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Abstract

Adrenarche, defined as a prepubertal increase in adrenal androgen secretion resulting from zona 

reticularis (ZR) maturation, is thought to occur only in humans and some Great Apes. In the 

rhesus macaque, studies of circulating dehydroepiandrosterone (DHEA) or its sulpho-conjugate 

(DHEAS) have failed to demonstrate a prepubertal rise typical of human adrenarche, but available 

data are cross-sectional and include few neonatal or early infant samples. However, ZR maturation 

is complete in rhesus infants by 3 months of age based on morphological and biochemical 

analyses. Furthermore, preliminary longitudinal study from birth through infancy of castrated 

males, and intact males and females, suggests for the first time that there is a transient, prepubertal 

elevation of adrenal androgen in rhesus macaques. Serum DHEAS concentration increased, 

peaking between 6 and 8 weeks of age in castrate males, and intact males and females, then 

declined. These longitudinal profiles add endocrinological support to the morphological and 

biochemical evidence that adrenarche occurs in a narrow developmental window in infant rhesus 

macaques. Adrenarche in any species should be defined only after careful longitudinal hormone 

analysis have been conducted in stages of development that are suggested by morphological and 

biochemical evidence of ZR maturation.
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1. Introduction - The Definition of Adrenarche

The appearance of axillary and pubic hair in boys and girls represents a response to the 

increased secretion of C19 steroids by the zona reticularis (ZR) of the developing adrenal 

cortex years before the prepubertal increase in gonadal steroid secretion (ALBRIGHT, 

1947). The increase in the so-called “adrenal androgens”, dehydroepiandrosterone (DHEA) 

or its sulphate (DHEAS), is known as adrenarche (Havelock et al., 2004;Rainey and 

Nakamura, 2008;Miller, 2009), and it is an event thought to be unique to humans (evident by 

6-9 years of age) and certain Great Apes (Arlt et al., 2002). However, there is scant 

definitive evidence with which to establish the occurrence of adrenarche in either Great 

Apes or other non-human primates (Nguyen and Conley, 2008). The general view of which 

species do, is for obvious reasons not based on the appearance of axillary hair, but it is 

seldom based on definitive evidence of adrenal development either. Instead, conclusions 

about the occurrence of adrenarche in non-human primates rest on a few studies that have 

measured circulating concentrations of DHEA and DHEAS. Circulating steroid 

concentrations reflect the balance between synthesis and metabolism, and are subject to 

considerable individual (Orentreich et al., 1984), diurnal and even seasonal variation (Garde 

et al., 2000). In the case of the rhesus macaque, where adrenal morphological development 

has been best studied (Mesiano and Jaffe, 1997), these endocrine data are entirely cross-

sectional and especially limited in observations from neonatal and infant subjects (Koritnik 

et al., 1983;Seron-Ferre et al., 1986;Seron-Ferre et al., 1983). Since puberty is initiated in 

the rhesus macaque between two and three years of age (Plant and Witchel, 2006), an 

“adrenarche” preceding puberty by years may occur at a very young age, perhaps in the first 

months of life.

Concentrations of adrenal androgens in rhesus newborns are reportedly twice those in 

neonatal and infant rhesus (Seron-Ferre et al., 1983), but longitudinal studies of adrenal 

androgen secretion have yet to be reported for this species. Relevant hormonal data covering 

this early developmental window are lacking among non-human primates in all but the 

baboon (Ducsay et al., 1991). Progress in understanding the processes that regulate 

adrenarche specifically, and adrenal androgen secretion in general, may be slowed as a result 

of the current reliance on endocrine data alone as the sole defining criterion, and of the 

narrow perspective it engenders. Still, a broad assessment of adrenarche that encompasses 

endocrinological, morphological and biochemical facets of the phenomenon is yet to be 

completed for any primate. Data will be reviewed herein, emphasizing recent evidence from 

all three aspects that together support and define the occurrence of adrenarche in the rhesus 

monkey, discussing how it differs from the event as we know it in humans.

2. Adrenarche Defined Morphologically

Notwithstanding the logistical constraints in gathering such data, the definition of 

adrenarche should rest as much on the morphological and biochemical aspects of adrenal 

development, as it now does on the hormones that reflect those biological processes. The 

increase in adrenal androgen output associated with adrenarche in human children coincides 

with morphological development and differentiation of the innermost adrenocortical zone, 

the ZR (Suzuki et al., 2000). The human foetal zone disappears over the course of the first 
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year of life (Benner, 1940;Lanman, 1953;Sucheston and Cannon, 1968;Dhom, 1973), and 

the ZR, first recognizable as early as three years of age (Dhom, 1973), reaches 

morphological maturity in the second decade (Sucheston and Cannon, 1968;Dhom, 1973). 

