

HHS Public Access

Author manuscript *Tetrahedron Lett.* Author manuscript; available in PMC 2018 April 03.

Published in final edited form as: *Tetrahedron Lett.* 2017 July 19; 58(29): 2797–2800. doi:10.1016/j.tetlet.2017.05.057.

Isolation of amoenamide A and five antipodal prenylated alkaloids from *Aspergillus amoenus* NRRL 35600

Kayo Sugimoto^a, Yusaku Sadahiro^a, Ippei Kagiyama^a, Hikaru Kato^a, David H. Sherman^b, Robert M. Williams^{c,d}, and Sachiko Tsukamoto^{a,*}

^aGraduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Kumamoto, Japan

^bLife Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, The University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States

^cDepartment of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, Colorado 80523, United States

^dUniversity of Colorado Cancer Center, Aurora, Colorado 80045

Abstract

A new prenylated alkaloid, Amoenamide A (6), was isolated from the fungus *Aspergillus amoenus* NRRL 35600. Previously, **6** was postulated to be a precursor of Notoamide E4 (**21**) converted from Notoamide E (**16**), which was a key precursor of the prenylated indole alkaloids in the fungi of the genus *Aspergillus*. We previously succeeded in the isolation of two pairs of antipodes, Stephacidin A (**1**) and Notoamide B (**2**), from *A. amoenus* and *A. protuberus* MF297-2 and expected the presence of other antipodes in the culture of *A. amoenus*. We here report five new antipodes (**7**–**11**) along with a new metabolite (**12**), which was isolated as a natural compound for the first time, from *A. amoenus*.

Graphical Abstract

Keywords

Alkaloid; Aspergillus; Fungus; Antipode

^{*}Corresponding author. Tel.: +81-96-371-4380; fax: +81-96-371-4380; sachiko@kumamoto-u.ac.jp.

Introduction

We have reported the isolation of biosynthetically interesting prenylated indole alkaloids from three fungi of the genus Aspergillus. (+)-Stephacidin A (1), (-)-Notoamide B (2), and their congeners were isolated from A. protuberus MF297-2,¹ and successively the antipodes, (-)-1 and (+)-2, were obtained from A. amoenus (formerly A. versicolor) NRRL 35600² (Scheme 1). Recently, we reported the isolation of seven novel prenylated indole alkaloids, the Taichunamides, along with (+)-6-epi-Stephacidin A (3) and (+)-Versicolamide B (4) from A. taichungensis IBT 19404 (Scheme 1).³ Interestingly, 1/2 and 3/4 contain a syn- and anti-bicyclo[2.2.2]diazaoctane cores, respectively (the syn- and anti-relationship is based on the H21 and bridging amide C18/N19 relative stereochemistry), and these cores are plausibly formed through an intramolecular hetero Diels-Alder reaction from a common precursor, Notoamide S $(5)^4$ (Scheme 1). To date, we have been studying the structures, 1,4,5-8 syntheses, 9-15 and bioconversions 4,13,15-17 of prenylated indole alkaloids from A. protuberus and the structures^{2,4} and bioconversions^{4,13–15} of those from A. amoenus. Curiously, we discovered that A. amoenus produced an enantiomeric mixture of 3 enriched with the (-)-isomer.⁴ The presence of the enantiomerically pure (+)-4 in A. amoenus suggests that the fungus possesses the oxidase, which selectively converts (+)-3 into (+)-4, but does not process (-)-3 (Scheme 1).⁴ Successively, we have been studying the structures of metabolites from A. amoenus and here report the isolation of a new prenylated alkaloid, Amoenamide A (6), five new antipodes (7-11), and a new metabolite (12), which was isolated as a natural compound for the first time (Figure 1).

