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Abstract

Background—Failure of physiologic transformation of spiral arteries has been reported in 

preeclampsia, fetal growth restriction, fetal death, and spontaneous preterm labor with intact or 

ruptured membranes. Spiral arteries with failure of physiologic transformation are prone to 

develop atherosclerotic-like lesions of atherosis. There are striking parallels between preeclampsia 

and atherosclerotic disease, and between lesions of atherosis and atherosclerosis. Endothelial 

activation, identified by intercellular adhesion molecule-1 expression, is present in atherosclerotic-

like lesions of heart transplantation and considered a manifestation of rejection. Similarly, 

endothelial activation/dysfunction has been implicated in the pathophysiology of atherosclerosis 
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and preeclampsia. Intercellular adhesion molecule-1-overexpressing-activated endothelial cells are 

more resistant to trophoblast displacement than nonactivated endothelium and may contribute to 

shallow spiral artery trophoblastic invasion in obstetrical syndromes having failure of physiologic 

transformation.

Objective—To determine whether failure of spiral artery physiologic transformation was 

associated with activation of interstitial extravillous trophoblasts and/or spiral artery endothelium 

and presence of acute atherosis in the placental basal plate.

Study Design—A cross-sectional study of 123 placentas (19-42 weeks’ gestation) obtained from 

normal pregnancies (n = 22), preterm prelabor rupture of membranes (n = 26), preterm labor (n = 

23), preeclampsia (n = 27), intrauterine fetal death (n = 15), and small for gestational age (n = 10) 

was performed. Failure of spiral artery physiologic transformation and presence of cell activation 

was determined using immunohistochemistry of placental basal plates containing a median of 4 

(minimum: 1; maximum: 9) vessels per placenta. Endothelial/trophoblast cell activation was 

defined by the expression of intercellular adhesion molecule-1 (ICAM-1). Investigators examining 

microscopic sections were blinded to clinical diagnosis. Pairwise comparisons among placenta 

groups were performed with the Fisher’s exact and Wilcoxon rank sum tests using a Bonferroni-

adjusted level of significance (.025).

Results—87% (94/108) of placentas having spiral arteries with failure of physiologic 

transformation (actin-positive and cytokeratin-negative) in the basal plate, and 0% (0/15) of 

placentas having only spiral arteries with complete physiologic transformation (cytokeratin-

positive and actin-negative), had arterial endothelial and/or interstitial extravillous trophoblasts 

reactive with the ICAM-1 activation marker (P < .001). A significant correlation (R2 = 0.84) was 

found between expression of spiral artery endothelial and interstitial extravillous trophoblast 

ICAM-1 (P < .001) in activated placentas. Lesions of atherosis were found in 31.9% (30/94) of 

placentas with complete and/or partial failure of physiologic transformation of spiral arteries that 

were ICAM-1-positive, in none of the 14 placentas with failure of physiologic transformation that 

were ICAM-1-negative, and in none of the 15 placentas with complete spiral artery physiologic 

transformation without failure (P = .001). All placentas (30/30, 100%) with atherosis were 

identified in placentas having concomitant spiral artery endothelial and interstitial extravillous 

trophoblast activation.

Conclusion—Failure of spiral artery physiologic transformation in the placental basal plate is 

associated with interstitial extravillous trophoblast and arterial endothelial activation along with 

increased frequency of spiral artery atherosis. These findings may be used to improve the 

characterization of different disorders of the placental bed such as in refining the existing tools for 

the early prediction of risk for preterm, preeclamptic, and other abnormal pregnancies.
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Introduction

Remodeling of the spiral arteries during gestation leads to substantial dilation of these 

vessels, which at the point of discharge into the intervillous space, attain a luminal diameter 

10 times larger than myometrial spiral arteries. This remodeling is associated with a 10-fold 

increase in blood supply to the fetoplacental unit in the third trimester compared to the non-

pregnant uterus. Spiral artery remodeling, which increases total uteroplacental blood flow 

from a baseline value of 20-50 mL/min to 450-800 mL/min in singleton pregnancies (as 

measured utilizing the diffusion equilibrium principle [most often nitrous oxide] or 

electromagnetic flow probes placed directly on the uterine artery), is considered key to 

accommodate the increased blood flow to the uteroplacental circulation in the third trimester 

[1–7]. Initially, physiologic transformation of the spiral arteries includes endothelial 

vacuolation and smooth muscle swelling [8–11], and it has been attributed in part to immune 

processes within the decidua [4,12–18]. Subsequently, trophoblasts invading the spiral 

arteries destroy the smooth muscle in the media, which is replaced by fibrinoid material 

[1,3,19–21].

Physiologic transformation of the spiral arteries is a normal process with the degree of 

transformation being greater in the center of the placental bed than in the periphery [21–23]. 

Full conversion of both decidual and myometrial segments of the approximately 100-120 

spiral arteries normally found in the placental bed into large, remodeled uteroplacental 

vessels is key for normal deep placentation [21,23]. Such deep placentation can be defective 

when remodeling of the junctional zone of the spiral arteries (arterial segments in the inner 

third of the myometrium and overlying endometrium) is absent or incomplete [21,24–26]. 

Insufficient physiologic transformation of the spiral arteries is associated with adverse 

pregnancy outcomes [3,21,27], including second-trimester spontaneous abortion [28–30], 

fetal death [30], abruptio placentae [31], preeclampsia [1,32–34], small for gestational age 

[32–35], preterm labor [36], preterm prelabor rupture of membranes [37,38], and maternal 

autoimmune diseases [39].