The human adrenal develops increased functional capacity for androgen secretion with the 

expression of requisite enzymes (Hui et al., 2009;Narasaka et al., 2001;Suzuki et al., 2000), 

especially of cytochrome b5 (Yanase et al., 1998), a well known positive regulator of 

androgen synthesis (Katagiri et al., 1982;Onoda and Hall, 1982;Auchus et al., 1998;Miller et 

al., 1997;Miller and Auchus, 2000). Human adrenarche has a functional, morphological 

signature consistent with the production of androgens by a maturing ZR.

The adrenal cortex of the adult rhesus has a distinct ZR, essentially identical in its enzymatic 

differentiation (Mapes et al., 1999) to that of the human ZR (Nguyen and Conley, 2008), and 

its development follows collapse of an adrenal foetal zone (Mesiano and Jaffe, 1997;Seron-

Ferre et al., 1986;Seron-Ferre and Jaffe, 1981), much as in humans (Hill, 1930;Mesiano and 

Jaffe, 1997;Lanman, 1957). However, development and differentiation of the ZR proceeds 

considerably faster in rhesus monkeys than humans, over a period of months rather than 

years (McNulty, 1981). Recent studies have characterized the ontogeny of steroidogenic 

enzyme expression during morphological adrenarche in this primate (Nguyen et al., 2008). 

The establishment of the ZR through expansion the “dense band” that separates the foetal 

and definitive zones of the developing rhesus adrenal gland was highlighted by the 

prominent expression of cytochrome b5 (Figure 1[b1]). Based on the establishment of a 

continuous band of cytochrome b5-expressing cells at the cortico-medullary junction, 

maturation of the rhesus ZR was essentially complete by three months of age, during which 

there was also regression of the foetal zone (Nguyen et al., 2008). Thus, the interval 

encompassing morphological adrenarche in the rhesus is very rapid by comparison with the 

human, but follows a similar differentiation process with respect to the expression of 

steroidgenic and associated enzymes.

3. Adrenarche Defined Biochemically

The synthesis of DHEA, and thereby DHEAS, results directly from the 17,20-lyase activity 

of the enzyme 17α-hydroxylase/17,20-lyase cytochrome P450 (P450c17) (Hall, 1991;Zuber 

et al., 1986) and human adrenarche is thought to result from a selective increase in 17,20-

lyase activity (Rich et al., 1981;Kelnar and Brook, 1983). Cytochrome b5 selectively 

augments 17,20-lyase over 17α-hydroxylase activity (Katagiri et al., 1982;Onoda and Hall, 

1982;Lee-Robichaud et al., 1995;Auchus et al., 1998;Brock and Waterman, 1999;Sakai et 

al., 1993). Based on the functional morphology of human ZR development described above 

(Suzuki et al., 2000;Narasaka et al., 2001;Hui et al., 2009;Nakamura et al., 2009), 

cytochrome b5 is thought to be a key factor augmenting adrenal androgen secretion during 

adrenarche (Miller, 2009). Couch et al. investigated 17,20-lyase activity in human adrenal 

tissues, but found no significant increase during the adrenarche (Couch et al., 1986). 

However, biochemical evidence of adrenarche was investigated in rhesus adrenal gland 

tissues focusing on the window of ZR development between birth and three months of age 

established by the functional morphological studies described above (Nguyen et al., 2009). 

Three important observations were made for the first time in any primate. First, 17,20-lyase 

activity in rhesus adrenal microsomal protein was shown to increase with age (and ZR 
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development), from a level of 2.9nmol/mg/hr in a specimen from a 5 day old perinatal 

subject to a peak average of 22.9 nmol/mg/hr in two specimens from 8 week old infants. 

Thereafter, 17,20-lyase activity declined on average in specimens collected from juveniles at 

26 weeks of age (Figure 2, dashed line). Second, there was a concomitant and positively 

correlated increase in cytochrome b5 expression during this developmental window. The 

levels of expression of cytochrome b5 peaked in specimens from 8 and 12 week old infants 

and steadily decreasing in specimens taken from juveniles over a year of age (Figure 2, solid 

line[b2]). Third, adrenal microsomal 17,20-lyase activity was increased significantly by up 

to 250% with addition of purified recombinant cytochrome b5, and the less endogenous 

cytochrome b5 adrenal microsomes contained, the more activity was stimulated (Nguyen et 

al., 2009). These data directly support the belief that adrenarche is brought about by an 

increase in 17,20-lyase activity in the developing ZR, due in large part by increased 

expression of cytochrome b5.

