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ABSTRACT Various microorganisms play key roles in the nitrogen (N) cycle. Quanti-
tative PCR (qPCR) and PCR amplicon sequencing of N cycle functional genes allow
us to analyze the abundance and diversity of microbes responsible for N-transforming
reactions in various environmental samples. However, analysis of multiple target genes
can be cumbersome and expensive. PCR-independent analysis, such as metagenomics
and metatranscriptomics, is useful but expensive, especially when we analyze multiple
samples and try to detect N cycle functional genes present at a relatively low abun-
dance. Here, we present the application of microfluidic qPCR chip technology to simulta-
neously quantify and prepare amplicon sequence libraries for multiple N cycle functional
genes as well as taxon-specific 16S rRNA gene markers for many samples. This ap-
proach, named the nitrogen cycle evaluation (NiCE) chip, was evaluated by using DNA
from pure and artificially mixed bacterial cultures and by comparing the results with
those obtained by conventional qPCR and amplicon sequencing methods. Quantitative
results obtained by the NiCE chip were comparable to those obtained by conventional
qPCR. In addition, the NiCE chip was successfully applied to examine the abundance
and diversity of N cycle functional genes in wastewater samples. Although nonspecific
amplification was detected on the NiCE chip, this can be overcome by optimizing the
primer sequences in the future. As the NiCE chip can provide a high-throughput format
to quantify and prepare sequence libraries for multiple N cycle functional genes, this
tool should advance our ability to explore N cycling in various samples.

IMPORTANCE We report a novel approach, namely, the nitrogen cycle evaluation
(NiCE) chip, by using microfluidic qPCR chip technology. By sequencing the ampli-
cons recovered from the NiCE chip, we can assess the diversities of N cycle func-
tional genes. The NiCE chip technology is applicable to analysis of the temporal dy-
namics of N cycle gene transcription in wastewater treatment bioreactors. The NiCE
chip can provide a high-throughput format to quantify and prepare sequence librar-
ies for multiple N cycle functional genes. While there is room for future improve-
ment, this tool should significantly advance our ability to explore the N cycle in vari-
ous environmental samples.
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Microorganisms play key roles in the nitrogen (N) cycle (1, 2). For example, nitrifiers
oxidize ammonium (NH4

�) to nitrite (NO2
�) and/or nitrate (NO3

�) under oxic
conditions (3, 4). Under oxygen-limited conditions, denitrifiers reduce oxidized nitrog-
enous compounds, such as NO3

� and NO2
�, to nitric oxide (NO), nitrous oxide (N2O),

and dinitrogen gas (N2) (5). N2 gas can also be produced via an anaerobic ammonium
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oxidation (anammox) reaction, in which NH4
� oxidation and NO2

� reduction are
coupled under anoxic conditions (6).

Products of these N-transforming reactions have a great impact on ecosystem
structure and function. For example, nitrification, denitrification, and anammox reac-
tions have been used to remove N from wastewater (7, 8). In agricultural soils, NO3

�

and NO2
� produced via nitrification can be leached from fields to contaminate ground-

water, rivers, lakes, and oceans to cause negative health (e.g., blue-baby syndrome) and
ecological (e.g., eutrophication) consequences (9). Nitrification and denitrification can
also produce N2O, which is considered a strong greenhouse gas and a significant
contributor to the destruction of the ozone layer (10). To mitigate these globally
important environmental problems, we need to identify microbes responsible for these
N cycle reactions.

Culture-independent approaches such as quantitative PCR (qPCR) and PCR amplicon
sequencing are powerful tools to identify, quantify, and analyze the sequence diversity
of the genes related to the N cycle (e.g., see references 11–14). Because PCR is a
sensitive technique, we can amplify genes present at low concentrations. However,
since there are many functional genes for various N cycle reactions (see Fig. S1 in the
supplemental material), we need to run many PCRs to quantify and sequence all of
these genes. In addition, even when a single functional gene is targeted, several PCR
runs may be necessary to cover the diversity of the gene sequences present, since
sequences with a few base pair mismatches to the primers may not amplify the target
genes. Many researchers have developed primers by incorporating degenerate bases,
in an attempt to amplify target genes from diverse taxa; however, it is still difficult to
design “universal” primers (e.g., see references 15–17).

PCR-independent genomic approaches, such as metagenomics and metatranscrip-
tomics, are free of PCR bias and therefore are useful for the identification of functional
gene sequences (e.g., see references 18 and 19). However, functional genes of interest
are present in small proportions relative to the total number of metagenome se-
quences (20). Due to this obstacle, we may need to execute multiple next-generation
sequencing (NGS) runs to obtain functional gene sequences sufficient for statistical
analysis. This process can become costly, which can limit the number of samples
ultimately sequenced. A microarray-based approach has been successfully applied to
detect genes related to biogeochemical cycles, e.g., GeoChip (21–23) and MicroTOOLs
(24). However, this process requires �0.5 �g DNA or cDNA to obtain reliable results
(23), and reactions need to be done on many replicates, which is often difficult for many
environmental samples. Whole-community genome amplification and whole-community
RNA amplification have also been applied to increase DNA and RNA amounts, respectively
(25, 26); however, amplification bias is still of concern (27). In addition, it is often difficult to
distinguish true-positive results from nonspecific background noise due to cross-
hybridization to nontarget genes (28). We cannot verify the microarray results by recovering
and sequencing the DNA/cDNA fragments hybridized with specific probes; therefore,
complementary approaches such as qPCR and NGS are often used in combination with
microarray experiments (29).