Failure of physiologic transformation of spiral arteries is seen in deep placentation disorders 

such as preeclampsia with or without intrauterine growth restriction, intrauterine growth 

restriction without preeclampsia, preterm labor and preterm prelabor rupture of membranes, 

abruptio placentae, and second-trimester abortion [21]. This failure is characterized by the 

absence of spiral artery trophoblastic invasion and remodeling [40]. Currently this condition 

can be identified only in placental bed biopsies because these specimens are required to 

demonstrate a defect of myometrial transformation [40]. However, physiologic 

transformation begins in the decidual segment of the spiral arteries during the first wave of 

trophoblast invasion. Therefore, failure of transformation of the spiral arteries in the decidual 

segment represents a more severe disorder than lack of transformation of the myometrial 

segment only. Abnormal transformation of the decidual portion of the spiral arteries can be 

detected by examining the placental basal plate [33–35,37,39,41–45]. This has practical 

implications because the basal plate of the placenta is available for examination in all cases 

while a placental bed biopsy requires a specialized procedure generally performed during a 

cesarean delivery. Immunohistochemistry [44] allows in-depth examination of the vessel 

wall through antigen detection of its different cellular components, which reduces the 
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subjectivity of using only conventional light microscopy for vessel recognition in the 

placental basal plate.

Arteries with failure of physiologic transformation of the spiral arteries (but not those with 

physiologic transformation) are prone to develop atherosis. Intravascular inflammation and 

abnormal lipid metabolism can interfere with endothelial cell function, and predispose to 

atherosclerosis in non-pregnant subjects [46–53]. Women with preeclampsia, the prototypic 

obstetrical complication characterized by failure of physiologic transformation of the spiral 

arteries [19,21,32,54–58] have evidence of intravascular inflammation [57,59–62] as well as 

changes in lipid metabolism [63–66], such as increased concentrations of triglycerides, and 

low-density lipoprotein, and decreases in low-density lipoprotein particle size and high-

density lipoprotein [67]. Macrophage infiltration of the intima and media is identified in 

both atherosis and the lesions found in transplant vasculopathy [6,43,44,58,68–70]. 

Therefore, there are striking parallels between preeclampsia and atherosclerosis, as well as 

the lesions of atherosis and those observed in patients with ischemic heart disease.

Endothelial activation, identified by the expression of intercellular adhesion molecule 

(ICAM)-1, is present in atherosclerotic-like lesions of heart transplantation [71–76], and is 

considered a manifestation of rejection. Similarly, endothelial activation/dysfunction has 

been implicated in the pathophysiology of atherosclerosis [77–79] and preeclampsia [80–

83]. Activated endothelial cells with overexpression of cell-surface ICAM-1 [84–86] are 

more resistant to trophoblast displacement than non-activated endothelial cells [87], and may 

contribute to shallow spiral artery trophoblastic invasion in obstetrical syndromes associated 

with failure of physiologic transformation of the spiral arteries.

The purpose of this study was to determine whether there was an association among: (1) 

failure of physiologic transformation of the spiral arteries in the placental basal plate; (2) 

endothelial and trophoblast activation; and (3) the presence of atherosis.

Materials and Methods

Study design

A cross-sectional study was performed on 123 placentas (19-42 weeks’ gestation) collected 

at Hutzel Women’s Hospital, the Detroit Medical Center, under protocols approved by the 

Wayne State University and Eunice Kennedy Shriver National Institute of Child Health and 

Human Development Institutional Review Boards, and the analyses were completed by 2015 

at CBL Partners for Life, Indianapolis, IN, and the California Medical Innovations Institute, 

San Diego, CA. Placentas were obtained from: normal pregnancies (n = 22), preterm 

prelabor rupture of membranes (n = 26), preterm labor (n = 23), preeclampsia (n = 27), 

intrauterine fetal death (n = 15), and small for gestational age (n = 10). Normal pregnancies 

were defined as those without medical/obstetrical complications and with birthweights 

adequate for gestational age (>10th percentile) at term (≥37 weeks of gestation). Seventeen 

babies were delivered vaginally and five by cesarean (none of the mothers or babies were 

infected). Preeclampsia was defined as new-onset hypertension >20 weeks of gestation 

(systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg on at least two 

occasions, 4 hours to 1 week apart), edema, and proteinuria (≥300 mg in a 24-hour urine 
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collection or one dipstick measurement of ≥2+). Infants with fetal growth restriction were 

considered small for gestational age if they were <10th percentile for weight for their 

gestational age. Pregnancies were considered preterm when the gestational age was <37 

weeks. Birthweight percentiles were calculated using nationwide US natality data [88]. 

Placentas from mothers with obesity (body mass index ≥30), known to be associated with a 

pro-inflammatory state [89], were not included in the study. All women provided written 

informed consent prior to the collection of placenta samples. The Institutional Review Board 

of the sponsoring institution approved collection and use of samples for research purposes.