Results and Discussion

The fungus, *A. amoenus* NRRL 35600, was cultured on rice at 25 °C for a month and the metabolites were extracted with *n*-BuOH. After solvent partition, the metabolites were purified by column chromatography and HPLC to yield a new compound, Amoenamide A (6), five new antipodes, (–)-Notoamides F (7),⁶ I (8),⁶ R (9),⁸ and U (10),¹⁸ and (+)-Notoamide L (11),⁷ and a new natural compound, (–)-6-*epi*-Notoamide I (12),¹⁷ and fourteen known alkaloids, (–)-Stephacidin A (1), (+)- and (–)-6-*epi*-Stephacidin A (3), (+)-Versicolamide B (4), (+)-Notoamides A (13)¹ and B (2),¹ Notoamides C (14),¹ D (15),¹ E (16),⁵ M (17),⁷ Q (18),⁸ and S (6),⁴ Dehydronotoamide C (19),^{11,19} and Speramide B (20)²⁰ (Figure 1).²¹

The molecular formula of **6** was determined to be $C_{26}H_{31}N_3O_5$ by HRESIMS. The ¹H NMR spectrum (DMSO-*d*₆) (Table 1) showed four doublet olefinic and aromatic protons (δ 5.78 (d, J = 9.7 Hz, H-26), 6.14 (d, J = 9.7 Hz, H-25), 6.73 (d, J = 8.6 Hz, H-5), and 7.63 (d, J = 8.6 Hz, H-4)), a monosubstituted double bond (δ 5.16 (dd, J = 1.0, 10.4 Hz, H-20), 5.22 (dd, J = 1.0, 17.9 Hz, H-20), and 6.13 (dd, J = 10.4, 17.9 Hz, H-21)), two exchangeable protons (δ 7.93 (s, H-19) and 9.57 (s, H-1)), two methine protons (δ 4.26 (t, J = 7.8 Hz, H-17) and 4.57 (t, J = 6.0 Hz, H-11)), and four singlet methyl groups (δ 1.29 (6H, s, H₃-23 and H₃-24), 1.39 (3H, s, H₃-28), and 1.40 (3H, s, H₃-29)), which indicated that **6** was a congener of the Notoamides. The analysis of 2D NMR spectra, including COSY, HMQC, and HMBC, showed three substructures, a 5,6-disubstituted 2,2-dimethyl-2*H*-chromene (A), a 3-substituted hexahydropyrrolo[1,2-*a*]pyrazine-1,4-dione (B), and a 3-substituted 3-

Tetrahedron Lett. Author manuscript; available in PMC 2018 April 03.

Page 3

methylbut-1-ene (C) (Figure 2a). Key HMBC correlations showed the substructure C was connected to C-8 of the substructure A through an amide group (δ_H 9.57 (H-1), δ_C 174.7 (C-2)) (Figure 2b). The substructure B was connected to C-9 of the substructure A through a ketone group (δ_C 198.1 (C-3)). The 11*S*,17*S*-configuration for **14** were determined by a NOE correlation and chemical degradation,¹ and from the biogenetic relationship with **14**, the absolute configuration of **6** was indicated as 11*S*,17*S*. Thus, the structure of **6** was established.

Previously, we proposed that Notoamide E (16) would be a key biosynthetic intermediate for the Notoamides and Stephacidin A (1) in *A. protuberus*. In order to confirm this proposal, we performed bioconversion of ¹³C-labeled 16.⁵ In this experiment, a new compound, Notoamide E4 (21), was obtained as a metabolite and we proposed a *N*-formylkynurenine derivative corresponding to 6, was a putative precursor of 21 (Scheme 2). In the present work, we isolated natural 6 from the fungal culture, the presence of which strongly supports our hypothesis (Scheme 2).

After the isolation of the antipodes of Stephacidin A (1) and Notoamide B (2) from *A. protuberus* MF297-2¹ and *A. amoenus* NRRL 35600² as major metabolites, the presence of other antipodal metabolites in *A. amoenus* has also been expected to date. Herein, we succeeded in the isolation of the antipodes of previously reported natural alkaloids namely, (–)-Notoamides F (7),⁶ I (8),⁶ R (9),⁸ and U (10),¹⁸ and (+)-Notoamide L (11),⁷ from *A. amoenus.* In addition, (–)-6-*epi*-Notoamide I (12) was isolated as a natural compound for the first time, although (±)-12 was obtained by the bioconversion of (±)-6-*epi*-Notoamide T in *A. protuberus* MF297-2.¹⁷ The elucidation of the biochemical basis for the stereochemical diversity of these families of prenylated indole alkaloids biosynthesized within orthologous species of *Aspergillus* fungi, specifically *A. protuberus* MF297-2, *A. amoenus* NRRL 35600, and *A. taichungensis* IBT 19404 is ongoing in our laboratories.^{22–24}