One promising approach to overcome these issues is the use of a high-throughput
microfluidic qPCR platform in which different qPCR assays are run simultaneously in
nanoliter-volume chambers present on a chip. The microfluidic qPCR chip system can
greatly reduce the amounts of time, labor, and reagent required compared with
conventional qPCR systems (12), and the sensitivity, specificity, and quantitative per-
formance of the chip are comparable to those of conventional qPCR (30). In addition,
PCR amplicons can be recovered and used for NGS (31, 32).

The objectives of this study are to (i) simultaneously quantify multiple N cycle
functional genes (Fig. S1) as well as taxon-specific 16S rRNA gene markers by using
microfluidic qPCR chip technology (nitrogen cycle evaluation [NiCE] chip), (ii) identify
key microbes contributing to the N cycle by sequencing the PCR amplicons recovered
from the NiCE chip (Fig. 1), and (iii) apply the NiCE chip amplicon sequencing approach
for analysis of mixed-culture samples and environmental samples.
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RESULTS
Specificity and sensitivity of the PCR assays. The specificity and sensitivity of the

PCR assays used in this study were examined by using the NiCE chip and conventional
PCR. We used 33 previously validated PCR assays to detect amoA, hao, nxrB, hzs, hdh,
narG, napA, nirK, nirS, norB, nosZ, nrfA, and nifH (see Table S1 in the supplemental
material). Genomic DNA from 16 pure bacterial strains, including nitrifiers, denitrifiers,
N2-fixing bacteria, and dissimilatory nitrite reduction to ammonium (DNRA) bacteria,
and those from two enrichment cultures of ammonia-oxidizing archaea (AOA) and
anammox bacteria were used (Table 1).
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FIG 1 Pipeline of the NiCE chip assay. (a) Quantitative PCR is performed by using a 48.48 AccessArray (AA) chip with
EvaGreen chemistry. (b) Recovered PCR amplicons are tagged with an Illumina index and adaptors (Illumina) and
used for MiSeq 300-bp paired-end sequencing.
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The outcomes of PCR amplification on the NiCE chip are summarized in Fig. 2.
Functional genes for the N cycle and the 16S rRNA gene were simultaneously amplified
on the NiCE chip. For instance, all N cycle functional genes present in the Nitrosomonas
europaea genome (amoA, hao, nirK, and norB) were successfully amplified on the NiCE
chip (Fig. 2). Sequence analysis verified that these amplicons were bona fide amoA, hao,
nirK, and norB genes from N. europaea; therefore, the functional genes were specifically
amplified on the NiCE chip. Similarly, nxrB and archaeal amoA were correctly amplified

TABLE 1 Pure bacterial strains, enrichment culture, and environmental samples used in this study

Bacterial strain or enrichment culture N cycle functional gene(s) GenBank accession no. or reference(s)

Nitrosomonas europaea NBRC 14298 amoA, hao, nirK, norB NC_004757
AOA enrichment culturea amoA H. Fujitani, unpublished
Nitrobacter vulgarisa nxrB H. Fujitani, unpublished
Nitrospira japonica J1a nxrB 50
Nitrospira sp. ND1a nxrB 49
Bradyrhizobium sp. TSA1 napA, nirS, nirK, norB, nosZ LFJC00000000
Cupriavidus necator H16 narG, napA, nirS, norB, nosZ NC_008313, NC_008314, NC_005241
Noviherbaspirillum autotrophicum TSA66T narG, napA, nirS, norB, nosZ JWJG00000000
Paracoccus denitrificans JCM 21484T napA, nirS, norB, nosZ BBFH00000000
Pseudogulbenkiania sp. strain 2002 narG, nirS, norB, nosZ NZ_ACIS00000000
Pseudogulbenkiania sp. strain NH8B narG, nirS, norB, nosZ NC_016002
Pseudomonas aeruginosa PAO1 narG, napA, nirS, norB, nosZ NC_002516
Anaeromyxobacter dehalogenans 2CP-C nrfA, norB, nosZ NC_007760
Campylobacter jejuni JCM 2013 napA, nrfA
Escherichia coli K-12 MG1655 narG, napA, nrfA NC_000913
Azospirillum brasilense Sp7 napA, nirK, norB, nosZ, nifH NZ_CP012914 –NZ_CP012919
Bradyrhizobium diazoefficiens USDA110T napA, nirK, norB, nosZ, nifH NC_004463
Herbaspirillum seropedicae JCM 21448T narG, norB, nifH NZ_CP011930
“Candidatus Brocadia sinica” enrichment hao, hzs, nxrB, nrfA BAFN01000001–BAFN01000003
aProvided by Hirotsugu Fujitani.

