 3d). 

These examples show that our procedure successfully removed invalid regions of data, 

although sometimes at the expense of also removing valid regions of data, such as in Fig. 3e 

where some rapid EDA changes were removed (red arrow at 13 min). Across all 1,972.3 min 

of data (100 files), our automated procedure identified 420 min (21.3%) of invalid data.

C. Results from human EDA raters

Analogous to our automated procedure, five human EDA raters independently identified 

invalid regions of EDA data across all 99 approximately 20-min files using our web-based 

software tool to view, zoom in/out, and highlight invalid data based on violations of our rules 

concerning EDA level (not within 0.05–60 µS) and EDA slope (changing faster than ±10 µS/

sec). Each human rater required approximately 2 hours to evaluate all 99 files. Across all 

raters, 58% of the invalid segments were identified with high confidence and the remaining 

42% were identified with low confidence. Two of the raters always identified invalid 

segments with low confidence, and the other three raters identified 46%, 50%, or 86% of 

invalid segments with high confidence. Despite differences in confidence, we found 

excellent agreement among the five raters, with average inter-rater agreement of 98% and 

average inter-rater κ of 0.87 (ranging 0.82–0.94 across the 10 pairs of raters, with all ps < 

10−90). This high level of agreement justified creating a consensus EDA rating by majority 

vote (valid or invalid) across all raters for each data point.

Kleckner et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D. Comparison of our automated procedure and the consensus EDA rater

Qualitatively, there was excellent agreement between automated and human quality 

consensus assessment procedures. However, Fig. 4 shows a few examples of discrepancies. 

For instance, the red arrow in Fig. 4a shows that the automated procedure marked data as 

invalid due to low temperature, whereas the human consensus rater marked the data as valid; 

the blue arrow in Fig. 4d shows that the automated procedure marked the data as valid 

whereas the human consensus rater marked the data as invalid due to the large, rapid spikes. 

Quantitatively, our automated procedure exhibited excellent agreement with the consensus 

rating with sensitivity of 91%, specificity of 99%, accuracy of 92%, and κ of 0.739 (95% CI 

= 0.738, 0.740, p < 10−90) across three million data points (Table 2). The table shows that 

most errors from our automated procedure were “misses,” i.e., the automated procedure 

marked data as invalid in cases where human EDA consensus marked data as valid. Thus, 

with these EDA data and rules, our automated procedure is relatively liberal in excluding 

data; that is, our procedure removes most invalid data but sometimes also removes valid 

data.

E. Comparison of our automated procedure to the automated procedure of Taylor et al

We also ran our 100 datasets through the web-based algorithm of Taylor, et al. [28]. The two 

approaches exhibited only modest agreement, with overall agreement of 73% and κ of 0.39 

(95% CI = 0.38, 0.41, p < 10−90). The Taylor et al. procedure was more likely to mark data 

as invalid (38% invalid) than our current approach (24% invalid; n.b., the slight difference of 

24% invalid here vs. 21% invalid from Section B is because this comparison required 

decimating our data to Taylor’s 5-sec sampling period). Most of the time (55% of data 

points), both methods indicated the data point was valid, and some of the time (18%) both 

methods indicated the data point was invalid. In cases where the approaches disagreed, 20% 

of the time only our procedure indicated the data point was valid; in rarer instances (6%), 

only the Taylor procedure indicated the data point was invalid. Finally, the Taylor procedure 

exhibited poorer agreement with the human consensus rating than did the current procedure, 

with overall agreement of 77% and κ of 0.46 (95% CI = 0.45, 0.48). By comparison, our 

procedure exhibited an overall agreement of 94% and κ of 0.83 with the human consensus 

rating (presented in section D).

IV. DISCUSSION

This study presents a simple, transparent, and flexible automated quality control procedure 

for ambulatory EDA data that exhibits excellent agreement with human EDA experts. This 

procedure is particularly relevant given the need for rigorous, transparent, and reproducible 

science—per the NIH’s recent initiative [17]—and the need for automation in analyses of 

ambulatory EDA data, which are typically too large for complete visual inspection by human 

raters. Using data from individuals with autism, a particularly challenging population from 

which to obtain high quality EDA data, we were able to demonstrate the validity of our 

procedure in recording conditions that were far less optimal than a laboratory setting with 

compliant, unmoving, typically developing adults.
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It is important to note that researchers using our procedure will need to adjust the four rules 

based on their recording device specifications and study design. Parameter choices 

emphasize the inherent trade-off between keeping vs. removing both valid and invalid data. 