Acknowledgments

This work was financially supported in part by Grants-in-Aid for Scientific Research (No. 25108719 to S.T.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Financial support from the National Institutes of Health (Grant CA 070375 to RMW and DHS) is gratefully acknowledged.

References

- 1. Kato H, Yoshida T, Tokue T, Nojiri Y, Hirota H, Ohta T, Williams RM, Tsukamoto S. Angew. Chem. Int. Ed. 2007; 46:2254–2256.
- Greshock TJ, Grubbs AW, Jiao P, Wicklow DT, Gloer JB, Williams RM. Angew. Chem. Int. Ed. 2008; 47:3573–3577.
- 3. Kagiyama I, Kato H, Nehira T, Frisvad JC, Sherman DH, Williams RM, Tsukamoto S. Angew. Chem. Int. Ed. 2016; 55:1128–1132.
- Kato H, Nakahara T, Sugimoto K, Matsuo K, Kagiyama I, Frisvad JC, Sherman DH, Williams RM, Tsukamoto S. Org. Lett. 2015; 17:700–703. [PubMed: 25615822] (b) *syn-* and *anti-*relative stereochemistry is depicted below:

- Tsukamoto S, Kato H, Greshock TJ, Hirota H, Ohta T, Williams RM. J. Am. Chem. Soc. 2009; 131:3834–3835. [PubMed: 19292484]
- Tsukamoto S, Kato H, Samizo M, Nojiri Y, Ohnuki H, Hirota H, Ohta T. J. Nat. Prod. 2008; 71:2064–2067. [PubMed: 19053517]
- 7. Tsukamoto S, Kawabata T, Kato H, Greshock TJ, Hirota H, Ohta T, Williams RM. Org. Lett. 2009; 11:1297–1300. [PubMed: 19281134]
- Tsukamoto S, Umaoka H, Yoshikawa K, Ikeda T, Hirota H. J. Nat. Prod. 2010; 73:1438–1440. [PubMed: 20795742]
- Grubbs AW, Artman GD III, Tsukamoto S, Williams RM. Angew. Chem. Int. Ed. 2007; 46:2257– 2261.
- Greshock TJ, Grubbs AW, Tsukamoto S, Williams RM. Angew. Chem. Int. Ed. 2007; 46:2262– 2265.
- 11. Miller KA, Tsukamoto S, Williams RM. Nat. Chem. 2009; 1:63-68. [PubMed: 20300443]
- McAfoos TJ, Li S, Tsukamoto S, Sherman DH, Williams RM. Heterocycles. 2010; 82:461–472. [PubMed: 21796227]
- Finefield JM, Kato H, Greshock TJ, Sherman DH, Tsukamoto S, Williams RM. Org. Lett. 2011; 13:3802–3805. [PubMed: 21714564]
- Finefield JM, Sherman DH, Tsukamoto S, Williams RM. J. Org. Chem. 2011; 76:5954–5958. [PubMed: 21504234]
- Sunderhaus JD, McAfoos TJ, Finefield JM, Kato H, Li S, Tsukamoto S, Sherman DH, Williams RM. Org. Lett. 2013; 15:22–25. [PubMed: 23249380]
- Kato H, Nakamura Y, Finefield JM, Umaoka H, Nakahara T, Williams RM, Tsukamoto S. Tetrahedron Lett. 2011; 52:6923–6926. [PubMed: 22140281]
- 17. Kato H, Nakahara T, Yamaguchi M, Kagiyama I, Finefield JM, Sunderhaus JD, Sherman DH, Williams RM, Tsukamoto S. Tetrahedron Lett. 2015; 56:247–251. [PubMed: 25767298]
- 18. Cai S, Luan Y, Kong X, Zhu T, Gu Q, Li D. Org. Lett. 2013; 15:2168–2171. [PubMed: 23550798]
- Chen M, Shao C-L, Fu X-M, Xu R-F, Zheng J-J, Zhao D-L, She Z-G, Wang C-Y. J. Nat. Prod. 2013; 76:547–553. [PubMed: 23527875]
- 20. Chang Y-W, Yuan C-M, Zhang J, Liu S, Cao P, Hua H-M, Di Y-T, Hao X-J. Tetrahedron Lett. 2016; 57:4952–4955.