FIG 2 Heat map showing the ranges in qPCR CT values on the NiCE chip for detection of N cycle functional genes and the 16S rRNA gene. The amplicon size,
strain identification used to construct standard DNA, and CT values obtained from the nontemplate controls are shown at the bottom. The box with a diagonal
line indicates the occurrences of nonspecific amplification. 1, primers 341F and 805R; 2, primers Archaea-F KO and Archaea-R KO; 3, primers amoA_1F and
amoA_2R; 4, primers amoA_1F and amoA_F1_R2; 5, primers Gamo172 F1 and Gamo172 F1_R1; 6, primers Gamo172 F1 and Gamo172 F1_R2; 7, primers
Gamo172 F2 and Gamo172 F2_R1; 8, primers Arch-amoAF and Arch-amoAR; 9, primers Arch-amoAFA and Arch-amoAR; 10, primers Arch-amoAFB and
Arch-amoAR; 11, primers Arch-amoA-for and Arch-amoA-rev; 12, primers hzocl1F1 and hzocl1R2; 13, primers haoF4 and haoR2; 14, primers hzsA_1597F and
hzsA1857R; 15, primers NxrB 1F and NxrB 1R; 16, primers nxrB169f and nxrB638r; 17, primers W9F and T38R; 18, primers narG1960f and narG2650r; 19, primers
nrfAF2aw and nrfAR1; 20, primers V66 and V67; 21, primers V17m and napA4r; 22, primers FlaCu and R3Cu; 23, primers nirK876 and nirK1040; 24, primers
nirK_166F and NxrB 1F; 25, primers nirSCd3aF and nirSR3cd; 26, primers norB2 and norB6; 27, primers cnorB-2F and cnorB-6R; 28, primers qnorB2F and qnorB7R;
29, primers qnorB2F and qnorB5R; 30, primers nosZ1F and nosZ1R; 31, primers nosZ-II-F and nosZ-II-R; 32, primers nifHF and nifHR; 33, primers IGK3 and DVV.
a, strains used only to construct standard DNA: T, Pseudomonas sp. strain JCM 20650; U, Rhodobacter sphaeroides JCM 6121T; V, Gemmatimonas aurantiaca JCM
11422T; X, synthetic DNA fragment containing amoA from Nitrosopumilus maritimus SCM1 (GenBank accession no. CP000866; locus tag Nmar_1500).
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from nitrite-oxidizing bacteria (NOB) and AOA, respectively, and hzs, hao-hdh, nxrB, and
nrfA were correctly amplified from an anammox bacterium, “Candidatus Brocadia
sinica” (Fig. 2 and Table S2). Amplifications of functional genes other than hzs, hao-hdh,
nxrB, and nrfA were also found in the enrichment culture of “Ca. Brocadia sinica” (i.e.,
bacterial amoA, nirK, nirS, and nifH), which were probably derived from the genomic
DNA of nonanammox microorganisms coexisting in the enrichment culture, such as
nitrifiers (positive for amoA and nirK), denitrifiers (positive for nirK and nirS), and
sulfate-reducing bacteria (SRB) (positive for nifH).

Nonspecific amplification was also detected on the NiCE chip. For example, ampli-
fications of amoA and nirK were detected in the Escherichia coli genome (represented
by boxes with a slanted line in Fig. 2), although E. coli does not possess these genes.
Based on blastn analysis, these false-positive sequences were amplified from nontarget
regions in the E. coli genome, probably due to the nonspecific binding of the primers.
Nonspecific sequences were also detected in other bacterial samples, and they occu-
pied up to 27% of the total sequence reads (Table S3). The proportion of nonspecific
amplicons was larger in environmental samples. These nonspecific sequences were
removed for downstream analyses.

In addition to NiCE chip amplification, conventional PCR was also performed with
the same reagents and annealing temperature as those for the NiCE chip assay to
further examine the specificity of the PCR assays (Fig. S2). The results of the NiCE chip
and conventional PCR assays were similar. Most results (91%) out of 576 reactions (i.e.,
32 assays � 18 samples) were identical between the NiCE chip and the conventional
PCR assays. Nonspecific amplification was commonly observed by the two methods in
specific assay-sample combinations. Nonspecific amplification was frequently observed
in assays done with primers Gamo172F1 and Gamo172F1_R1, primers nirSCd3aF and
nirSR3cd, and primers nifHF and nifHR. These results suggest that nonspecific amplifi-
cation was due to the nature of the PCR assays.

In addition to specificity, the sensitivity of the PCR assays was examined by using a
serial dilution of plasmid DNA containing the target gene fragment (102 to 107

copies/�l). When we had standard DNA, we detected target genes at levels as low as
103 copies/�l by using this assay (Fig. S3). Slopes of the standard curves were relatively
large (�4) due to the qPCR conditions used in this study (i.e., condition B to halt
amplification). Some assays were not sensitive enough to detect 105 copies/�l (e.g.,
assays for narG and nrfA), probably due to the long amplicon size, high GC content, or
base mismatches in the primer annealing sites.

Analysis of mock community samples. The applicability of the NiCE chip approach
for environmental samples was examined by using artificially mixed DNA samples (i.e.,
mock communities). Sequencing analysis of the NiCE chip amplicons showed that the
relative abundances of sequence reads for a specific bacterium increased as their
proportion increased in the mock community (Fig. 3). For example, the relative abun-
dances of the napA, nrfA, and E. coli 16S rRNA gene sequences increased as the
proportion of E. coli bacteria increased in mock community A (Fig. 3a). Accordingly, the
relative abundances of the nirS, norB, nosZ, Pseudomonas aeruginosa 16S rRNA gene,
amoA, hao, and Nitrosomonas europaea 16S rRNA gene sequences decreased. The
proportion of the N. europaea 16S rRNA gene was much smaller than the proportion of
N. europaea genomic DNA in the mock community A, most likely due to differences in
the rRNA gene copy numbers in the genomes (i.e., 7, 4, and 1 copy per genome of E.
coli, P. aeruginosa, and N. europaea, respectively).

Environmental samples. NiCE chip amplicon sequencing was used to examine the
quantities and the diversities of N cycle functional gene and 16S rRNA gene sequences
in anaerobic granular sludge collected from two upflow anaerobic sludge blanket
(UASB) reactors (designated UASB-M and UASB-L) and aerobic granular sludge in a
partial nitrification (PN) reactor. While DNA was extracted from the two UASB anaerobic
granular sludge samples, RNA was extracted from aerobic PN granule samples. When
we used the RNA samples, we did not include the 16S rRNA gene assays in the NiCE
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chip assay, because otherwise, rRNA sequence reads could overwhelm the amplicon
sequence libraries.