4. Adrenarche Defined Endocrinologically

The post-natal increase in circulating DHEAS, as first characterized in humans (Rosenfield 

and Eberlein, 1969), begins in infancy, peaks between the second and third decade of life, 

and declines progressively thereafter (de Peretti and Forest, 1976;Parker et al., 1977;Sulcova 

et al., 1997). No such rise akin to this has been observed in rhesus monkeys, though they 

develop a ZR post-natally and are well known to experience a similar age-related decline 

(Lane et al., 1997;Kemnitz et al., 2000). However, a transient rise in immuno-reactive 

androgen seen in castrated male rhesus infants (Plant, 1985;Plant and Zorub, 1984) is not 

detectable in adrenalectomized castrates (Plant and Zorub, 1984) suggesting an adrenal 

source. Therefore, preliminary studies were initiated to examine the concentrations of 

DHEAS in castrated as well as gonad-intact males. Comparable data from ovary-intact 

female rhesus monkeys from a previous study was generated using commercial radio-

immunoassay. Plasma samples were collected longitudinally from one or two weeks of age 

through infancy and analyzed for DHEAS using liquid chromatography tandem mass 

spectrometry (see supplementary files for detailed methods). Concentrations of DHEAS rose 

from less than 3 μg/ml at 1 week of age in the two castrate males to peaks at over 25 μg/ml 

in one and over 10 μg/ml in the other at 7 and 9 weeks of age, and a consistent decline 

followed thereafter (Figure 3A). Though sampled less frequently over shorter intervals, 

similar profiles of systemic DHEAS concentrations were observed in two intact males 

sampled to 17 weeks of age (Figure 3B) and two intact females sampled to 36 weeks of age 

(Figure 3C[b3]). The concentrations of DHEAS were much lower overall in the two females 

than those seen in either intact or castrate males, peaking in the samples taken at 4 weeks of 

age at around 6 and 8 μg/ml, and declined steadily thereafter to less than 3 μg/ml by the final 

sampling at 36 weeks of age. These data have been confirmed in additional castrated (and 

gonad-intact) males that exhibited a similarly timed increase in DHEAS, and a correlated 

increase in DHEA (Conley, unpublished observations). The pattern of DHEAS in the male 

castrates corresponds well with the previously reported increase in immuno-reactive 

androgen in castrate males (Plant and Zorub, 1984;Plant, 1985) and within the ranges for 

DHEAS determined previously for gonad-intact males and females (Koritnik et al., 

1983;Seron-Ferre et al., 1983;Seron-Ferre et al., 1986). To the best of our knowledge 
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however, these data are the first to document a transient increase in concentrations of 

DHEAS between birth and puberty (adrenarche as most often defined in humans) in any 

non-human primate.

The often stated view that adrenarche occurs in the Great Apes but not Old World primates 

is based on fragmentary evidence, almost exclusively reliant on circulating DHEAS. Most 

conclude that rhesus macaques do not experience an adrenarche based on an absence of 

evidence from prior studies (Havelock et al., 2004;Arlt et al., 2002;Miller and Auchus, 

2010). All previous studies in infant rhesus macaques have used cross-sectional sampling, 

and only a decline in circulating DHEAS concentrations was observed that began from high 

and variable concentrations in neonates and early infants (Koritnik et al., 1983;Seron-Ferre 

et al., 1986;Seron-Ferre et al., 1983). The elevated DHEAS concentrations seen in late 

gestation (Seron-Ferre et al., 1986;Seron-Ferre et al., 1983) and pre-term (McNulty et al., 

1981) rhesus fetuses decays slowly postpartum (Seron-Ferre et al., 1986). Thus, doubt was 

expressed previously that the decreasing secretion of DHEAS by the foetal zone might 

obscure increasing DHEAS production by the developing rhesus ZR (Nguyen et al., 2008). 

However, despite the narrow and overlapping developmental window of these two events, 

foetal zone regression and ZR differentiation appear to be distinguishable from each other 

based on circulating androgen concentrations if frequent longitudinal samples are examined. 

