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Abstract

Many biodemographic studies use biomarkers of inflammation to understand or predict chronic 

disease and aging. Inflamm-aging, i.e. chronic low-grade inflammation during aging, is commonly 

characterized by pro-inflammatory biomarkers. However, most studies use just one marker at a 

time, sometimes leading to conflicting results due to complex interactions among the markers. A 

multidimensional approach allows a more robust interpretation of the various relationships 

between the markers. We applied principal component analysis (PCA) to 19 inflammatory 

biomarkers from the InCHIANTI study. We identified a clear, stable structure among the markers, 

with the first axis explaining inflammatory activation (both pro- and anti-inflammatory markers 

loaded strongly and positively) and the second axis innate immune response. The first but not the 

second axis was strongly correlated with age (r = 0.56, p < 0.0001, r = 0.08 p = 0.053), and both 

were strongly predictive of mortality (hazard ratios per PCA unit (95% CI): 1.33 (1.16–1.53) and 

0.87 (0.76–0.98) respectively) and multiple chronic diseases, but in opposite directions. Both axes 

were more predictive than any individual markers for baseline chronic diseases and mortality. 

These results show that PCA can uncover a novel biological structure in the relationships among 

inflammatory markers, and that key axes of this structure play important roles in chronic disease.
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1. Introduction

Inflammation is known to be important in aging and age-related diseases, including heart 

disease (Strandberg and Tilvis, 2000), diabetes (Barzilay et al., 2001), cancer (Il’yasova et 

al., 2005), and Alzheimer’s disease (Akiyama et al., 2000), among others, and is sometimes 

suggested as a principal aging mechanism (Finch, 2010). We often refer to this phenomenon 

as “inflamm-aging” (Franceschi et al., 2000) to indicate a chronic low-grade inflammation 

that occurs with advancing age. It is provoked by a continuous antigenic load and stress, 

with the persistence of inflammatory stimuli over time representing a biological back-

ground creating a predisposition to age-related diseases/disabilities. Most epidemiological 

studies of inflammation have relied on a single marker as a measure of inflammatory state, 

often C-reactive protein (CRP) (Strandberg and Tilvis, 2000), interleukin-6 (IL-6) 

(Bruunsgaard, 2002), or tumor necrosis factor-alpha (TNF-α) (Bruunsgaard et al., 1999). 

However, as the inflammatory system is known to be complex and involve multiple feedback 

mechanisms, focusing on only one inflammatory marker may explain conflicting results 

observed in the literature (Scheller et al., 2011; Yudkin et al., 2000). In one of the few 

studies to take a multivariate approach, Bandeen-Roche et al. (2009) showed that a single 

axis of variation was not sufficient to summarize seven common markers, and that there 

appear to be separate up- and down-regulation components to the system (i.e. simultaneous 

increases or decreases of multiple biomarkers to regulate the system at higher or lower levels 

of activity). Accordingly, multivariate approaches can contradict the need to incorporate 

multiple markers. Similarly, Hsu et al. (2009) showed that calculation of summary variables 

using a principal component approach does not strengthen associations between 

inflammation and physical function compared with a single biomarker.

While many of the direct regulatory relationships among inflammatory markers are known 

(Cesari et al., 2004; Hansson, 2005; Singh and Newman, 2011; Tracy, 2002), this 

information cannot always be translated into an understanding of how markers co-vary in 

populations or across long timescales, and thus of how to interpret different inflammatory 

profiles in a clinical or public health context. An understanding of the multivariate 

relationships among inflammatory markers thus has the potential to provide clinically 

relevant interpretations of changing inflammatory markers, and to help understand the 

underlying (unobservable) biological processes that govern organisation of the inflammatory 

system at longer timescales. Our goal was to identify stable groups of key inflammatory 

markers through multivariate tools that provide a better understanding of changes in the 

inflammatory system during aging.