The 16S rRNA gene sequencing results suggested that bacteria affiliated with the
phyla Proteobacteria, Chloroflexi, Caldiserica, Firmicutes, and Bacteroidetes and archaea
affiliated with the phylum Euryarchaeota were the dominant members in the UASB-M
and UASB-L samples (see Fig. S4 in the supplemental material). These microorganisms
included methanogens (phylum Euryarchaeota) and SRB (class Deltaproteobacteria). The
16S rRNA gene sequences from methanogens in the family Methanosaetaceae ac-
counted for 2.3% and 2.1% of the UASB-M and UASB-L samples, respectively. The 16S
rRNA gene sequences from SRB in the families Desulfovibrionaceae, Desulfobulbaceae,
and Desulfobacteraceae accounted for 0.096%, 0.051%, and 0.03% of the UASB-M
sample and 2.0%, 1.7%, and 0.57% of the UASB-L sample, respectively. In addition to
NiCE chip amplicon sequencing, MiSeq analysis of the 16S rRNA gene amplicons was
done with a conventional library preparation protocol to analyze the microbial com-
munity structure of the UASB-L and UASB-M samples. In the NiCE chip amplicon
sequencing approach, primers 341F and 805R and primers Archaea-F KO and Archaea-R
KO were used to amplify bacterial and archaeal 16S rRNA genes, respectively, while only
primers 341F and 805R were used for the conventional library preparation protocol.
Therefore, the archaeal 16S rRNA gene was more abundantly detected by the NiCE chip
approach. To eliminate this bias, we compared only the bacterial community structures
assessed by NiCE chip amplicon sequencing and MiSeq done with the conventional
library preparation protocol. Similar bacterial taxonomic compositions were obtained
by the two methods (Fig. S4). The relative proportions of each phylum were not
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significantly different (P � 0.05) between the two methods based on the chi-square (�2)
test and Fisher’s exact test.

nxrB, napA, nirK, nirS, norB, nosZ, nrfA, and nifH sequences were obtained from both
the UASB-M and UASB-L samples (Fig. 4 and Table S4). Among these sequences, nifH
sequences were the most abundantly detected sequences, followed by napA. Shannon
and inverse Simpson indices of diversity were calculated for each functional gene
(Table S5). Phylogenetic analysis showed great diversity within nifH (Fig. S5) and napA
(Fig. S6) sequences. The most abundantly detected nifH operational taxonomic units
(OTUs) showed similarities to the nifH genes of methanogens (e.g., Methanosaeta
concilii [GenBank accession no. WP_013718497] and Methanobacterium sp. strain
42_16 [GenBank accession no. KUK73267]) and of SRB (e.g., Desulfobacca acetoxidans
[GenBank accession no. WP_013705354] and Desulfobulbus propionicus [GenBank
accession no. ADW19185] and Desulfomonile tiedjei [GenBank accession no.
WP_014813165]). The most dominant OTU of the napA sequences obtained from the
UASB-M and UASB-L samples showed similarities to napA from Magnetospira sp. strain
QH2 (GenBank accession no. WP_046020782) and Arcobacter butzleri (GenBank acces-
sion no. WP_020847347), respectively (Fig. S5). The hzs and narG sequences were not
detected.

The NiCE chip approach was further applied to analyze the active transcription of N
cycle functional genes (i.e., transcriptome analysis). Whole transcripts were extracted
from aerobic granules (triplicate samples) collected at nine different time points during
one sequencing batch cycle (4 h) from a PN reactor (10). That previous study was done
to identify the microorganisms responsible for N2O production. The same cDNA
samples were previously used for conventional qPCR to quantify amoA, narG, nirK, nirS,
norB, and nosZ transcripts and for NGS to analyze norB sequence diversity (10). These
conventional qPCRs were done under the optimal thermal conditions reported previ-
ously. Therefore, we could compare the quantitative and qualitative data obtained by
using the NiCE chip with those obtained by the conventional approach.
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Similar to the previous study (10), transcripts of AOB amoA, N. europaea- and N.
eutropha-specific nirK, nirS, cnorB, and nosZ clade I were abundantly detected in the
aerobic PN granules (Fig. 5), whereas narG, general nirK, qnorB, and nosZ clade II were
below the detection limit. The absence of AOA, NOB, and anammox bacteria was also
confirmed, similar to the previous study (33). Levels of transcription of nirS and cnorB
significantly changed over time (P � 0.05), most likely in response to the availability of
acetate (10). Strong correlations (P � 0.05 by Pearson, Spearman, and Kendall tests)
were observed between the quantities measured by using the NiCE chip and those
measured by conventional qPCR for all gene transcripts shown in Fig. 5, except for
transcripts from N. europaea- and N. eutropha-specific nirK (Table S6). The weak
correlation for this gene transcript may be due to the relatively large error bars.