We are not suggesting canonical rules for the field to follow regardless of data properties 

because rigid rules would not be appropriate across different devices, contexts, and study 

goals. Instead, we recommend that researchers use an independent set of data to establish 

criteria for the automated procedure that match manual ratings. To avoid bias, quality 

assessment criteria should be established before examining results for the primary EDA-

based outcome of the study. We also recommend that authors provide their quality 

assessment specifications to help to establish useful criteria for future studies.

Our work takes a complementary approach to that of Taylor et al. [28], which distinguished 

between invalid and valid EDA data segments by training a support vector machine classifier 

on 14 EDA features (e.g., mean, maximum value of first temporal derivative). Whereas a 

support vector machine classifier that makes use of many different features obscures the 

rules being implemented in determining valid vs. invalid EDA data, our approach uses four 

transparent rules, making it easy to understand how it operates. Additionally, the Taylor et 

al. study exhibited relatively low agreement between the two human EDA experts (81% 

agreement and Cohen’s κ of 0.55); this erodes validity because it is not clear if the algorithm 

was trained against a reliable standard. By comparison, our work obtained ratings from five 

EDA experts and we achieved high inter-rater agreement (average 98% inter-rater agreement 

and average inter-rater κ of 0.90). In one of the analyses of Taylor et al., they also trained 

their classifier to distinguish three classes of EDA data: clean (both raters indicated data 

were clean), questionable (only one of the two raters indicated the data were clean), and 

artifact (both raters indicated the data were artifactual). By comparison, we used only two 

classes of data, consistent with our observation of very high inter-rater agreement. Finally, 

Taylor et al.’s datasets contained more invalid data (artifacts) than the current work (39% vs. 

21% invalid), which might explain some of these differences in performance. However, 

when we applied the Taylor algorithm to our dataset, we found that it did not perform as 

well as our approach, when both were compared to the human raters. Even with further fine-

tuning to improve the Taylor approach to our data, it is unlikely to significantly surpass the 

excellent agreement that our procedure obtained with human EDA experts, which 

approached the ceiling (sensitivity of 91%, specificity of 99%, accuracy of 92%).

It is also important to consider the strengths and limitations of using a rule-based algorithm 

(presented here) compared to a machine-learning based algorithm, such as a support vector 

machine for EDA quality control (e.g., Taylor et al. [28]). The strengths of a rule-based 

algorithm include transparency and simplicity, making it easy for researchers to see which 

rules are most useful and which rules have caused undesirable results. By extension, the lack 

of transparency in machine learning algorithms is its primary weakness. When machine 

learning models become very complex, it may be prohibitively difficult to determine which 

features cause the model to make poor decisions. Moreover, machine learning approaches 

have a greater risk of over-fitting data, causing poor generalizability to situations that are not 

similar enough to the training data. The weaknesses of a rule-based algorithm are that it 

might not fully exploit all features of the data, and thus cannot match human performance in 

many areas unless those features are directly coded as rules. It is also arguable whether 

Kleckner et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



researchers can identify all the relevant rules in EDA quality control, thus placing an upper-

limit on the performance of rule-based approaches. However, our data suggest excellent 

performance using a rule-based algorithm in the current dataset. In addition, certain quality 

control decisions might involve combinations of features, not just simple rules as we 

propose. Indeed, there may be unknown features associated with EDA data that human raters 

anchor on in making quality control decisions. By extension, the strengths of a machine 

learning approach are that it can exploit many features simultaneously to more closely match 

human performance. Future research should continue to consider a wide range of methods to 

optimize automated quality assessment of EDA data. In addition, rules to perform quality 

assessment should consider EDA hardware, participant sample, experimental context, and 

the relative importance of keeping vs. removing both valid and invalid data.

There are several strengths of our automated procedure. First, the rules of the automated 

pipeline are simple and transparent; this makes it easy for future researchers to tune methods 

to their needs and report their rules so that other researchers can understand how the data 

were processed. Second, our procedure was developed using a very large EDA dataset (181 

hours) acquired in a population from whom it is difficult to obtain high-quality EDA data 

(children and adolescents with autism), in an ambulatory setting (participants’ homes). 

These conditions are precisely those that require automated quality assessment where 

manual processing would be time- and cost-prohibitive. Finally, our procedure exhibited 

excellent agreement with human EDA expert ratings, providing confidence that this 

procedure will identify invalid portions of data in a manner consistent with human EDA 

experts, but in a fraction of the time.

Several limitations should be addressed in future work. First, our data were collected only 

from a population of children and adolescents with autism spectrum disorder. Our automated 

procedure should be tested with data from different participant populations, other EDA 

recording devices, electrodes, and recording sites, and from other contexts (home, office, 

clinic, active vs. sedentary). Second, we did not explicitly detect or analyze SCRs, and our 

low-pass filters—selected to remove noise—might have diminished SCRs in our data. 