Here, we applied principal components analysis (PCA) to a set of 19 inflammatory 

biomarkers in the InCHIANTI database, a cohort of mostly elderly Italians (Ferrucci et al., 

2000). PCA identifies key “axes” that summarize the ways in which individuals differ across 

the ensemble of variables (Jolliffe, 2005). The axes are expressed as linear combinations of 

the original variables and the coefficients can thus be used to arrive at a biological 

interpretation of each axis. PCA is a multivariate, data- driven approach that lets the data 

speak for themselves; a related method, factor analysis, tests the correspondence between the 

axes and a priori hypotheses. We opted for PCA in this case because we were not certain that 

there was a sufficient understanding of inflammatory system function and feedback 
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mechanisms at time scales of years to generate robust a priori hypotheses. Axes identified 

through PCA were validated using population subsets as independent samples, and scores on 

these axes were then tested for associations with health outcomes, including mortality, and 

13 chronic diseases (Cohen et al., 2010; Dusseault-Belanger et al., 2013). Our results do not 

support simple increases in inflammation with age, but it is possible to identify key axes of 

variation in inflammatory markers that predict health outcomes independently of age.

2. Methods

2.1. Data

This study uses data from “Invecchiare in Chianti” (Aging in the Chianti area, InCHIANTI), 

a prospective population-based study of the elderly, developed by the Laboratory of Clinical 

Epidemiology of the Council of Italian National Research on Aging (INRCA), Florence, 

Italy. The study population for these analyses included 1453 participants aged between 20 

and 102 years old, of which 75% were aged 65 and over, randomly selected from residents 

in two towns in the Chianti area (Greve in Chianti and Bagno a Ripoli, Tuscany, Italy) using 

a multi-level stratified sampling method. Initial data collection started in September 1998 

and was completed in March 2000. Three and 6-year follow-up assessments of the 

InCHIANTI study population were performed in the years 2001–2003 and 2004–2006. A 

detailed description of the sampling procedure and the method of data collection have been 

published elsewhere (Ferrucci et al., 2000). The ethics committee (INRCA) approved the 

entire study protocol. For PCA, logistic regression and survival analysis, we used 1010 

participants aged 21–96 having full biomarker data at baseline. Only the first visit was used 

for PCA and logistic regression, due to limited inflammatory biomarker data at later visits. 

Participants with biomarker or comorbidity measurements that were missing were excluded. 

The main characteristics of the participants are shown in Table 1.

2.2. Biomarkers

We studied 19 inflammatory biomarkers selected based on their availability and relevance. 

Details of the methods of measurement of these biomarkers can be found in previous studies 

(Bandeen-Roche et al., 2009; Cesari et al., 2004; Ferrucci et al., 2000; Varadhan et al., 

2014). Included inflammatory markers are as follows: Among the cytokines, interleukin 

(IL)-1β, which causes a number of different auto-inflammatory syndromes; IL-1RA, which 

is a member of the IL-1 family that binds to IL-1 receptors but does not induce any 

intracellular response; IL-6, which could act as a pro- and anti-inflammatory cytokine; IL-8, 

which is a chemokine; IL-10, which is anti-inflammatory and inhibits the synthesis of IFN-γ 
and TNF-α; IL-12 and IL-18, which are pro-inflammatory; and IL-15, which is a cytokine 

derived from T cells that stimulates T cell proliferation and natural killer cell activation.

The receptors included in our analyses were: SGP130, which prevents IL-6 from binding to 

the membrane receptor, and soluble (s)IL-6R, which forms a ligand–receptor complex with 

IL-6 that is capable of stimulating a variety of cellular responses. Interferon IFN-γ is critical 

for innate and adaptive immunity. We also measured transforming growth factor TGF-β1, 

tumor necrosis factor TNF-α, and TRAIL. Two of their receptors, STNF-RI and STNF-RII, 

were also included.
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We had data on two chemokines MCP and MIP, the latter of which induces the production of 

IL-6 and TNF-α. In addition, we used high sensitivity C-reactive protein (hsCRP), which is 

a clinical marker of systemic inflammatory state. The main characteristics of the markers 

used are shown in Table 2.

2.3. Comorbidities

We selected 13 chronic conditions based on sufficient prevalence for meaningful analysis. 