All PCR amplicons recovered from the NiCE chip were sequenced by MiSeq, which
verified the amplification of the target molecules. Here, we focused on analyzing the
diversity of cnorB transcripts to identify the microorganisms responsible for N2O
production (i.e., cNorB reduces nitric oxide to produce N2O). A total of 223,843 reads
were identified as cnorB sequences in the MiSeq results. Four major OTUs were
identified when a 5% sequence dissimilarity was used as a cutoff for OTU clustering.
Each of the four OTUs contained the sequences representing the OTUs identified in the
previous study: 2A_63087, 3B_67163, 7A_13064, and 7A_78700 (10). The OTU repre-
sented by sequence 2A_63087 was closely related to cnorB from Nitrosomonas spp. and
Nitrosococcus spp., whereas the other three OTUs were related to cnorB from Rhodo-
cyclales bacteria such as Azoarcus spp., Dechloromonas spp., and Thauera spp. (10).
While these major OTUs collectively occupied 82 to 100% of the sequence libraries, the
relative proportions of these OTUs changed over time (Fig. 6A). For example, the

FIG 5 Quantities of gene transcripts of amoA (A), N. europaea- and N. eutropha-specific nirK (B), nirS (C),
cnorB (D), and nosZ clade I (E), obtained from the nitrification-denitrification granules as measured by the
NiCE chip assay. Means � standard deviations of data from triplicate granule samples are shown.
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proportion of the OTU represented by sequence 3B_67163 increased 10 and 20 min
after aeration and decreased thereafter. A similar trend was also observed when 454
pyrosequencing was done with a conventional library preparation (Fig. 6B). The relative
proportions of each of the four major OTUs were not significantly different (P � 0.05)
between the use of the NiCE chip followed by MiSeq analysis and 454 pyrosequencing
done with a conventional library preparation protocol based on the chi-square test and
Fisher’s exact test.

DISCUSSION

Various enzymatic reactions are involved in the N cycle. Accordingly, multiple PCR
primers are necessary to quantify and analyze the diversities of N cycle functional
genes. Microfluidic qPCR, which allows us to simultaneously quantify multiple N cycle
functional genes and recover PCR amplicons for downstream sequencing analysis, is a
suitable approach to evaluate the N cycle in environmental samples.

Here, we report that the NiCE chip approach can provide high-throughput quanti-
tative data for N cycle functional genes. Amplicons recovered from the NiCE chip can
be used for MiSeq sequencing analysis. In addition to the N cycle functional genes, the
NiCE chip can also amplify taxon-specific 16S rRNA gene markers, which allows us to
examine microbial community structure. Previously, the microfluidic DynamicArray chip
was used to quantify multiple virulence factor genes (12, 30, 34); however, the ampli-
cons were not analyzed for sequencing. In contrast, the microfluidic AccessArray chip
was used to prepare sequencing libraries targeting multiple taxon-specific 16S rRNA
genes (31) and those targeting highly variable regions of pathogen-specific genes (32);
however, those studies did not analyze the quantitative performance of the Acces-
sArray chip. This study showed that the quantitative detection of multiple genes is
possible by using the AccessArray chip, and the amplicons can be used for downstream
sequencing analysis.

N cycle functional genes were detected at a limit of quantification as low as 103

FIG 6 Relative abundances of the cnorB transcript sequences obtained from the nitrification-denitrification
granules as measured by using the NiCE chip (A) and 454 pyrosequencing done with a conventional library
preparation protocol (10) (B). Four major OTUs determined based on 95% sequence similarity are shown in
different patterns. �, 2A_63087 (Nitrosomonas-related norB); o, 7A_78700; u, 7A_13064; e, 3B_67163; ,
other OTUs. Phylogenetic positions of these OTUs were previously reported (10).
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copies/�l by using the NiCE chip, which might be higher than that of conventional
qPCR (10) but sufficient for many environmental samples such as the wastewater
samples examined in this study. The reason for the relatively high limit of quantification
for the NiCE chip is the small volume (35 nl) in the reaction chamber. The sample
premix (5 �l) contains 1 �l of a DNA sample. Therefore, 7 nl out of 35 nl originates from
the DNA sample. This means that only 7 copies of the target gene can be dispensed
into each chamber when the DNA sample contains 1,000 copies/�l of the target gene
molecule. If necessary, the sensitivity of detection can be increased by using a pream-
plification reaction such as specific target amplification prior to microfluidic qPCRs (12,
30, 34).

The selection of primers is critically important for both NiCE chip and conventional
qPCR assays because both the specificity and sensitivity of qPCR depend largely on the
primers used. Ideally, the melting temperatures of the primers should be similar to each
other, as qPCR is performed under the same reaction conditions as those for the
microfluidic qPCR format, including the AccessArray chip used in this study. Because we
used previously validated PCR assays with primer melting temperatures ranging from
50°C to 78°C, the specificity of each assay may not be optimum in the NiCE chip format
(i.e., annealing temperature of 50°C). The generation of nonspecific bands observed in
this study may be due, in part, to the relatively low annealing temperature used in the
NiCE chip run. Designing new primers that have almost identical melting temperatures
should improve the specificity of the assays (e.g., see reference 30). For this purpose,
peptide nucleic acid or locked nucleic acid (LNA) can be used to increase the melting
temperature and the specificity of primers. LNA is a modified RNA analog and forms
LNA/DNA hybrids as well as DNA/DNA hybrids (35, 36). The LNA/DNA hybrid shows
higher thermal stability and a higher duplex melting temperature than the DNA/DNA
hybrid, resulting in an increase of the specificity of PCR amplification (37, 38). In
addition, to minimize the occurrence of nonspecific amplification, it might be helpful to
decrease the number of degenerate bases in the primers. Many previously designed
PCR primers contain degenerate bases to amplify target N cycle functional genes from
diverse taxa. However, the chance of obtaining nonspecific amplicons is increased by
using degenerate bases (39). Instead of the use of primers with degenerate bases, we
could use multiple primers, each of which targets a subgroup of target genes (40). By
using high-throughput microfluidic qPCR, these multiple qPCRs can be run simultane-
ously.