As suggested here, DHEAS concentrations begin to increase from two weeks of age to a 

peak around six to eight weeks of age in castrate males, intact males and intact female 

rhesus macaques, then subsequently decline. Limited data available for neonatal rhesus 

monkeys accord well with more extensive results of studies conducted in foetuses, all 

consistent with the ability of ACTH and luteinizing hormone as stimulatory of adrenal 

androgen secretion (Jaffe et al., 1981). Still, the regulation of neonatal and infant adrenal 

growth and differentiation have not received adequate attention, most to date remaining 

focused on the foetus. The endocrine data reported herein, though preliminary, correlate 

closely with biochemical (Nguyen et al., 2009) and morphological (Nguyen et al., 2008) 

observations summarized here for neonates and infants, supporting the contention that 

adrenarche is initiated in the first three months of life in this species. Thus, three 

independent lines of evidence concur, and all correspond with similar events that comprise 

adrenarche in humans (Rainey et al., 2002;Auchus and Rainey, 2004;Havelock et al., 

2004;Belgorosky et al., 2008;Miller, 2009)

The baboon is the only other non-human primate that has been studied in appreciable detail 

for an adrenarche. Yet, neither cross-sectional (Castracane et al., 1981) nor careful 

longitudinal (Ducsay et al., 1991) sampling of newborn baboons has provided evidence of a 

transient, post-natal increase in DHEAS concentrations. DHEAS concentrations remain 

elevated relative to late gestation levels for several days, then decline markedly from one 

week of age, despite growth of the adrenals (Ducsay et al., 1991). These authors described 

concurrent development of the ZR as the foetal zone regressed morphologically. However, it 

is generally agreed that Great Apes experience adrenarche. Though cross-sectional data 

indicate that DHEAS concentrations increase progressively in pre- and post-pubertal 

chimpanzees and gorillas (Winter et al., 1980;Collins et al., 1981;Copeland et al., 

1985;Cutler et al., 1978;Smail et al., 1982), it is not clear when (or if) it reaches a peak and 

declines thereafter. Moreover, there are no data from Great Apes on morphological 
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maturation of the ZR or its biochemical capacity for androgen synthesis as exists for the 

rhesus (Nguyen et al., 2009;Nguyen et al., 2008). If the definition of adrenarche relies on a 

demonstrated post-pubertal peak and subsequent decline in DHEAS, there is no such 

evidence of adrenarche in chimpanzees or any other non-human primate.

5. Non-human Primate Models of Adrenal Androgen Secretion

There is a clear need to develop animal models for human adrenal physiology and disease, 

especially for adrenal androgen secretion that provides precursors for local biopotent 

androgen and estrogen production whether or not gonads are functional (Labrie et al., 2003). 

The potential for adrenal C19 steroids to be converted to biopotent androgens and estrogens 

in target tissues makes diseases such as prostate and breast cancers more difficult to manage 

(Mostaghel and Nelson, 2008;Tworoger et al., 2006), and otherwise contributes to hyper-

androgenism (Yildiz and Azziz, 2007). The propensity for androgen synthesis by the ZR is a 

characteristic that appears to be exhibited almost exclusively by Old World primates 

(Nguyen and Conley, 2008;Pattison et al., 2009). Still, there has been reluctance to use the 

rhesus monkey as a model for adrenal androgen synthesis because of the perception that this 

species does not exhibit an adrenarche (Arlt et al., 2002).

The profiles of adrenal androgen secretion across the lifespan of humans and that of the 

rhesus macaque as described here share some similarities. Both exhibit a prenatal rise 

associated with development of a foetal zone (Mapes et al., 2002;Narasaka et al., 2001). As 

demonstrated here, both share a second subsequent prepubertal peak marking ZR 

differentiation (Suzuki et al., 2000;Nguyen et al., 2008), after which adrenal androgen 

secretion appears to decline with age, progressively and without interruption (Parker, Jr., 

1999) (Figure 4[b4]), at least in men. In addition, recent studies in women have identified a 

third, transient peak in DHEAS that coincides with the menopausal transition (Crawford et 

al., 2009;Lasley et al., 2002), and there may be a similar peri-menopausal peak in aging 

female rhesus monkeys (Shideler et al., 2001). The occurrence of adrenarche in male and 

female rhesus infants means that it still precedes puberty by two or three years (Plant and 

Witchel, 2006). It is notable that longitudinal urinary monitoring of children indicates that 

adrenal androgen secretion begins to increase far earlier than can be detected in plasma 

(Remer et al., 2005). Therefore, the major excursions of DHEAS secretion seen during 

human development and aging appear to have counterparts in the rhesus macaque.