Each was assessed at baseline and at follow-up visits. The conditions are: high blood 

pressure, lung, kidney, liver and cardiovascular disease, stroke, angina, congestive heart 

failure, diabetes, arthritis, cancer and myocardial infarction. Detailed data were available 

from which to evaluate the presence or absence of chronic diseases; when possible we coded 

each patient as 0 (no disease), 1 (having the disease), or 0.5 (ambiguous). Details are 

available in the online supplement. We excluded the participants with an intermediate state 

to facilitate model interpretation; alternative models counting them as positive or negative 

did not substantially change results (data not shown). From the 13 comorbidities we created 

a new variable named “comorbidity” which has a value of 1 if an individual has one or more 

of the 13 diseases mentioned above and 0 otherwise. Information on baseline prevalence of 

the comorbidities is shown in Table 1. Percentages for the comorbidities represent the 

proportion of individuals that had the chronic disease at baseline (with the exception of 

mortality) or developed it in one of the follow-ups, for a total of 2785 visits with 1010 

individuals.

2.4. Statistical analyses

We first transformed our data to meet the assumption of normality needed for the PCA. We 

used a logarithmic transformation for all variables except SGP130 and TNF-α, which were 

already normally distributed. Subsequently, variables were standardized by subtracting their 

mean and dividing by their standard deviation. Thereafter, we performed a PCA on the 19 

biomarkers. The stability of each of the axes under random sampling was then tested using 

bootstrap methods based on Daudin’s algorithm (Daudin et al., 1988). This method produces 

random samples of the same size where each individual can be selected more than once in 

the same sample. From the original database, we thus synthesized 5000 other databases and 

performed a PCA on each of them. This allowed us to construct confidence intervals and to 

verify the variation of the components in each axis as well as the proportion of variance 

explained. In addition, a similar approach using non-random sampling was performed to 

determine whether axis stability and interpretation were conserved even across mutually 

exclusive and potentially biologically different sub-populations. The groups used for this 

included men, women, residents of Greve in Chianti or Bango a Ripoli, and age groups 

(<65, 65+ years). Finally, PCA results were verified using a “sparse PCA,” which acts much 

like a factor analysis to identify axes that align strongly with the original variables based on 

pre-defined weights (Zou et al., 2006) This can aid in the interpretation by limiting the 

number of variables strongly associated with each axis, but has the disadvantage of 

depending to a certain extent on the weights, which are arbitrary.

For the two axes found to be stable, we computed a “score” for each individual. This score 

represents the position of an individual on the principal axis. We then assessed the 
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correlation between participant age and score on each of these two main axes. These scores 

were then divided by their respective standard deviations so that they would have the same 

scales (and thus comparable effect sizes) as individual markers in regression analyses 

(below).

Relationships between PCA scores and baseline comorbidities were assessed using logistic 

regression controlling for age as a cubic spline. Splines were fit using the bs function in the 

fda package in R. The same model was fit for individuals who died before the first follow-up 

to assess mortality. Odds ratios (ORs) per unit score were then estimated for the scores of 

the two main axes. All models were run with and without control for smoking status, BMI, 

site, and sex. BMI and smoking may be important confounders; for example increased 

visceral adiposity and smoking are potent triggers of inflammatory mediators (Prospective 

Studies Collaboration, 2009; US Department of Health and Human Services, 2004); but may 

also affect health state through pathways other than inflammation. Models were also 

assessed with stratified sex.

Using longitudinal data on chronic diseases and excluding individuals with the respective 

baseline chronic disease, we fitted survival analyses using a Cox proportional hazard 

function controlling for age as a cubic spline. Due to limited inflammatory biomarker data at 

later visits, only the baseline scores of the two main axes were included in the models. The 

survival models indicated whether a high baseline score increases or reduces the likelihood 

of incidence. Hazard ratios (HRs) per unit score were estimated.

3. Results

3.1. Principal component analysis

We performed PCA on 19 inflammatory biomarkers transformed and standardized on 1010 

individuals aged 21–96 years. The first principal axis (PCA1) explained 19% of the total 

variance among the inflammatory markers and the second (PCA2) explained 10% for a 

cumulative of 29% (Fig. 1). Only the first two axes were stable across 5000 random 

(bootstrapped) samples.

Using these 5000 iterations, we calculated the correlation between the original scores and 

those created by the bootstrap samples. A strong correlation for the same axis across 

bootstrap samples would indicate that the axis interpretation is robust to fluctuations in 

sample composition. The correlation coefficient (r) varies between 0.990 and 0.9999 for 

PCA1 and varies between 0.91 and 0.9999 for PCA2 with 95% confidence (Fig. 2).

Starting with the 3rd axis, axis order is occasionally inversed in bootstrap samples, leading 

to very low correlations, but even among the non-inversed samples it is clear that the 

correlations are much weaker than for the first two axes, which need to be shown with a 

separate y-axis scale to indicate variation.