In addition to the primer melting temperature, amplicon size is also important to
consider. Short amplicons (i.e., �150-bp target fragments, which correspond to a �250-bp
final fragment, including Illumina adapters) usually have higher amplification efficiencies
and therefore higher detection sensitivities than long amplicons (30). In addition, short
amplicons can form clusters on a MiSeq flow cell more efficiently than can long amplicons,
thereby dominating the resulting sequence reads. Long amplicons (i.e., �950 bp, including
the Illumina adapter) are not well sequenced for the same reason. PCR amplicons recovered
from the NiCE chip include a mixture of all amplicons generated from a single sample.
Therefore, we cannot adjust the ratio of the PCR products from each assay after the NiCE
chip run. Because of this amplicon size limitation, we decided to include assays that
generate amplicons with a size of 250 to 950 bp on the NiCE chip and therefore could not
include several assays that previously performed well in the literature (e.g., amoA assays
reported in reference 39).

The amplification efficiency during qPCR can also cause different amplicon yields. In
general, short amplicons are more efficiently amplified during the PCR than are long
amplicons. To overcome this issue, we used two amplification conditions during a single
NiCE chip run: condition A (95°C for 15 s, 50°C for 30 s, and 72°C for 1 min) and condition
B (95°C for 15 s, 80°C for 30 s, 50°C for 30 s, and 72°C for 1 min). Incubation at 80°C under
condition B may allow the reassociation of some of the single-stranded DNA to form
double-stranded DNA (dsDNA). Short PCR amplicons are more likely to reassociate than are
long PCR amplicons and genomic DNA, as the reassociation kinetics is a function of the
fragment length (41). Therefore, condition B can facilitate the amplification of long frag-
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ments while halting the amplification of short fragments and thereby can increase the
presence of long fragments in the resulting sequence libraries. It is important to note that
condition B is not necessary if quantification is the sole purpose of the use of the chip, i.e.,
when the NiCE chip is used to quantify multiple N cycle functional genes and not to prepare
libraries for sequencing.

NiCE chip amplicon sequencing was successfully applied for the quantification and
analysis of the diversities of the N cycle functional genes and their transcripts in
environmental samples. A significant correlation between the quantities of the N cycle
functional gene transcripts in aerobic PN granule samples measured by using the NiCE
chip and those measured by conventional qPCRs that were run under optimal thermal
conditions was observed, supporting the good quantitative performance of the NiCE
chip method. Sequencing of the PCR amplicons recovered from the NiCE chip con-
firmed that the target genes were successfully amplified. In addition, the proportions of
norB genotypes identified by the NiCE chip followed by MiSeq were not significantly
different from those identified by 454 pyrosequencing done with a conventional library
preparation protocol. To eliminate the effect of different sequencing technologies (i.e.,
MiSeq versus 454 pyrosequencing), we also compared the MiSeq results for the 16S
rRNA gene amplicon libraries prepared by using the NiCE chip approach to those of
libraries prepared by the conventional PCR-based method. The MiSeq results obtained
by the two library preparation methods were not significantly different by chi-square
and Fisher’s exact tests. These results suggest that the NiCE chip amplicon sequencing
approach can generate relative-abundance data with a quality similar to that of data
generated by the conventional amplicon sequencing approach. Therefore, the NiCE
chip amplicon sequencing approach might be useful for targeting multiple N cycle
functional genes. Previously, Herbold et al. (42) reported multiplex amplicon sequenc-
ing by using a flexible barcoding approach, which can be applied to analyses of N and
S cycle functional genes. Although that approach is useful, separate PCRs need to be
performed for each target gene, which is laborious, especially when many genes are
analyzed. In contrast, multiple target genes are amplified in a single NiCE chip run,
greatly reducing the time and labor needed for library preparation.

The NiCE chip is useful for evaluation of the occurrence of N-transforming reactions
in environmental samples. In this study, we found napA, norB, nirK, nirS, nosZ, nrfA, nxrB,
and nifH in anaerobic granular sludge collected from the UASB system. Most of the
sequences showed similarities only to environmental clones, suggesting that microor-
ganisms involved in N-transforming reactions in anaerobic granular sludge have not yet
been well characterized. It is noteworthy that the nifH sequences related to methano-
gens and SRB were abundantly detected in both the UASB-M and UASB-L samples.
While N2 fixation by methanogens (43, 44) and SRB (45, 46) was previously demon-
strated in batch culture, it is still unknown whether these microorganisms fix N2 in a
UASB reactor or not. Therefore, the activity of N2-fixing microorganisms identified by
the NiCE chip needs to be examined in the future.

In conclusion, the NiCE chip amplicon sequencing approach can provide a high-
throughput format to quantify and prepare sequencing libraries for multiple N cycle
functional genes. While nonspecific amplification occurred in some assays with the
NiCE chip, this issue can be overcome by designing new primers or by using confir-
matory approaches (e.g., conventional qPCR or digital PCR). Nonetheless, the high-
throughput nature of this “nice” approach should advance our ability to explore the
occurrences of multiple N-transforming reactions in various environmental samples.

MATERIALS AND METHODS
Bacterial strains, enrichment culture, and standard DNA samples. The specificity of NiCE chip

amplicon sequencing analysis was examined by using genomic DNA extracted from pure bacterial strains
and enrichment cultures, as shown in Table 1. The bacterial strains were provided by the National
Institute of Technology and Evaluation (NITE) and the Japan Collection of Microorganisms (JCM) and
cultured as recommended by the suppliers. An enrichment culture of the anammox bacterium “Ca.
Brocadia sinica” was collected from an anaerobic membrane bioreactor in which “Ca. Brocadia sinica”
cells accounted for more than 90% of the total biomass (47, 48). Genomic DNA from Nitrospira japonica
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J1 and Nitrospira sp. strain ND1 (49, 50) and an AOA enrichment culture were provided from Yoshitsugu
Fujitani (Waseda University).

