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Ronald M. Summers, MD, PhD

Deep Learning Lends a Hand to 
Pediatric Radiology1 

Machine learning in radiology is 
a hot topic. A part of computer 
science, machine learning is a 

field in which systems can be designed 
and trained to learn concepts from data 
to make predictions. Machine learn-
ing, and in particular a subtype called 
deep learning, has shown high accuracy 
in performing difficult tasks, such as 
object recognition in images and speech 
recognition, and is now of great interest 
for medical image analysis (1).

Machine learning can be used for a 
number of applications in radiology, in-
cluding automated detection of disease, 
segmentation of lesions, and quantita-
tion. Radiologists are anxious to learn 
whether and how machine learning will 
affect their practices. In diverse fields 
of medical image analysis, including 
nonradiologic tasks such as diagnosis 
of skin lesion and retinal photographs 
(2,3), evidence indicates that machine 
learning can diagnose disease on images 
at a level comparable to that of skilled 
physicians. There are few diagnostic 
applications in which machine learning 
performs comparably to board-certified 
radiologists. In this issue of Radiol-
ogy, Larson et al (4) present one such 
example.

Larson et al (4) developed and val-
idated a machine learning system for 
the assessment of skeletal maturity 
(ie, bone age) on pediatric hand ra-
diographs. By using a type of machine 
learning called a deep-learning neural 
network, they trained their computer 
model on 12 611 images and validated 
their model on 1425 images. Next, 
they tested their computer model on 
two different data sets. The first test 
set consisted of 200 hand radiographs 
from the authors’ institution. The sec-
ond test set consisted of 913 images 
from the publicly available Digital Hand 
Atlas. The images in the first test set 
were evaluated independently by four 
radiologists, one of whom wrote the 

original clinical report. The authors 
determined the differences in the bone 
ages calculated by the computer model 
and those of the human observers by 
using a pairwise analysis. They calcu-
lated these differences two ways. The 
first, called the root mean square er-
ror, was the square root of the sum of 
the squares of the paired differences. 
The second, the mean absolute differ-
ence, was calculated as the mean of 
the absolute values of the difference 
between the estimates provided by 
the reviewer and model and those of 
the reference standard bone age. On 
the test set that consisted of 200 hand 
radiographs, the root mean square of 
the paired interobserver difference 
ranged from 0.93 to 1.17 years. When 
applied to the second test data set, 
the computer model had a root mean 
square error of 0.73 years. Among the 
200 test-case examinations, a fraction 
would be reclassified to a different di-
agnosis (advanced, normal, or delayed 
bone age), ranging from 15.5% for the 
computer model and 14.0%–18.5% 
for the four human observers. The 
authors concluded that their deep-
learning convolutional neural network 
model could estimate skeletal maturity 
with accuracy similar to that of an ex-
pert radiologist and also similar to that 
of existing automated methods.

Saliency maps, which demonstrate 
parts of the radiograph for which the 
model output was most sensitive, 
highlighted the proximal interphalan-
geal joints, the metacarpal-phalangeal 
joints, and the carpal bones, anatomic 
areas that correspond with the matu-
rity indicators used in the standards of 
Gruelich and Pyle. This is interesting 
because the computer model learned 
the importance of the joints on its own 
by using only the training data.

The authors assessed the impor-
tance of training sample size on the 
performance of the computer model 
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advanced, more accurate computer 
models with the use of machine learn-
ing. Whereas regulatory issues have 
been a concern of machine learn-
ing–based medical device developers, 
deep learning–based medical devices 
have already received clearance from 
the U.S. Food and Drug Administra-
tion (12).

Whether the clinical practice pat-
terns and economics of current radiol-
ogy practice will support and encourage 
the dissemination of computer software 
such as the one developed by Larson 
et al (4) remains to be determined. 
Ideally, such software would be inte-
grated into radiology picture archiving 
and communication systems to provide 
seamless access to both the images and 
the results, and insertion of the results 
into the radiology report. The benefits 
of these machine learning systems for 
their intended use in the clinic will also 
need to be assessed with appropriate 
observer trials.
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