- 21. The fungus, *A. amoaenus* NRRL 35600, was obtained from the basidioma of *Ganoderma australe* collected in a Hawaiian forest. The fungus was cultured on rice media (100 g × 50) in Erlenmeyer flasks (500 mL) at 25 °C for a month. The metabolites were extracted with *n*-BuOH and the concentrated aqueous solution was extracted with *n*-BuOH. The *n*-BuOH solution was evaporated and the dried material was partitioned between *n*-hexane and 90% MeOH/H₂O. The 90% MeOH/H₂O fraction (14.8 g) was subjected to ODS chromatography with 75% MeOH/H₂O to yield three fractions (fractions A (2.5 g), B (2.0 g), and C (1.1 g)) containing the prenylated indole alkaloids. Fraction A was purified by SiO₂ chromatography with *n*-hexane/CH₂Cl₂/MeOH (10:19:1) and then NH₂ chromatography with CH₂Cl₂/MeCN (1:1 and 1:3) and MeCN/H₂O (1:1) followed by HPLC (phenyl-hexyl (MeOH/H₂O) and gel filtration (MeOH)) to afford (-)-1 (4.9 mg), (+)-4 (0.4 mg), (-)-8 (0.7 mg), (-)-10 (0.5 mg), (+)-11 (0.8 mg), and 18 (8.4 mg). Fraction B was purified by SiO₂ chromatography with *n*-hexane/CH₂Cl₂/MeOH (10:19:1) and then NH₂ chromatography with CH₂Cl₂ and CH₂Cl₂/MeCN (3:1) followed by gel filtration HPLC (MeOH) to afford 5 (17.1 mg), (-)-12 (0.4 mg), 15 (46.9 mg), 19 (0.9 mg), and 20 (29.9 mg). Fraction C

was purified by SiO₂ chromatography with *n*-hexane/CH₂Cl₂/MeOH (30:19:1 and 10:19:1) followed by HPLC (phenyl-hexyl (MeOH/H₂O), NH₂ (CH₂Cl₂/MeCN), and gel filtration (CH₂Cl₂/MeOH/H₂O)) to afford (+)-**2** (2.2 mg), (+)-**3** (0.12 mg), (-)-**3** (0.29 mg), **6** (1.1 mg), (-)-**7** (1.7 mg), (-)-**9** (0.5 mg), (+)-**13** (1.1 mg), **14** (1.6 mg), **16** (2.1 mg), and **17** (0.3 mg). Amoenamide A (**6**): $[\alpha]_D^{20} - 6.0^{\circ} (c 0.91, MeOH); UV (MeOH) \lambda_{max} (log e) 308 (3.04), 252 (3.56), 206 (4.90) nm; IR (film) v_{max} 3356, 2925, 2855, 1674, 1460, 1117 cm⁻¹; HRESIMS$ *m/z*488.2183 [M+Na]⁺ (calcd for C₂₆H₃₁N₃O₅Na, 488.2156); ¹H and ¹³C NMR data (DMSO-*d*₆), see Table 1.(-)-Notoamide F (**7** $): <math>[\alpha]_D^{20} - 12^{\circ} (c 1.4, MeOH); (+)-$ **7** $: <math>[\alpha]_D^{21} + 1.9^{\circ} (c 0.27, MeOH).⁶(-)-Notoamide I ($ **8** $): <math>[\alpha]_D^{20} - 58^{\circ} (c 0.46, MeOH), [\alpha]_D^{24} - 69^{\circ} (c 0.10, MeOH/CHCl₃ 1:1); (+)-$ **8** $: <math>[\alpha]_D^{29} + 31^{\circ} (c 0.1, MeOH/CHCl_3 1:1).⁶(-)-Notoamide R ($ **9** $): <math>[\alpha]_D^{20} - 44^{\circ} (c 0.19, MeOH); (+)-$ **10** $: <math>[\alpha]_D^{25} + 54.1^{\circ} (c 0.1, MeOH).¹⁸(+)-Notoamide L ($ **11** $): <math>[\alpha]_D^{20} - 21^{\circ} (c 0.48, MeOH); (-)-$ **11** $: <math>[\alpha]_D^{23} - 17^{\circ} (c 0.77, MeOH).⁷(-)-6-$ *epi*-Notoamide I (**12** $): <math>[\alpha]_D^{20} - 52^{\circ} (c 0.48, MeOH).$