Artificially mixed DNA samples (i.e., mock communities) were prepared by mixing genomic DNAs at
known proportions. Mock community A was composed of N. europaea strain NBRC 14298 (a nitrifying
bacterium), Pseudomonas aeruginosa strain PAO1 (a denitrifying bacterium), and E. coli K-12 strain
MG1655 (a DNRA bacterium). Mock community B was composed of various denitrifying bacteria: P.
aeruginosa strain PAO1, Bradyrhizobium sp. strain TSA1 (51), and Noviherbaspirillum autotrophicum strain
TSA66T (52). Mock community C was composed of various N2-fixing bacteria: Bradyrhizobium diazoeffi-
ciens strain USDA110T, Herbaspirillum seropedicae strain JCM 21448T, and Azospirillum brasilense strain
Sp7T. These bacterial genomic DNAs were mixed at different ratios, 1:1:1, 8:1:1, 90:9:1, or 99:0.9:0.1.

Linearized plasmids containing target gene sequences were synthesized or prepared as previously
described (12) and used as standard DNA for the NiCE chip and conventional qPCR assays.

Environmental samples. Aerobic granular sludge was collected from a PN reactor (33). Reactor
operational conditions and the microbial community structure of the granular sludge were previously
described (33). The transcription level of norB was examined by reverse transcription-qPCR, and norB
transcript pyrosequencing analysis was carried out with a Roche 454 FLX pyrosequencer (10). In this
study, we used the same cDNA samples as the ones used previously (10) to compare the results obtained
by norB pyrosequencing and those obtained by NiCE chip amplicon sequencing.

Anaerobic granular sludge was collected from two UASB reactors, designated UASB-M and UASB-L.
UASB-M (diameter of 56 cm and height of 470 cm) and UASB-L (diameter of 6 cm and height of 30 cm)
were fed with domestic sewage at 1 and 4 kg m�3 day�1 of chemical oxygen demand (COD) loads,
respectively. UASB-M was operated without temperature control (water temperature ranging from 10.1°C
to 27.3°C), while UASB-L was operated at 20°C. The typical composition of the domestic sewage supplied
to the reactors was as follows: 269 � 73 mg liter�1 COD, 21 mg N liter�1 for NH4

�, 0.03 mg N liter�1 for
NO3

�, 0.18 mg N liter�1 for NO2
�, and 14 � 17 mg S liter�1 for SO4

2�. During reactor operation, the
production of methane and sulfide was monitored. The methane concentration was measured by using
a GC-2014 gas chromatograph equipped with a thermal conductivity detector as previously described
(53). The concentration of sulfide in the liquid phase was determined by a titration method using iodine
and sodium thiosulfate solutions. In the UASB-L and UASB-M reactors, 10 to 60 ml/day of methane and
1 to 5 mg S liter�1 of sulfide were produced.

DNA and RNA extraction. Genomic DNA was extracted from pure culture samples by using a
DNeasy blood and tissue kit (Qiagen). DNA was extracted from enrichment cultures and environmental
samples by using a PowerSoil DNA isolation kit (Mo Bio Laboratories). DNA concentrations were
determined by using a Quant-iT PicoGreen dsDNA assay kit (ThermoFisher Scientific). Total RNA was
extracted from aerobic PN granule samples by using a RiboPure Bacteria kit (Invitrogen). After DNase I
treatment, cDNA was synthesized as previously described (10).

Oligonucleotide primers. Previously validated oligonucleotide primers were used for the NiCE chip
(see Table S1 in the supplemental material). These primers target the amoA, nxrB, narG, napA, nirS, nirK,
nosZ (both clade I and type II nosZ), hzs, hao-hdh, norB (both cnorB and qnorB), nrfA, nifH, and 16S rRNA
genes. The 5= ends of the forward and reverse primers contained Illumina tag sequences (5=-TCGTCGG
CAGCGTCAGATGTGTATAAGAGACAG-3= and 5=-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3=, re-
spectively).

Conventional PCR. Conventional PCR was carried out as previously described. The PCR mixture (20
�l) contained 1� FastStart HiFi reaction buffer (Roche), 4.5 mM MgCl2, 5% (vol/vol) dimethyl sulfoxide
(DMSO), 0.2 mM each deoxynucleoside triphosphate (dNTP), 0.2 �M each primer, 0.5 U FastStart HiFi
enzyme blend (Roche), and 1 �l template DNA (ca. 10 ng). PCR was performed by using a Veriti thermal
cycler (Applied Biosystems) under the following cycling conditions: 35 cycles of 30 s at 95°C, 30 s at 50°C,
and 1 min at 72°C and a final extension step for 10 min at 72°C. The size of the PCR amplicon was
analyzed by agarose gel electrophoresis.

Microfluidic qPCR. Microfluidic qPCR was carried out by using a BioMark HD reader (Fluidigm) with
a 48.48 AccessArray chip (Fluidigm). The 20� primer solutions contained 1� AccessArray loading
reagent (Fluidigm) and 4 �M each forward and reverse primers. The presample master mix (5 �l)
contained 1� FastStart HiFi reaction buffer (Roche), 1� AccessArray loading reagent (Fluidigm), 4.5 mM
MgCl2, 5% (vol/vol) DMSO, 0.2 mM each dNTP, 0.05 U FastStart HiFi enzyme blend (Roche), 1� EvaGreen
(Biotium), 0.5� 5-carboxyl-X-rhodamine (ROX), and 1 �l template DNA (ca. 10 ng). The 20� primer
solutions and the presample master mix were dispensed onto the AccessArray chip and mixed by using
an IFC controller AX instrument (Fluidigm), according to the manufacturer’s instructions. All primers
listed in Table S1 in the supplemental material were used in the microfluidic qPCR run, except when RNA
(cDNA) samples were used; the 16S rRNA gene assays were not included when RNA samples were used.