Definitions

The terms used in this study follow accepted nomenclature [90]. Briefly, the placental bed is 

part of the decidua and adjoining myometrium that underlie the placenta and provide blood 

supply to the intervillous space. Extravillous trophoblasts are all trophoblasts (fetal-derived 

cells) located outside the placental villi. Interstitial extravillous trophoblasts are placental 

bed trophoblasts that have entered the decidual stroma but have not yet invaded the spiral 

artery walls. Extravillous trophoblasts invading spiral artery walls and replacing smooth 

muscle and endothelium are termed “intra-arterial trophoblasts.” Physiologic transformation 

of the spiral arteries was defined as the complete trophoblastic invasion of the spiral arteries, 

partial failure of physiologic transformation of the spiral arteries as the incomplete 

trophoblastic invasion of the arterial muscular wall, and failure of physiologic 

transformation of the spiral arteries as the complete absence of trophoblastic replacement of 

the arterial wall.

Placental specimens and immunohistochemistry

Placental samples (10×10×5 mm) from placental septa near the center of the basal plate [3.5 

(SD 0.6) per placenta] of 123 placentas obtained immediately after delivery were embedded 

in Tissue-Tek® optimum cutting temperature compound (Miles Inc., Elkhart, IN) and snap-

frozen in liquid nitrogen. Seven serial sections (a total of seven slides) from each basal plate 

sample were used for the evaluation of the single-, double-, and triple-antibody techniques 

performed. Sample slides having basal plate spiral arteries defined immunohistochemically 

were included in the study, and samples without any spiral artery were excluded. A triple-

antibody technique [44,73] with antibodies to α-smooth muscle actin to identify vascular 

smooth muscle cells, cytokeratin to identify extravillous trophoblasts and intra-arterial 

trophoblasts, and von Willebrand factor to identify endothelial cells was used to detect 

complete or partial failure of physiologic transformation and physiologic transformation of 

spiral arteries (median of 4 [minimum: 1; maximum: 9] vessels per placental basal plate). A 

triple-antibody immunohistochemistry with α-actin, cytokeratin, and ICAM-1 identified 

interstitial extravillous trophoblast and spiral artery endothelial cell activation [44,73,91].

Normal term placentas had cytokeratin-positive, α-actin-negative, and von Willebrand 

factor-positive uteroplacental arteries. Failure of physiologic transformation of the spiral 

arteries was characterized by cytokeratin-negative, α-actin-positive, and von Willebrand 

factor-positive spiral arteries. Spiral artery atherosis was cytokeratin-negative, α-actin-

positive, and von Willebrand factor-positive and showed the presence of CD68+ 

macrophages in the intimal area of the spiral arteries. Serial sections (5 μm each) from each 
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placental block were obtained for light microscopy (hematoxylin and eosin) and single, 

double, and triple immunohistochemistry. The use of immunohistochemistry allowed a clear 

identification of the spiral arteries in all slides from the different serial sections, 

demonstrating 100% reproducibility. The deposition of neutral triglycerides and other lipids 

were examined using oil-red O to confirm atherosis. Individuals examining microscopic 

sections (C.A.L., H.L.D.) were blinded to clinical diagnoses.

Statistical analysis

Continuous measures were summarized using median, minimum, and maximum, and 

categorical measures were summarized as frequency (percent). Demographic variables were 

compared using a Fisher’s exact test (for discrete measures) and the Kruskal-Wallis test (for 

continuous measures); these tests compared values for atherosis groups (atherosis versus no 

atherosis). Comparison of continuous measures for groups (atherosis versus no atherosis) 

were evaluated using the Wilcoxon rank sum test. We used analysis of variance to compare 

means from multiple groups. A Bonferroni-adjusted level of significance of ˂.025 was used 

to establish statistical significance for subsequent pairwise comparisons. Statistical analysis 

was performed by one of the authors (J.W.H).

Results

The various statuses of the spiral artery physiologic transformation in the placental basal 

plate were defined immunohistochemically as follows: physiologic transformation of the 

spiral arteries had complete muscular wall replacement by cytokeratin-positive trophoblasts 

that surrounded the endothelial lining of the vessels (Figure 1, A); spiral arteries with failure 

of physiologic transformation and atherosis maintained an actin-positive muscular wall, and 

cytokeratin-positive trophoblastic cells (interstitial extravillous trophoblasts) surrounded but 

did not invade the arterial walls (Figure 1, B). Spiral arteries with partial failure of 

physiologic transformation had a combination of smooth muscle cells and intra-arterial 

trophoblasts in the arterial walls (Figure 1, C). The immunohistochemical characteristics of 

the different statuses of spiral artery physiologic transformation and atherosis are 

summarized in Table 1.

Of the 123 placentas studied, 108 had spiral arteries with failure of physiologic 

transformation (Table 2): 79 had failure of physiologic transformation in all spiral arteries 

examined and 29 had both failure of physiologic transformation and physiologic 

transformation (Table 2). Fifteen placentas had complete spiral artery physiologic 

transformation without any failure of physiologic transformation (Table 2). Spiral arteries 

with partial failure of physiologic transformation (n = 36) had α-actin-positive cells in part 

of the arterial wall and cytokeratin-positive trophoblastic cells in the rest of the wall (Table 1 

and Figure 1, C). Partial failure of physiologic transformation of the spiral arteries in the 

basal plate was associated with failure of physiologic transformation (n = 22), physiologic 

transformation (n = 8), or both (n = 6).