- Ding Y, de Wet JR, Cavalcoli J, Li S, Greshock TJ, Miller KA, Finefield JM, Sunderhaus JD, McAfoos TJ, Tsukamoto S, Williams RM, Sherman DH. J. Am. Chem. Soc. 2010; 132:12733– 12740. [PubMed: 20722388]
- 23. Li S, Srinivasan K, Tran H, Yu F, Finefield JM, Sunderhaus JD, McAfoos TJ, Tsukamoto S, Williams RM, Sherman DH. Med Chem Comm. 2012; 3:987–996.
- 24. Li S, Finefield JM, Sunderhaus JD, McAfoos TJ, Williams RM, Sherman DH. J. Am. Chem. Soc. 2012; 134:788–791. [PubMed: 22188465]

Sugimoto et al.

Figure 1.

Structures of (a) a new compound, amoenamide A (6), (b) five antipodes (7–11) and a new natural compound (12), and (c) fourteen known compounds (1–5 and 13–20).

Author Manuscript

Sugimoto et al.

Tetrahedron Lett. Author manuscript; available in PMC 2018 April 03.

Scheme 1.

Proposed facial specificities of intramolecular hetero Diels–Alder reactions for major metabolites in three species, *A. protuberus, A. taichungensis*, and *A. amoenus*.

Tetrahedron Lett. Author manuscript; available in PMC 2018 April 03.

Author Manuscript

Scheme 2. Possible biosynthetic pathway from 16 to 21.

Table 1

¹H and ¹³C NMR data for **6** in DMSO- d_6

Position	δ _C	δ _H (J in Hz)	НМВС
1		9.57 s	2, 7, 9
2	174.7		, . , .
3	198.1		
4	129.8	7.63 d 8.6	3, 6, 8
5	112.7	6.73 d 8.6	6, 7, 9
6	155 7		•, • , •
7	117.4		
8	132.9		
9	126.5		
10	39.9	3.04 dd 6.0, 17.7	3, 11, 12
		3.50 dd 6.0, 17.7	3, 11, 12
11	50.7	4.57 t 6.0	3, 10, 12
12	165.7		
14	44.2	3.33 m	
		3.40 m	
15	21.8	1.82 m	
		1.86 m	
16	27.5	1.90 m	
		2.15 m	
17	58.0	4.26 t 7.8	16, 18
18	169.5		
19		7.93 s	11, 12, 17
20	113.6	5.16 dd 1.0, 10.4	22
		5.22 dd 1.0, 17.9	21, 22
21	142.4	6.13 dd 10.4, 17.9	22, 23, 24
22	45.1		
23	23.6	1.29 s	2, 21, 22, 24
24	23.6	1.29 s	2, 21, 22, 23
25	118.1	6.14 d 9.7	6, 8, 27
26	129.9	5.78 d 9.7	7, 27
27	76.5		
28	27.0	1.39 s	26, 27, 29
29	27.0	1.40 s	26, 27, 28

Author Manuscript