The stability of the main axis loadings across non-random samples is shown in Fig. 3. The 

order and importance of the axis loadings is essentially unchanged even in mutually 

exclusive subsamples.
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A particular group of markers comprising STNF-RI, STNF-RII, IL6, TNF-α, hsCRP, IL-18, 

IL1-RA appears to be dissociated from all others, as graphically represented PCA1 (Fig. 4). 

A similar observation was made for MCP, IL-8 and IL-12 on PCA2 (Fig. 4). Since each 

group is the most representative in its respective axis, they drive the interpretation of the 

axes, though the markers explaining PCA2 also loaded moderately on PCA1. Note that the 

markers that load most heavily on PCA1 include both pro- and anti-inflammatory markers, 

and that they load in the same direction. In other words, PCA1 explains the degree to which 

an individual has simultaneously high (or low) levels of both pro- and anti-inflammatory 

markers. Results were confirmed with sparse PCA, which showed that loadings were 

similarly distributed among the axes (see Supplementary content).

Based on key markers that compose the two stable groups, we conducted a PCA and 

assessed the scores for participants for the first two axes. PCA1 showed a strong correlation 

with age (r = 0.56, p < 0.0001, Fig. 5-left), whereas PCA2 showed a very weak and only 

marginally significant association with age (r = 0.08, p = 0.053, Fig. 5-right). Note that 

hsCRP, IL-1RA, IL-6, IL-10, IL-15, IL-18, MIP, SGP130, STNF-RI, and STNF-RII were 

significantly correlated with age (Table 2), but by incorporating the correlation structure of 

the PCA, we obtain a higher correlation than any measure alone.

3.2. Logistic regression models

We used logistic regression to calculate the ORs of the 13 comorbidities and mortality for 

PCA scores after adjusting for age. The ORs and respective 95% confidence intervals are 

shown in Table 3. Note that ORs are per unit PCA; the scale of PCA1 (after being 

standardized for comparison purposes) goes from roughly −3 to +3, so the OR between the 

individual with the lowest score and the highest score is the OR to the sixth power, 2.346 ≈ 
164 for mortality, for example. ORs for key individual markers associated with the main 

axes were also included in the table for comparison. As expected from the unchanged order 

and importance of the axis loadings between genders, no significant differences were 

observed between men and women in the logistic models (data available in the 

supplementary content). Models were also adjusted for age, sex, site, BMI and smoking; 

results are shown in Table 3.

3.3. Survival analysis

From the scores assessed at baseline with PCA, we used a survival analysis to assess the 

long-term effect of a high or low score on the two main axes for the 13 comorbidities and 

mortality after adjusting for age. The hazard ratios (HRs) and 95% confidence intervals are 

shown in Table 4. Stratification by sex did not meaningfully change the results (data 

available in the supplementary content). We also adjusted the models for age, sex, site, BMI 

and smoking; results are shown in Table 4.

4. Discussion

The present study used a multivariate approach to assess the relationship between 

inflammatory markers, age, chronic diseases, and mortality in an elderly population. A 

traditional understanding of “Inflamm-aging” suggests that low-grade inflammation 
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increases during aging and can be measured by levels of pro-inflammatory markers (Singh 

and Newman, 2011). Contrary to this idea, our results showed that the main axis of variation 

we detected – which can clearly be interpreted as a measure of Inflamm-aging given its 

associations with individual markers, age, and health outcomes – implied simultaneous 

changes in both pro- and anti-inflammatory markers (STNF-RI, STNF-RII, IL-6, TNF-α, 

hsCRP, IL-18 and IL-1 RA). Individuals thus varied in terms of the overall activation of their 

inflammatory systems much more than in terms of the pro- vs. anti-inflammatory balance, 

with individuals that showed high levels of pro-inflammatory markers also tending to show 

high levels of anti-inflammatory markers. We did not detect an axis representing pro- versus 

anti-inflammatory balance, indicating that such a balance does not explain important 

variation at the population level.

Overall, we detected two predominant, highly stable axes of variation in the inflammatory 

system. Together, these axes explained 29% of the total variance among the inflammatory 

markers, enough to indicate their importance, but far less than 100%. The remaining axes 

were unstable, suggesting that complex system dynamics determine a large part of the 

variance in ways that cannot be easily characterized by approaches such as PCA. 