Of the 108 placentas with failure of physiologic transformation of the spiral arteries in the 

basal plate, 100 (100/101, 99%) were from women with complicated pregnancies, and 8 

(8/22, 36.4%) from normal pregnancies (Table 2). Of the 15 placentas with complete 
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physiologic transformation of the spiral arteries and no failure, however, only 1 (1/101, 1%) 

was from a woman with an abnormal pregnancy, and 14 (14/22, 63.6%) were from women 

with normal pregnancies (Table 2). Placentas with only physiologic transformation of the 

spiral arteries (Table 2) were found mostly in normal pregnancies, and placentas having only 

failure of physiologic transformation of the spiral arteries (Table 2) were seen predominantly 

in abnormal pregnancies with preeclampsia, small for gestational age, intrauterine fetal 

death, preterm labor, and preterm prelabor rupture of membranes (Table 2).

Of placentas from abnormal pregnancies, 99% had spiral arteries with failure of physiologic 

transformation in the basal plate and only 1% of them had all spiral arteries with physiologic 

transformation (P < .001) (Table 2). Contrarily, most placentas (63.6%) from normal 

pregnancies had all spiral arteries with physiologic transformation, and a smaller percentage 

of them (36.4%) had spiral arteries with failure of physiologic transformation (P <.001). All 

groups of abnormal pregnancies had a similarly high proportion of placentas with failure of 

physiologic transformation in all spiral arteries, which was highest in pregnancies with small 

for gestational age (9/10, 90%), preeclampsia (22/27, 81.5%), and intrauterine fetal death 

(12/15, 80%), and lowest in preterm labor (16/23, 69.6%) (Table 2). The combination of 

both failure of physiologic transformation and physiologic transformation of the spiral 

arteries was more frequently identified in preterm labor. Physiologic transformation of the 

spiral arteries without any failure of physiologic transformation was found predominantly in 

normal pregnancies (Table 2). We performed quantitative studies and evaluated the 

percentage of arteries with different degrees of physiologic transformation in the basal plate 

of the placentas of the different groups and subgroups studied (Table 3). The percentage of 

arteries with physiologic transformation and failure of physiologic transformation was 

significantly different between groups, but no differences were found in the percentage of 

arteries with partial failure of physiologic transformation (Table 3). The highest percentage 

of arteries with failure of physiologic transformation was found in placentas from fetal death 

and preeclampsia; the highest percentage of partial failure of physiologic transformation was 

found in small-for-gestational-age babies; the highest percentage of arteries with physiologic 

transformation was found in normal pregnancies and preterm labor; and the lowest 

percentage of arteries with physiologic transformation was found in small-for-gestational-

age placentas (Table 3).

Of the 94 placentas with ICAM-1 expression in arterial endothelium and/or extravillous 

trophoblasts, all (94/94, 100%) were associated with failure of physiologic transformation 

(Figure 1, E, and Table 2), and none with physiologic transformation without failure (Figure 

1, D, and Table 2) (P <.001). A significant correlation (R2 = 0.84) was found between 

interstitial extravillous trophoblasts and spiral artery endothelial ICAM-1 expression (P < .

001). Spiral arteries with partial failure of physiologic transformation also showed 

endothelial ICAM-1 expression (Figure 1, F). A high proportion of spiral arteries with 

endothelial and/or extravillous trophoblasts that were ICAM-1-positive (Table 2) was 

observed in complicated pregnancies. The combination of both failure of physiologic 

transformation of the spiral arteries and physiologic transformation was associated with a 

lower proportion of endothelial and/or extravillous trophoblasts that were ICAM-1-positive 

(Table 2). The percentage of arteries with endothelial ICAM-1 was significantly different 

between groups, being higher in small for gestational age and lower in normal pregnancies 
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(Table 3). Interestingly, spiral arteries with physiologic transformation had fewer CD68+ 

macrophages surrounding extravillous trophoblasts (Figure 2, A) and spiral artery 

endothelium (Figure 2, C) than arteries with failure of physiologic transformation, which 

had increased number of CD68+ macrophages around smooth muscle cells of uninvaded 

arteries (Figure 2, B and D), suggesting that increased inflammation is associated with 

arterial endothelial and/or extravillous trophoblast activation.

Atherosis, akin to placental atherosclerosis (Figure 3A), developed only in placentas with 

failure of physiologic transformation of the spiral arteries, and all placentas with atherosis 

had a high proportion of failure of physiologic transformation (Table 2) and activation of 

interstitial extravillous trophoblasts and spiral artery endothelium. Atherosis was identified 

in preterm labor (n = 6), preterm prelabor rupture of membranes (n = 9), preeclampsia (n = 

7), small for gestational age (n = 3), intrauterine fetal death (n = 4), and normal (n = 1) 

placentas (Table 2). The percentage of arteries with atherosis lesions was significantly 

different between groups (P < .001); the highest percentage was found in small for 

gestational age and fetal death, and the lowest percentage in normal pregnancies and preterm 

labor (Table 3). Arteries with atherosis had numerous oil red O-positive cells, which were 

not observed in arteries with either physiologic transformation or failure of physiologic 

transformation without atherosis (Figure 3, B to D). Oil red O-positive cells were confirmed 

to be macrophages (Figure 3, G). Spiral arteries with atherosis were α-actin-positive (Figure 

3, E and H) and cytokeratin-negative (Figure 3, F), as defined in Table 1. Lesions of 

atherosis were observed in 30% (30/100) of placentas with failure of physiologic 

transformation of the spiral arteries (Table 2) and, as expected, in none of the placentas with 

physiologic transformation (P = .001). Furthermore, all placentas with atherosis had 

concomitant spiral artery endothelial and interstitial extravillous trophoblast activation. 