qPCR was performed under the following thermal conditions: 50°C for 120 s, 70°C for 20 min, and
95°C for 10 min, followed by 10 cycles of condition A (95°C for 15 s, 50°C for 30 s, and 72°C for 1 min),
2 cycles of condition B (95°C for 15 s, 80°C for 30 s, 50°C for 30 s, and 72°C for 1 min), 8 cycles of condition
A, 2 cycles of condition B, 8 cycles of condition A, 5 cycles of condition B, and melting curve analysis from
60°C to 95°C. The detection of PCR products was achieved by monitoring the fluorescence intensity of
EvaGreen dye. The threshold cycle (CT) was defined as the cycle at which the EvaGreen signal became
significantly higher than the background level and was determined by using Real-Time PCR Analysis
Software version 3.0.2 (Fluidigm). The standard curves were generated by linear regression analysis of the
CT values versus the amounts of the template DNA (log copies per microliter), as described previously
(30). Amounts of gene transcripts in the aerobic PN granule samples were normalized based on the
quantity of 16S rRNA that was measured previously by conventional qPCR (10). PCR products (i.e.,
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amplicon mixture from 48 assays) were recovered from the chip for each sample by using the
AccessArray Harvest reagent and the IFC controller AX instrument according to the manufacturer’s
instructions.

Sequencing library preparation and MiSeq run. The recovered PCR products were tagged with a
sample-unique index and Illumina adapter sequences at their 5= ends (Nextera XT index kit v2; Illumina)
by PCR. The PCR mixture (10 �l) contained 1� Kapa HiFi HS ReadyMix (Kapa Biosystems), 2 �l each
forward and reverse primers, and 1 �l of the recovered PCR products. PCR was performed under the
following cycling conditions: 95°C for 3 min; 15 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 1 min;
and 72°C for 5 min. After agarose gel electrophoresis, PCR products (200 to 1,000 bp) were excised from
the gel and purified by using a NucleoSpin gel and PCR cleanup kit (TakaraBio). Tagged amplicons were
pooled and sequenced by using the Illumina MiSeq platform in 300-bp paired-end sequencing reaction
mixtures with the v3 reagent kit (Illumina) according to the manufacturer’s instructions.

Bioinformatics analysis. The generated reads were processed for the removal of adapter sequences
using cutadapt and for quality trimming using prinseq (54, 55). We discarded reads that contained �50
bp or that were associated with an average Phred-like quality score of �25. Paired-end sequence reads
were assembled in the paired-end assembler for the Illumina sequence by using FLASH-1.2.11 (56).
Nucleic acid sequences with �95% similarity were grouped into an OTU by usearch8 (57). The sequence
reads of functional genes representing each OTU were subjected to blastn and blastx searches against
reference sequences of the fungene (58) and KEGG databases, respectively. In the present study, the
applicability of NiCE chip amplicon sequencing was validated by using genomic DNA of pure bacterial
strains and enrichment cultures. The presence and absence of the functional genes involved in nitrogen
transformation were examined by a blastn search (threshold E value of �10�6) of the previously
determined genome sequences (Table 1). Amino acid sequences of the following genes were used as the
query sequences for the blastn search: N. europaea amoA, hao, nirK, and norB; “Ca. Brocadia sinica” hzs
and nxrB; E. coli narG, napA, and nrfA; P. aeruginosa nirS, norB, and nosZ; and A. brasilense nifH. For NOB
and AOA, the blastn search was not applicable because genome sequences have not yet been
determined. Phylogenetic trees were generated based on the deduced NifH and NapA amino acid
sequences by the maximum likelihood method and the Jones-Taylor-Thornton model using MEGA 6.06
software (59). Phylogenetic affiliations of the OTUs based on the 16S rRNA gene sequences were
identified by using a blastn search against reference sequences in the Greengenes version 13_5 database
(60) and the nr database (National Center for Biotechnology Information). The 16S rRNA gene sequences
obtained by NiCE chip amplicon sequencing and those obtained by MiSeq analysis done by using a
conventional library preparation method were analyzed by using Qiime version 1.9.1 (61), with equal
numbers of sequences (n � 14,000) across samples and library preparation methods.

Statistical analysis. The statistical significance of gene or transcript quantities across samples was
assessed by analysis of variance (ANOVA), and pairwise comparisons among means were performed by
using Tukey’s honestly significant difference (HSD) test, at an � value of 0.05. Pearson’s correlation,
Spearman’s rank correlation, and Kendall’s rank correlation coefficients were calculated for quantitates
obtained by using the NiCE chip and those obtained by conventional qPCR. Differences in the relative
proportions of sequence reads obtained by the two sequencing methods (NiCE chip followed by MiSeq
analysis versus 454 pyrosequencing or MiSeq analysis done by using a conventional library preparation
protocol) were analyzed by using a �2 test. All statistical analyses were done by using R version 3.3.2.

Inverse Simpson and Shannon diversity indices were calculated by using the equations 1/�i(ni/n)2 for
the inverse Simpson index and ��i(ni/n)ln(ni/n) for the Shannon index, where ni is the number of
sequence reads grouped into an OTU and n is the total number of sequence reads affiliated with a
particular N cycle functional gene.

Accession number(s). Sequence data were deposited in the NCBI nucleotide sequence database
under accession numbers LC230165 to LC257534.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
.02615-17.
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