Nonetheless, the two axes identified have clear, interesting biological interpretations. 

Obviously, had we included more markers, we might have obtained a different axis structure, 

perhaps detecting other important axes, or other markers associated with PCA1 and PCA2. 

However, given the stability of our results in subpopulations and the concordance of this 

study with others (Bandeen-Roche et al., 2009; Varadhan et al., 2014; Hsu et al., 2009), the 

core interpretations of PCA1 and PCA2 would almost certainly remain unchanged. This was 

also confirmed by the sparse PCA, which reduces the number of meaningful loadings from 

the axes to simplify interpretation.

The first axis was driven largely by STNF-RI, STNF-RII, IL-6, TNF-α, hsCRP, IL-18 and 

IL-1 RA and was strongly correlated with age. As STNF-RI, STNF-RII and IL-6 are 

individually correlated with age and known to be associated with health outcomes (Diniz et 

al., 2010; Fernandez-Real et al., 2001; Il’yasova et al., 2005; Safranow et al., 2009) the 

result is not unexpected. However, the combination of these variables through PCA leads to 

a stronger correlation than any variable alone. As noted above, the loadings for PCA1 

indicate that it is not a simple measure of more inflammation: it is driven by higher levels of 

both pro- and anti-inflammatory markers, indicating a more activated (but not necessarily 

more inflamed) inflammatory system. One interpretation would be that increasing levels of 

pro-inflammatory markers with age stimulate a corresponding augmentation in anti-

inflammatory markers, with varying outcomes depending on the nature of the stimulation, 

the pre-existing physiological reserve, and the current immune background.

Inflammation is well known to be associated with many chronic diseases such as diabetes, 

atherosclerosis and cardiovascular disease (Hansson, 2005; Schmidt et al., 1999), and this 

was confirmed here. The ORs indicating the baseline presence of chronic diseases based on 

the first axis were surprisingly large (considering that the ORs are per unit PCA, and the 

PCAs range from −3 to 3), and were significant for mortality, presence of any comorbidity, 

and individual chronic diseases such as cardiovascular disease, congestive heart failure, 

stroke, kidney disease and diabetes. These findings remain unchanged even after controlling 
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for age, sex, site, BMI and smoking. The effect sizes decreased slightly but all remained 

significant; the small magnitude of the decrease suggests that results are unlikely to be 

attributable to residual confounding. For most of the remaining chronic diseases, sample 

sizes were too small to be conclusive. The majority of these diseases are related to the 

cardiovascular system. The causes of cardiovascular diseases are diverse but atherosclerosis 

and/or hypertension are the most common (Epstein and Ross, 1999; Sowers et al., 2001). 

Interestingly the relationship was not significant for hypertension, despite a large sample, 

suggesting an independent contribution of inflammation to cardiovascular disease. This 

supports the study of Pearson et al. (2003) who showed that in the case of inflammatory 

markers, the association with cardiovascular disease might reflect a response to other, 

established risk factors (e.g., obesity, diabetes, hyperlipidemia, cigarette smoking) or due to 

inflammatory processes as part of atherosclerotic disease. Furthermore, PCA1 generally 

predicted outcomes more strongly than the individual markers, particularly for prevalence 

rather than incidence.

The strong associations between PCA1 and health outcomes at baseline shown via logistic 

regression do not address causality. Indeed, it is likely that diseased states feed back into 

inflammatory systems, and that the elevated levels of PCA1 are as much consequence as 

cause of chronic diseases. This is borne out by the survival analyses, where effect sizes were 

generally much smaller and rarely significant, though still almost always positive. The lack 

of significance, but not the smaller effect sizes, is also probably due to the often much 

smaller sample sizes for incidence rather than prevalence for many diseases. Nonetheless, 

there were still clear associations for mortality and kidney disease, and, unlike in the logistic 

regressions, hypertension incidence was associated with high PCA1 scores. Together, these 

results are consistent with biological impacts of PCA1 on chronic diseases and mortality, but 

also with effects of chronic diseases on PCA1, forming positive feedback loops. These 

effects appear to be heterogeneous across diseases, with, for example, PCA1 having a 

potentially large effect on kidney disease, and cardiovascular disease having a potentially 

large effect on PCA1.