Arteries with failure of physiologic transformation that were ICAM-1-positive had a higher 

frequency of atherosis than placentas without endothelial activation (P < .001). Atherosis 

was found in 31.9% (30/94) of placentas positive for ICAM-1 on spiral artery endothelium 

and/or interstitial extravillous trophoblasts; in none of the 13 placentas with failure of 

physiologic transformation that were ICAM-1-negative; and as expected, in none of the 15 

placentas with complete physiologic transformation that were ICAM-1-negative (P = .04).

We subsequently performed a comparison among the immunohistochemically defined spiral 

artery phenotypes in the basal plate and the different groups of pregnancies studied, the 

status of spiral artery transformation, and the presence of arterial endothelial/trophoblast 

activation and atherosis (Table 4). As expected, abnormal pregnancies had a significantly 

increased proportion of spiral arteries actin-positive and cytokeratin-negative; arteries actin-

positive and cytokeratin-negative were characteristic of failure of physiologic 

transformation, and showed increased ICAM-1 expression and atherosis (Table 4). The 

clustered bar chart (Figure 4) shows a summary of the immunohistochemical characteristics 

of the spiral arteries in the basal plate of the different pregnancy conditions studied, i.e., 

normal and abnormal pregnancies, physiologic transformation, partial failure of physiologic 

transformation, failure of physiologic transformation, placental ICAM-1 expression, and 

atherosis.
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Comment

Principal findings of the study

First, failure of physiologic transformation of the spiral arteries in the placental basal plate 

had ICAM-1-positive interstitial extravillous trophoblasts. Second, placentas with failure of 

physiologic transformation of the spiral arteries and extravillous trophoblast activation had 

concomitant spiral artery ICAM-1-positive endothelium. Third, failure of physiologic 

transformation of the spiral arteries that were ICAM-1-positive had a higher frequency of 

atherosis than placentas without endothelial activation.

Activated extravillous trophoblasts found around spiral arteries with failure of physiologic 

transformation but not arteries with physiologic transformation suggests that the presence of 

ICAM-1-positive interstitial extravillous trophoblasts prevents the normal invasion of spiral 

arteries by those cells, possibly by enabling maternal immune cells to react against activated 

extravillous trophoblasts. Impaired trophoblast invasion has been associated with an 

increased number of macrophages around spiral arteries in preeclampsia [92] that could lead 

to increased trophoblast apoptosis [93] and impaired arterial invasion.

Placentas with failure of physiologic transformation of the spiral arteries and endothelial 

activation had a significantly (P < .001) higher frequency of atherosclerotic-like lesions of 

atherosis than placentas without activation, suggesting that endothelial activation is 

paramount in the development of the lesion. Multiple pathologic processes involving 

excessive decidual inflammation have been implicated in the genesis of atherosis [94–97]. 

Local factors may contribute to lack of trophoblast invasion and lipid deposition in spiral 

arteries [96]. Trophoblast migration may be suppressed by an abnormal immune interaction 

between maternal and fetal cells [96]. It is noteworthy that atherosis and vascular lesions in 

rejected kidney and heart transplants are histologically similar, suggesting that atherosis may 

be the result of immune dysregulation at the maternal-fetal interface [43]. In the decidua, 

invading trophoblasts can act as ligands for maternal uterine immune cells since trophoblasts 

bear paternal (foreign) HLA-C antigens that can be detected by receptors on those cells [98–

101]. Under normal circumstances, immune cells do not initiate a destructive response 

toward trophoblasts, but this response could be triggered in complicated pregnancies and 

explain impaired trophoblast invasion [100,102]. We have previously proposed [43] that 

atherosis could have an immune origin. This hypothesis has gained support, as recently 

reviewed by Staff et al [96]. An immunological mismatch between mother and fetus can lead 

to dysregulation of decidual immunity, promote local decidual inflammation, and predispose 

to atherosis.

Uteroplacental ischemia can lead to the production of anti-angiogenic factors [103–113], 

such as sFlt-1 (soluble fms-like tyrosine kinase-1) [114–117] and endoglin [69,118], which 

can induce endothelial dysfunction and predispose to preeclampsia or an anti-angiogenic 

state [57,119–129]. In addition, an excess production of trophoblast debris can result in 

exaggerated intravascular inflammation and endothelial cell dysfunction [130–134]. 

Preeclampsia is characterized by intravascular inflammation [59–62,135] and, similar to 

atherosclerosis [46,136,137], is marked by increased levels of circulating pro-inflammatory 

cytokines (such as interleukin-6 and tumor necrosis factor-α [138–143]), C-reactive protein 
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[141,142,144–146], and markers of leukocyte activation [144,147]. Interestingly, pregnancy 

may constitute a metabolic/vascular “stress test,” uncovering a subclinical endothelial cell 

dysfunction that manifests later in life, in mothers affected with preeclampsia or an anti-

angiogenic state [148–151].

Several adverse pregnancy outcomes, such as preeclampsia [1,32–34], have characteristic 

disordered deep placentation [28–42]. Our findings provide an association between failure of 

physiologic transformation of the spiral arteries in the placental basal plate and activation of 

spiral artery endothelial cells and extravillous trophoblasts. By secreting both tumor necrosis 

factor-α and a tryptophan-depleting enzyme, excess macrophages in the placental bed of 

women with preeclampsia have been implicated in defective extravillous trophoblast spiral 

artery invasion [152]. More recently, tumor necrosis factor-α has been found to mediate fetal 

growth restriction during abnormal maternal inflammation [58]. Macrophages inhibit 

extravillous trophoblast invasion both passively, by being attracted by extravillous 

trophoblasts, and actively, by inducing peri-arterial extravillous trophoblast apoptosis [152]. 