Indeed, per our study goals, we did not impose rules specifically on SCRs; instead, analyses 

of SCRs that were in our data were subject to the same four rules as the rest of the EDA 

data. Third, there is room to improve on our simple rules. For example, it may be possible to 

account for the slope of temperature data, or the duration during which temperature is out of 

a desirable range, to determine if the sensor is being worn properly. Moving forward, we 

will integrate our procedure into a larger EDA processing pipeline that combines the 

methods developed here with new procedures to distinguish valid SCRs and invalid SCR-

like artifacts (such as sensor contact artifacts created when the sensor is touched; e.g., [24, 

25]). Lastly, certain EDA artifacts could be corrected using knowledge of EDA phenomena 

(e.g., [33]) rather than simply excluded, as suggested in prior work (e.g., [34]).

V. CONCLUSION

Our work fills a well-defined gap in the EDA literature by successfully developing a simple, 

transparent, flexible, and automated quality assessment procedure for ambulatory EDA data. 

Our procedure was demonstrated to be effective using a large ambulatory EDA dataset 
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acquired longitudinally from individuals with autism in their homes. Our automated 

procedure exhibited excellent agreement with quality assessment by multiple independent 

human EDA experts, but in a fraction of the time required for human coding. To further 

enhance transparency, rigor, and reproducibility, we provide free and open source MATLAB 

software to run our procedure at http://www.cbslab.org/EDAQA. We encourage other 

researchers to replicate and extend our initial efforts. We hope our procedure will enhance 

the efficiency and transparency of EDA analyses to help advance multiple fields that utilize 

ambulatory physiological measures, including, but not limited to, clinical studies assessing 

biomarkers of autism or side effects from cancer treatment, and human factors studies 

examining the productivity of healthy individuals in their jobs. To paraphrase NIH, scientific 

rigor and transparency in biomedical research is key to successfully applying knowledge to 

improve health and well-being [28].
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Fig. 1. 
Our automated quality assessment procedure uses a despiking filter and four simple rules to 

determine if each data point is invalid or valid. The values in parentheses were used for this 

study but can be modified based on differences in EDA hardware, participant sample, 

experimental context, and the relative importance of keeping vs. removing both valid and 

invalid data.
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Fig. 2. 
Distributions of data features across all data points in all 100 files with minimum and 

maximum allowable values used in our quality assessment procedure marked in red. (a) 

EDA level (b) EDA slope, (c) temperature, and (d) total acceleration, the latter of which was 

not used in our procedure.
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Fig. 3. 
Examples of invalid data assessed by our automated procedure due to each EDA rule: (1) 

EDA range set to 0.05–60 μS; (2) EDA maximum slope set to ±10 μS/sec; (3) temperature 

range set to 30–40°C; and (4) transition range set to any data within 5 sec. Valid data are 

blue and invalid data are red. In panel (d), the dark red shaded portion shows data originally 

removed because EDA level and slope were too high. The light red shaded portion shows 

that region expanded to a 10-sec wide window (Rule 4 in Table 1) to account for transition 

effects surrounding the artifact. In panel (e), the red arrow indicates a region where the 

automated procedure removed data that appears to be valid. The data shown were subject to 

our low-pass filter.
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Fig. 4. 
Example discrepancies between our automated procedure (top row) and human EDA experts 

(bottom row). The red arrows indicate areas where only a human EDA expert indicated the 

data were valid. The blue arrows indicate areas where only the automated procedure 

indicated the data were valid. The data shown were subject to our low-pass filter.
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Table 1

Our four simple rules for quality assessment of EDA data

Rule Rationale

1. EDA is out of range (not within 0.05–60 
μS)

To prevent “floor” artifacts (e.g., electrode loses contact with skin) and “ceiling” artifacts 
(circuit is overloaded). We chose 0.05 μS because it is at an accepted minimum for SCR 
amplitude [1]. We chose 60 μS because it is near the maximum for the Q Sensor.

2. EDA changes too quickly (faster than ±10 
μS/sec) To prevent high frequency or “jump” artifacts [2] (e.g., [4, 6]).

3. Temperature is out of range (not within 
30–40°C)

To account for times when the EDA sensor is not being worn or has not been worn long 
enough. Our data reached plateaus of approximately 32–36°C across individuals, and in this 
temperature window, we also achieved our most stable electrode-skin interface as evidenced 
by stable EDA measures.

4. EDA data are surrounding (within 5 sec of) 
invalid portions according to rules 1–3 To account for transition effects close in time to artifacts.
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