Given these results with chronic diseases, we should hesitate to interpret PCA1 as a measure 

of aging or part of the aging process. Although the correlation between PCA1 and age is 

strong, it is possible that changes in PCA1 reflect chronic disease processes in feedback 

loops, and that the age-PCA1 correlation is due to age-related increases in chronic disease 

risk. Just as no older individual (80+) in our sample had a very low score on PCA1, no 

individual at these ages was completely free from chronic diseases, and we have very little 

statistical power to address the possibility of disease-independent Inflamm-aging. However, 

PCA2 was strongly associated with chronic diseases but not age, so we cannot exclude the 

possibility that PCA1 is linked to aging as well as to chronic diseases. In any case, PCA1 

suggests that Inflamm-aging is a generalized dysregulation of the inflammatory system, but 

that this dysregulation proceeds in a relatively predictable fashion and results in a coherent 

restructuration of the levels of multiple key inflammatory markers.

Hsu et al. (2009) recently conducted a PCA on eight inflammatory markers (STNF-RI, 

STNF-RII, IL-6, TNF-α, hsCRP, sIL-2R, sIL-6R and plasminogen activator inhibitor-1) in 

the Health ABC study, a large cohort study of aging. They identified two principal 
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components and showed that both were associated with physical function measures. 

Interestingly, they appear to measure the same PCA1 we do (TNF-α, STNF-RI, STNF-RII, 

sIL-6R, sIL-2R). However, the PCA2 we describe was not detected in their study, probably 

because the main innate immune markers that underlie it were not available in that data set. 

The findings are thus highly complementary.

Another recent study applied survival analysis and PCA to biomarkers of inflammation from 

InCHIANTI to develop clinical predictors of mortality up to 10 years (Varadhan et al., 

2014). They used a weighted summary score (WSS) and principal component summary 

score (PCS) based on five markers chosen for their association with mortality (IL-6, STNF-

RI, hsCRP, IL-18 and IL1-RA), as well as an inflammatory index score (IIS) based on the 

two best markers (IL-6 and STNF-R1). IIS had the strongest predictive power for 1-, 2- and 

10-year mortality. The most important markers that drive the interpretation of our main axis 

are STNF-RI, STNF-RII and IL-6. Table 5 shows the correlations between PCA1 and the 

measures in the study of Varadhan et al. (2014) as well as the HRs both assessed with the 

InChianti participants (n = 1010) for mortality. HRs of IIS and WSS perform slightly better 

than PCA1, but the overall effects are comparable considering the confidence intervals.

While the approaches of the two studies are similar, Varadhan et al. (2014) has clinical 

prediction as a primary goal, whereas we emphasize biological understanding. In this sense 

the two studies are confirmatory and complementary, despite some potentially important 

methodological differences (e.g. variable selection criteria). We provide evidence of two 

stable biological processes; they provide a clinically relevant measure of the first.

In addition, a previous analysis using the Leiden 85-plus study showed that an unopposed 

pro-inflammatory response is beneficial for survival in the oldest (Wijsman et al., 2011). 

Furthermore, low-pro and low-anti-inflammatory markers showed an increase in mortality, 

contrasting with our results. However, their result did not apply in a subsample of 

individuals aged 90+, and our study cohort is composed mainly of younger individuals, 

suggesting a possibility strong non-linear interaction of these effects with age.

The second biological process we identified is explained largely by MCP, IL-12 and IL-8. 

This axis can be interpreted as reflecting aspects of the innate immune response. The innate 

immune system comprises the cells and mechanisms that defend the body against immediate 

infectious agents regardless of prior exposure. Innate immune cells include natural killer 

cells, granulocytes (mast cells, eosinophils and basophils) and phagocytes (macrophages, 

neutrophils and dendritic cells), and the main role of MCP, IL-12 and IL-8 is to attract and 

stimulate these cells. While PCA2 is highly stable and appears to represent important 

variation in the state of the inflammatory system, it does not appear to be directly related to 

the aging process. As MCP, IL-12 and IL-8 were not significantly correlated with age, the 

weak correlation with age was not unexpected. It may reflect genetic variation in the 

structure of the immune system or transient variation in inflammatory state based on minor, 

short-term immune challenges occurring through all physiological systems independent of 