Arterial ICAM-1 up-regulation could facilitate macrophage recruitment as shown in 

placental villitis of unknown etiology and massive chronic intervillositis [153,154]. Aberrant 

ICAM-1 expression has been described in cultured syncytiotrophoblasts pre-treated with 

both inflammatory cytokines, which also facilitate adhesion of monocytes to the 

syncytiotrophoblast [155]. Monocytes adhering to placental syncytiotrophoblasts can induce 

tumor necrosis factor-α-dependent apoptosis accompanied by focal trophoblast disruption 

[156]. Focal damage of the placenta could be a route for maternal leukocyte infiltration into 

the villi and a possible mechanism of villitis [156]. From our findings, we postulate that 

activated extravillous trophoblasts could facilitate trophoblast damage, inflammation, and 

subsequent inhibition of spiral artery transformation. Failure of physiologic transformation 

of the spiral arteries could result from ICAM-1-reactive spiral artery endothelial cells 

impeding the normal invasion [157], or ICAM-1-enhanced reactivity could be a consequence 

of failure of the physiologic transformation.

The rates of failure of physiologic transformation in our study are higher than those reported 

previously in women with different placental disorders [20,21,36–38,158]. The differences 

could be explained by the number of blocks obtained from the basal plate’s placental septa 

[21] included in our study (a mean of 3.5 blocks per placenta) and the use of triple-antibody 

immunohistochemistry. The use of a triple-antibody immunohistochemical technique allows 

the simultaneous identification of three cell types—smooth muscle cells, trophoblasts, and 

endothelium—which facilitates identification not only of the type of vessel but its 

predominant cell type phenotypic characteristics. The immunohistochemistry technique 

using cytokeratin, actin, and von Willebrand factor as markers of trophoblasts, smooth 

muscle cells, and endothelium, respectively, allows for a more precise identification of the 

degree of transformation, or the lack thereof, in each vessel. Interestingly, our data in the 

placental basal plate are supported by recent findings of a significantly higher frequency of 

acute atherosis lesions in the placental basal plate than in placental bed biopsies (both 

decidua and myometrial segments), considering that atherosis lesions only develop in spiral 

arteries with failure of trophoblastic invasion [159]. As we previously discussed [36], the 

reasons why some women with failure of physiologic transformation of the spiral arteries 

develop preeclampsia, whereas others develop preterm labor, are unknown, and the 
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possibility still exists that women with preterm labor would have developed preeclampsia if 

the pregnancy had continued longer. We previously proposed that pathology of the placental 

bed, primarily through ischemia and/or other mechanisms such as a maternal-fetal immune 

response, may lead to preeclampsia, small for gestational age, preterm labor with intact or 

ruptured membranes, abruptio placentae, and fetal death; and why a similar insult would 

result in different clinical phenotypes depends on genetic and environmental factors and time 

of onset, duration, and extent of the ischemic insult [160]. Korzeniewski et al [161] recently 

demonstrated that maternal plasma angiogenic index-1 concentration ratios seem to reflect 

the burden of uteroplacental vasculopathy indicated by histologic examination of the 

placenta, regardless of clinical diagnosis. The time order between changes in plasma 

angiogenic index-1 concentration ratios and placental features consistent with maternal 

vasculopathy, however, remains to be determined. The identification of the highest 

proportion of arteries with complete physiologic transformation in women with preterm 

labor with intact membranes and preterm prelabor rupture of membranes and the lowest 

proportion of transformed spiral arteries in small for gestational age in our study, suggests 

that the difference between differing pathologies is centered in the varying proportion of 

spiral arteries with physiologic transformation and failure of physiologic transformation. 

Examining more samples or perhaps the whole placental basal plate would help clarify 

quantitative differences of vessel transformation in different pregnancy disorders that could 

explain the differing outcomes. Indeed, the presence of failure of physiologic transformation 

in the placental basal plate in our study was associated with a significantly lower gestational 

age, suggesting that abnormal placentation and the vasculopathies associated with it could 

predispose to an early delivery. The identification of failure of spiral artery physiologic 

transformation in multiple pregnancy complications in general and not only in malperfusion 

pathologies of the placenta in particular, suggests that inflammation leading to cell activation 

may be the trigger for an abnormal placentation that expresses as different pathologies of 

pregnancy. Finally, the frequency of atherosis in our study was higher than the frequency 

recently described in a large population of placentas from normal and abnormal pregnancies 

[159,162]. We believe this is due to the high sensitivity of triple-antibody 

immunohistochemistry when compared with hematoxylin-eosin used to detect failure of 

physiologic transformation of the spiral arteries and placental atherosis [44].