There are also notable differences between the species with respect to peak concentrations of 

adrenal androgens as well as in timing. The concentrations of DHEAS are many fold higher 

in the rhesus (Seron-Ferre et al., 1983) than in human fetuses at term (Parker, Jr., 1999) and 

rhesus macaques experience higher peak concentrations (Koritnik et al., 1983;Seron-Ferre et 

al., 1986;Seron-Ferre et al., 1983) than humans (Sulcova et al., 1997), as confirmed by the 

current data. This might reflect differences in clearance rates (Schut et al., 1978;Leblanc et 

al., 2003) as much as it may synthesis. The most obvious disparity in the events surrounding 

adrenarche in the rhesus and human would appear to relate to the pace with which they take 

place and when the peak of adrenal androgen secretion itself occurs. The data presented here 

concur with the observations of others (Lane et al., 1997;Kemnitz et al., 2000) that adrenal 

androgen secretion begins a slow progressive decline from infancy, years before puberty is 
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initiated. Although adrenarche is most commonly described as the initiation of adrenal 

androgen secretion in infancy, the peak of concentrations are reached over decades in 

humans (Parker, Jr., 1999), not months as shown here for the rhesus monkey. Adrenarche is 

not thought to be different in boys and girls, even though peak DHEAS concentrations occur 

later and are higher in men than in women (Orentreich et al., 1984;Sulcova et al., 1997). It 

was unclear whether or not female rhesus, like women, have lower peak concentration of 

DHEAS than males, though the preliminary results presented here are consistent with that 

possibility. Sex differences in concentrations of DHEAS were not observed among rhesus 

infants aged 4-8 weeks (Koritnik et al., 1983), but the morphological, biochemical and 

endocrine data reviewed above illustrate how dynamic this interval of adrenal development 

actually is. Differences in DHEAS concentrations between males and females would best be 

determined at their secretory peaks which would require sequential sampling to verify. 

Similarities such as these, if verified, would further suggest that adrenal androgen secretion 

in human and non-human primates may be more conserved than previously thought. Clearly, 

there are differences in adrenarche in humans and the rhesus macaque. However, these 

differences appear to involve issues of timing, not whether or not the rhesus experiences 

adrenarche at all. Given the dynamic nature of the phenomenon in the rhesus, it seems likely 

that much could be learned about human adrenarche from investigating the process in this 

monkey.

6. Conclusion

The data summarized here establish the occurrence of adrenarche in infant rhesus macaques 

based on corroborating evidence from endocrine, biochemical and morphological studies. 

Regular longitudinal sampling allowed the detection of an increase in adrenal androgen 

output in the first few weeks of life. These data suggest that the need for intensive, 

longitudinal sampling may explain the long-held misconception concerning the absence of 

adrenarche in the rhesus. Although a steady increase in secretion of adrenal androgens 

occurs over almost two decades in humans, that process appears to be completed in only a 

couple of months in the rhesus macaque. The realization that the rhesus experiences an 

adrenarche supports the conclusion that this species is a suitable and accessible model for 

studies into the biology and regulation of adrenal development and function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Morphological maturation of the adrenal glands from rhesus macaques ranging in age from 

one day to three months of age marked by cytochrome b5 expression. Cytochrome b5 

expression (red/brown chromagen) marks the differentiating zona reticularis (ZR) which 

becomes better defined with age in tissue sections from 1 day old, 4, 8 and 12 week old 

neonatal rhesus macaques (ages shown above each panel) detected by 

immunohistochemistry. Note also the developing expression of cytochrome b5 (arrow) 

between the definitive zone (DZ) abutting the capsule and the foetal zone (FTZ) toward the 

medulla.. Bars = 50μm. Micrographs are reproduced from published data (Nguyen et al., 

2008) with permission from the publisher.
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Figure 2. 
Biochemical evidence of adrenarche in rhesus adrenal tissues collected from birth through 

one year of age. Shown are plots of 17,20-lyase enzyme activity (nmol/mg/hr; dashed line) 

and expression levels of cytochrome b5 (pmol/μg; solid line and symbols) in microsomal 

protein. Graphs are reproduced from published data (Nguyen et al., 2009) with permission 

from the publisher.
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Figure 3. 
Dehydroepiandrosterone sulphate (DHEAS, ng/ml) concentrations in longitudinal samples 

of peripheral blood of rhesus macaques from birth through infancy. A. Two males castrated 

at 1 week of age and bled weekly up to 40 weeks of age. B. Two gonad-intact males bled on 

alternate weeks to 17 weeks of age. C. Two gonad-intact females sampled one day after birth 

and then at 4, 12, 24 and 36 weeks of age.
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Figure 4. 
Schematic of adrenal androgen synthesis and secretion through foetal and early post-natal 

development showing contributions from the foetal zone and the developing zona reticularis 

representing “adrenarche” in the rhesus macaque.
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