age.
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However, PCA2 was associated with roughly the same chronic diseases as PCA1, but in the 

opposite direction (i.e. OR/HR less than 1), meaning that an increase in PCA2 is protective 

for the chronic diseases. Perhaps this counterintuitive result indicates that high levels of 

innate immune markers are associated with a robust innate capacity rather than with a 

current immune challenge. Additionally, while effect sizes for PCA1 and individual markers 

moved in parallel, PCA2 was often a stronger predictor (e.g. congestive heart failure) or 

weaker predictor (e.g. kidney disease) than PCA1 and the individual markers, confirming its 

complementary role in chronic disease. We can see from Fig. 4 that MCP, IL-12 and IL-8 

also loaded positively on the first axis. This means that Inflamm-aging seems to be 

incorporating part of the innate immune activation in our dataset, despite the opposing 

predictive values of the two for chronic diseases. Other studies suggest that extrinsic 

(environmental) factors become increasingly important in the elderly, and as age is 

associated with a breakdown of the epithelial barriers of the skin, lung and gastrointestinal 

tract, the innate immune system is more challenged (Gomez et al., 2005), perhaps needed as 

a counterbalance to age-related changes in the more sophisticated components of the first 

axis. This might explain the stability of the axis in our data.

4.1. Limitations

We showed that PCA was stable for the two main axes across InCHIANTI, but analyses 

need to be replicated in other data sets to look for a general trend across populations. The 

absence of longitudinal data on the full set of inflammatory markers also obliged us to use a 

single time point estimate for PCA1 and PCA2. Given the substantial short-term fluctuations 

of inflammatory markers, this could have introduced a substantial noise component and 

decreased our statistical power to predict health outcomes. The small sample sizes for some 

conditions like cancer or liver disease (1.83% and 1.9% of the sample respectively) make the 

logistic regression results sensitive to perturbations. Also, there were substantial missing 

values among the 13 chronic diseases, and we were unable to incorporate medication status 

into our models; still, results agree with the studies of Varadhan et al. (2014) and Hsu et al. 

(2009). The availability of the visits (a maximum of four visits with a 3-year space between 

each) and the missing values of several markers at follow-ups is a constraint when using the 

Cox proportional hazards model. Lastly, the circulating inflammatory markers we used spill 

over from the tissues and thus represent the complex signalling pathways that take place in 

the cells (Chaturvedi et al., 2013). It is not clear if these inflammatory mediators are causal 

factors or just byproducts of pathologies. As our study focuses on biological understanding 

rather than clinical prediction, the PCA axes we detect can be interpreted as representing key 

variation in inflammatory state, including the tissue processes to which they are only 

indirectly linked. However, caution should be used in interpreting the axes based on the 

loadings, since it is not clear to what extent the tissue processes are truly reflected by 

circulating levels of individual markers.

5. Conclusions

Multivariate analysis of inflammatory biomarkers appears to show an augmentation in 

overall activation of inflammatory systems with aging, but not necessarily in levels of 

inflammation per se, as is generally supposed. In this sense, simple use of IL-6 or CRP as 
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inflammatory markers may be a bit misleading, even though they correlate well with overall 

activation and predict chronic diseases. When considered altogether, the markers STNF-RI, 

STNF-RII, IL-6, TNF-α, hsCRP, IL-18 and IL-1 RA are, as a group, strongly associated 

with chronic diseases and mortality in this elderly population. A second key axis, hitherto 

unappreciated in the scientific literature, describes innate immune system activation and may 

be protective against many chronic diseases and mortality. The combination of the two axes 

suggests that Inflamm-aging is not simply an increase in pro-inflammatory markers but may 

be a fine balance between them. Future studies of inflammation should continue to use 

multiple markers and take systems-based approaches to estimate the relevant underlying 

biological processes.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

PCA principle component analysis

PCA1 first principal axis

PCA2 second principal axis

OR odds ratio

HR hazard ratio

AIC Akaike information criterion

hsCRP high sensitivity C-reactive protein

IFN-γ interferon-γ

IL interleukin

MCP monocyte chemoattractant protein-1

MIP macrophage inflammatory protein-1b
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SGP130 soluble glycoprotein 130