In support of the central role played by trophoblast invasion, Kam et al [163] demonstrated 

that the physiological change in spiral arteries during pregnancy can only take place when 

interstitial trophoblasts are present. In further studies [36,38], frequent transformational 

failure was seen in the myometrial but not decidual spiral artery segments in preterm 

prelabor rupture of membranes, and increased transformational failure was seen in 

myometrial and decidual segments in preterm labor with intact membranes. The frequency 

of failure was higher in preeclampsia than in either preterm prelabor rupture of membranes 

or preterm labor with intact membranes. In this study, failure of physiologic transformation 

of the spiral arteries was highest in pregnancies with preeclampsia and lowest in preterm 

labor. The differences seen between the physiological responses of normal pregnancy and 

placental disorders may be only quantitative and not qualitative. Since the fetoplacental unit 

is a semi-allograft, normal pregnancy can be considered a challenge to the maternal immune 

system [164–169], and indeed, is a state of physiologic intravascular inflammation. We and 
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other investigators have reported excessive intravascular inflammation in preeclampsia [59–

62], intrauterine growth restriction [170,171], preterm labor [172], preterm prelabor rupture 

of membranes [173], and acute pyelonephritis [174]. An exaggerated intravascular 

inflammatory process can impair remodeling of the spiral arteries and lead to endothelial 

cell activation and atherosis.

A further point that needs to be emphasized is the role of endothelial disruption in 

physiologic transformation of the spiral arteries and atherosis in complicated pregnancies. 

Interestingly, atherosis lesions can show endothelial disruption [175], and it is tempting to 

postulate that such disruption is no more than the development of atherosis in arteries with 

partial failure of physiologic transformation. Although the study did not examine smooth 

muscle cells, partial failure of physiologic transformation of the spiral arteries was shown 

immunohistochemically by complementarity staining for endothelium and endovascular 

trophoblast in vessels of the placental bed [176]. Our findings demonstrated that both failure 

of physiologic transformation and partial failure of physiologic transformation of the spiral 

arteries showed endothelial activation, and interestingly, partial failure of physiologic 

transformation had intravascular trophoblasts (Figure 1), as found in arteries with 

endothelial disruption. Areas with intravascular trophoblast and absence of endothelium in 

partial failure of physiologic transformation of the spiral arteries would not show any 

expression of endothelial activation markers, as found in our study.

The nomenclature used to describe disorders of vascular remodeling in the spiral arteries can 

be confusing and, at times, misleading. Craven et al [10] viewed vascular changes as the 

beginning of physiologic change that occurs without trophoblast invasion, but others [163] 

adopted a more narrow view of physiological change—one that not only includes 

trophoblast invasion but is defined by it. Pijnenborg et al [19] suggested a new nomenclature 

replacing the term altogether with “trophoblast-associated remodeling.” We suggest the term 

“defective superficial placentation” to describe the failure of physiologic transformation of 

the spiral arteries in the placental basal plate during pregnancy. Although examination of the 

basal plate exclusively without availability of placental bed biopsies does not allow 

identification of defective deep placentation, the diagnosis of defective superficial 

placentation is also abnormal, because it suggests severe failure of physiologic 

transformation of the spiral arteries.

Although it is difficult to be certain regarding initial events during the placental development 

by examining third-trimester placentas, it is tempting to suggest what happens during early 

placentation based on our findings. The sequence of events is that trophoblasts first invade 

the superficial (or decidual) segment of the spiral arteries and, only later, the myometrial 

segment of the arteries. While the hallmark for disorders of deep placentation is failure of 

trophoblast invasion in the myometrial segment (which requires a placental bed biopsy), the 

fact that trophoblast has not invaded the decidual segment indicates that the process is more 

severe. This interpretation is indicative of failure of the first wave of spiral artery 

trophoblastic invasion [34]. Furthermore, the approach that we have proposed (examination 

of the basal plate of the placenta) has practical value, given that placental bed biopsies are 

rarely performed, and often require a cesarean delivery. In contrast, examination of the basal 

plate of the placenta can be undertaken in all placentas, whether the mode of delivery is 
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vaginal or cesarean [34]. The concept of defective superficial placentation may be used to 

improve the characterization of different disorders of the placental bed. It is possible that our 

data will be valuable in refining the existing tools for the evaluation of risk before pregnancy 

or in early gestation for the prediction of subsequent pregnancy outcome.
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Figure 1. Different statuses of spiral artery physiologic transformation and ICAM-1 expression
Complete physiologic transformation of spiral arteries: A, presence of endothelium (blue) 

and trophoblast cells (red) in vessel wall; and D, absence of endothelial intercellular 

adhesion molecule (ICAM)-1 expression (arrow) with ICAM-1-negative trophoblast cells 

(blue, arrowhead). Failure of physiologic transformation of spiral arteries: B, characterized 

by spiral arteries with presence of endothelium (blue, arrowhead) and smooth muscle cells 

(green, arrow) without arterial invasion of trophoblast cells (red) as seen in artery in center 

(blue linings on left and lower right of figure corresponding to neighboring veins); and E, 

presence of endothelial ICAM-1 (red, arrow) with trophoblast cells (blue, arrowhead). 

Partial physiologic transformation of spiral arteries: C, presence of endothelium (blue), 

trophoblast cells (red, arrow), and smooth muscle cells (green, arrow) in part of vessel; and 
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F, presence of endothelial ICAM-1 (red, arrow) with trophoblast cells (blue, arrowhead) and 

smooth muscle cells (green). Note presence of intra-arterial trophoblasts (yellow arrow) in 

partial physiologic transformation of spiral arteries. Scale represents 50 μm. Original 

magnification: ×640.
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Figure 2. Macrophages and spiral artery physiologic transformation
Complete physiologic transformation of spiral arteries: A and C, few CD68+ macrophages 

(red, arrows) around endovascular trophoblast cells (A, blue) and presence of endothelium 

(C, blue) in vessels with normal trophoblastic invasion. Failure of physiologic 

transformation of spiral arteries: B and D, numerous CD68+ macrophages (arrows) around 

vessels, with presence of endothelium (D, blue), absence of intra-arterial trophoblast cells 

(B, blue), and presence of smooth muscle cells (B and D, green) in spiral arteries. Scale 

represents 50 μm. Original magnification: ×640.
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Figure 3. Histochemical and immunohistochemical characteristics of atherosis
Atherosis lesion recognized with hematoxylin-eosin stain: A, note presence of foam cells 

(arrows) reactive with oil red O, as shown in D, confirming presence of lipids, which are B, 

not observed in vessels with normal trophoblastic invasion or C, absence of trophoblastic 

invasion also reacted with oil red O. Atherosis was observed in spiral arteries using triple-

antibody technique that showed arterial smooth muscle cells (E, green), trophoblast cells 

surrounding but not replacing vessel walls (F, blue), and presence of macrophages in 

vessel’s intima (G, red, arrow). H, These cell subtypes are clearly shown in combined 

photograph. Triple-antibody immunohistochemistry for smooth muscle (alpha-actin, E), 

trophoblasts (cytokeratin, F), macrophages (CD68, G), and their combination (H). Scale 

represents 50 mm. Original magnification: ×640. A, Hematoxylin-eosin and B to D, oil red 

O stains.
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Figure 4. Summary of immunohistochemical characteristics of spiral artery physiologic 
transformation in basal plate of different pregnancy conditions studied
Clustered bar chart showing summary of immunohistochemical characteristics of spiral 

arteries in basal plate of different pregnancy conditions studied.

*Data were obtained from na = 179 arteries from np = 123 placentas;

**Failure of physiologic transformation considers complete and partial failure;

¶Placentas intercellular adhesion molecule (ICAM)-1-positive include spiral artery 

endothelial and/or extravillous trophoblast reactivity;

§Atherosis was identified in preterm labor (np = 6), preterm premature rupture of 

membranes (np = 9), preeclampsia (np = 7), small for gestational age (np = 3), fetal death (np 

= 4), and normal pregnancies (np = 1).

na, number of arteries; np, number of placentas.
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Table 1

Immunohistochemical markers in spiral artery physiologic transformation and atherosis

Immunohistochemical characteristics Complete physiologic transformation Partial physiologic transformation Failure of 
physiologic 
transformation

Atherosis

Cytokeratin Positive Positive/negative Negative Negative

Smooth muscle α-actin Negative Positive/negative Positive Positive

Von Willebrand factor Positive Positive Positive Positive

ICAM-1, endothelial Negative Positive/negative Positive Positive

ICAM-1, interstitial extravillous 
trophoblast

Negative Positive/negative Positive Positive

ICAM-1, intercellular adhesion molecule-1.
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Table 4

Immunohistochemistry of spiral artery physiologic transformation in the different study groups

Characteristics

Spiral artery immunohistochemistry (np= 123)a

P-valueb

Spiral arteries 
cytokeratin-positive 
and actin-negative 

(na=43)

Spiral arteries 
cytokeratin-positive 
and actin-positive 

(na=36)

Spiral arteries 
actin-positive and 

cytokeratin-
negative (na=100)

Abnormal pregnancies (np=101)a 22 (21.8%) 29 (28.7%) 97 (96.0%) <0.001

 Preeclampsia (np= 27) 5 (18.5%) 7 (25.9%) 27 (100%)

 Small for gestational age (np= 10) 1 (10%) 4 (40%) 10 (100%)

 Fetal death (np= 15) 3 (20%) 4 (26.7%) 15 (100%)

 Preterm labor (np= 23) 7 (30.4%) 7 (30.4%) 20 (87%)

 Preterm prelabor rupture of membranes (np= 26) 6 (23.1%) 7 (26.9%) 25 (96.2%)

Normal pregnancies (np=22) 21 (95.5%) 7 (31.8) 3 (13.6%) <0.001

Physiologic transformation w/o failure of physiologic 

transformation (np=15)c
15 (100%) 0 (0%) 0 (0%)

Failure of physiologic transformation w/or w/o physiologic 
transformation (np=108)

28 (25.9%) 28 (25.9%) 98 (90.7%)

Failure of physiologic transformation w/physiologic 
transformation (np=28)

28 (100%) 14 (50%) 19 (67.9%)

Failure of physiologic transformation w/o physiologic 
transformation (np=80)

0 (0%) 24 (30%) 77 (96.3%)

Placentas ICAM-1-positive (np=94)d 21 (22.3%) 28 (29.8%) 88 (93.6%) <0.001

Placentas with atherosis (np=30)e 4 (13.3%) 10 (33.3%) 30 (100%) <0.001

a
Data were obtained from na=179 arteries from np=123 placentas.

b
P-values compare the listed characteristic for the groups with spiral arteries that are cytokeratin-positive and actin negative (na =43), cytokeratin-

positive and actin-positive (na =36), and cytokeratin-negative and actin-positive (na =100).

c
Failure of physiologic transformation considers complete and partial failure.

d
Placentas ICAM-1-positive include spiral artery endothelial and/or extravillous trophoblast reactivity.

e
Atherosis was identified in preterm labor (np =6), preterm prelabor rupture of membranes (np =9), preeclampsia (np =7), small for gestational age 

(np =3), fetal death (np =4), and normal pregnancies (np =1).

ICAM-1: Intercellular adhesion molecule-1.
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