TNF-α tumor necrosis factor-alpha

STNF-R soluble TNF receptor

TGF transforming growth factor

TRAIL TNF-related apoptosis-inducing ligand
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Fig. 1. 
Boxplot of variance explained for each of the 19 axes using 5000 random samples from the 

bootstrap. The first two axes (PCA1 and PCA2) are presented separately to allow 

appropriate y-axis scaling.
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Fig. 2. 
Boxplot of correlations between the original scores and those created by the 5000 random 

samples from the bootstrap for each of the 19 axes.
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Fig. 3. 
Strength and stability of axis loadings for PCA1 (left) and PCA2 (right) across non-random, 

often mutually exclusive population subsamples (the entire population, women, men, those 

from Greve in Chianti, those from Bagno a Ripoli, those aged less than 65, those aged more 

than 65). Here, each color represents one of the 19 markers, ordered from bottom to top by 

their importance in the full population analysis, represented by the height of the color. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 4. 
Biplot of loadings for the first two PCA axes. A loading far from zero on a given axis 

indicates that the variable in question plays an important role in determining the axis. Green 

names are anti-inflammatory markers, red names are pro-inflammatory, blue names are part 

of the innate immune system and black names are the rest. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 5. 
Correlations between age and the standardized scores for PCA1 (left), PCA2 (right). Blue 

lines indicated cubic spline fits.
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Table 1

Main characteristics of the sample population at baseline.

Mean ± SSD or % (N = 1010)

Sociodemographic characteristics

 Age (year) 67.7 ± 16

 Gender (female) 57.6

 Site (Greve) 41.9

 BMI 27.2 ± 4.1

 Smoking (Current) 18.6

Comorbidities %

 Mortality during follow-up 14.1

 Comorbiditya 30.1

 Cardiovascular disease 12.0

 Congestive heart failure 2.91

 Stroke 2.48

 Kidney disease 2.05

 Diabetes 5.24

 Liver disease 1.90

 Arthritis 7.94

 Cancer 1.83

 High blood pressure 21.5

 Myocardial infarction 3.52

 Angina 2.01

 Lung disease 5.92

Note: SD = Standard deviation.

a
Any of the comorbid conditions that follow.
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Table 2

Main characteristics of the inflammatory markers.

Mean ± SD (N = 1010) Age correlationa

Inflammatory markers

 hsCRP (μg/ml)     4.32 ± 6.65   0.15**

 IFN-γ (pg/ml)   23.14 ± 267.83   0.01

 IL-1β (pg/ml)     0.28 ± 1.33   0.02

 IL-1RA (pg/ml) 147.72 ± 101.12   0.07 *

 IL-6 (pg/ml)     3.25 ± 2.33   0.31**

 sIL-6R (ng/ml) 104.74 ± 58.71   0.04

 IL-8 (pg/ml)   11.06 ± 147.93   0.02

 IL-10 (pg/ml)   90.59 ± 355.44 −0.13**

 IL-12 (pg/ml)   14.05 ± 166.36   0.01

 IL-15 (pg/ml)     2.50 ± 0.59   0.19**

 IL-18 (pg/ml) 383.60 ± 140.54   0.21**

 MCP (pg/ml)   53.11 ± 328.30   0.02

 MIP (pg/ml)   88.63 ± 159.07   0.09 *

 SGP130 (ng/ml) 305.32 ± 60.40   0.25**

 STNF-RI (pg/ml) 1375.8 ± 643.05   0.48**

 STNF-RII (pg/ml)    2620 ± 779.97   0.51**

 TGF-β1 (pg/ml) 12,063 ± 7342.67   0.02

 TNF-α (pg/ml)     6.35 ± 46.19   0.02

 TRAIL (pg/ml)     75.5 ± 40.59   0.01

a
Pearson’s correlation with age at baseline.

SD, standard deviation; hsCRP, high sensitivity C-reactive protein; IFN-γ, interferon-γ; IL, interleukin; IL-1RA, interleukin-1 receptor antagonist; 
sIL-6R, soluble IL-6 receptor; MCP, monocyte chemoattractant protein-1; MIP, macrophage inflammatory protein-1b; SGP130, soluble 
glycoprotein 130; STNF-R, soluble TNF receptor; TGF, transforming growth factor; TNF-α, tumor necrosis factor-alpha; TRAIL, TNF-related 
apoptosis-inducing ligand.

*
p < 0.05.

**
p < 0.01.
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