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Abstract

We present a novel Bayesian nonparametric regression model for covariates X and continuous 

response variable Y ∈ ℝ. The model is parametrized in terms of marginal distributions for Y and 

X and a regression function which tunes the stochastic ordering of the conditional distributions F 
(y|x). By adopting an approximate composite likelihood approach, we show that the resulting 

posterior inference can be decoupled for the separate components of the model. This procedure 

can scale to very large datasets and allows for the use of standard, existing, software from 

Bayesian nonparametric density estimation and Plackett-Luce ranking estimation to be applied. As 

an illustration, we show an application of our approach to a US Census dataset, with over 

1,300,000 data points and more than 100 covariates.
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1 Introduction

Bayesian nonparametric regression offers a flexible and robust way of modeling the 

dependence between covariates x ∈ 𝒳 and a response variable Y ∈ ℝ by using models with 

larger support than their parametric counterparts. Nonparametric statistical models are 

motivated by robustness and their ability to capture effects such as outliers, strong 

nonlinearities or multimodalities, while providing probabilistic measures of predictive 

uncertainty. Bayesian nonparametric regression methods are largely underpinned by one of 

two random probability measures namely, Dirichlet process mixtures (Ferguson, 1973; Lo, 

1984) and Pólya trees (Lavine, 1992, 1994). These approaches, widely applied to density 

estimation problems (see e.g. Hjort et al., 2010), have been used as building blocks of 

various nonparametric regression models through a number of different approaches.
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One approach, called the conditional approach, considers the covariates as fixed, and models 

directly the conditional distribution f (y|x) of the response given the covariate. This 

conditional distribution may be constructed in a semiparametric or fully nonparametric way. 

The semiparametric conditional approach typically assumes that

Y = η x + ϵ (1)

where η is some unknown flexible mean function and ϵ is the residual. Regression models 

(priors) have been proposed for the mean function η such as Gaussian processes (see e.g. 

Rasmussen, 2006), basis function representations such as splines or kernels (Denison et al., 
2002; Müller & Quintana, 2004) or Bayesian regression trees (Chipman et al., 2010). More 

generally, Kottas & Gelfand (2001) and Lavine & Mockus (1995) proposed to use Dirichlet 

process mixtures for the distribution of the residuals, while Pati & Dunson (2014) jointly 

model the mean function and residual distribution using Gaussian processes and probit stick-

breaking processes (Chung & Dunson, 2009). The fully nonparametrikc conditional 

approach considers that f y | x = ∫Θ
f y | x, θ Px dθ  takes the form of a mixture model with 

unknown mixing distribution Px for θ. A prior is set on the family of probability 

distributions Px x ∈ 𝒳. In particular, following the seminal work of MacEachern (1999), 

various dependent Dirichlet process models have been proposed in the literature (Gelfand & 

Kottas, 2003; Griffin & Steel, 2006; Dunson et al., 2007; Caron et al., 2007, 2008; Dunson 

& Park, 2008). Similarly, Trippa et al. (2011) define a class of dependent random probability 

distributions using Pólya trees.

An alternative to the conditional approach is to treat the covariates as random variables and 

to build a joint statistical model for (X, Y). In this way, one can cast the regression problem 

as a density estimation one. For example, Müller et al. (1996) proposed to use Dirichlet 

process mixtures for the joint distribution of (X, Y). This approach was later extended by 

Shahbaba & Neal (2009), Hannah et al. (2011) and Wade et al. (2014).

A major drawback of current Bayesian methods for semi or nonparametric regression is that 

many methods do not scale well with the number of samples and/or with the dimensionality 

of the covariates. In this paper, we propose a novel joint Bayesian nonparametric regression 

model FX,Y that affords an approximation which can scale easily to large data applications. 

The model is parameterized in terms of the marginal distributions of the response FY and 

covariates FX, and then a conditional regression model that utilises the two marginal 

distributions,

FX ∼ ℙX (2)

FY ∼ ℙY (3)
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β ∼ πβ (4)

FX, Y x, y = Cλβ
FX x , FY y (5)

where ℙX and ℙY are some nonparametric prior over probability distributions, λβ:𝒳→ℝ+ is 

some parametric regression function of the covariates, and Cλβ plays a role similar to a 

copula in that it takes marginal distributions as inputs and characterises the dependence 

between them using the function λβ. In particular we consider a Plackett-Luce model for 

ranks for the regression structure. This construction, detailed in Section 3, builds on the 

original Plackett-Luce model (Luce, 1959; Plackett, 1975) for ranking. The positive function 

λβ tunes the stochastic ordering of the responses given the covariates, the ratio λβ (Xi)/ (λβ 
(Xi) + λβ (Xj)) representing the conditional probability, Pr(Yi < Yj|Xi, Xj), that response Yi 

is less than response Yj given knowledge of {Xi, Xj}. There is thus a natural interpretation of 

the parameters: λβ tunes the relative ordering of the responses at different covariate values, 

and FY sets the marginal distribution of the responses. This strong interpretability is an 

important feature as it provides a good vehicle for specifying prior beliefs.

For inference we propose to use a marginal composite likelihood approach, which we show 

allows the model to scale tractably to large data applications and allows for the use of 

standard, existing, software from Bayesian nonparametric density estimation and Plackett-

Luce ranking estimation to be applied. As an illustration, we show an application of our 

approach to a US Census dataset, with over 1,300,000 data points and more than 100 

covariates.

The paper is organized as follows. Section 2 provides background on Dirichlet process 

mixtures and Pólya trees for density estimation. Section 3 describes the Plackett-Luce 

copula model. The marginal composite likelihood approach for scalable inference is 

presented in Section 4. Section 5 presents some results of our approach on simulated data 

and on the US Census dataset.

2 Bayesian nonparametric density estimation

The appeal of Bayesian nonparametric models is the large support and probabilistic 

inference provided by such priors. This both safeguards against model misspecification and 

enables highly flexible estimation of distributions. This has lead to particular popularity of 

Bayesian nonparametric priors in density estimation.

In the simple case of density estimation for a real valued random variable many 

nonparametric priors exist - see Hjort et al. (2010) for a recent review. A popular class of 

model is the Dirichlet Process Mixture (Lo (1984)), whereby a Dirichlet process prior is 

placed on the distribution of the parameters of a parametric family. The result is an “infinite 

mixture model”. Precisely:
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f Y y = ∫ K y |θ dP θ

P ∼ DP c, P0

where K is the density of the chosen parametric family, c > 0 is a scale parameter and P0 is a 

base measure. Since draws from a Dirichlet Process are almost surely atomic measures, 

there is positive probability of observations sharing a parameter value given the random 

measure P. The result is an effect of clustering within a sample, with a random, limitless 

number of clusters. This has proved to be an extremely popular model as it models 

heterogeneity within a sample well, and provides a highly flexible support. Efficient MCMC 

schemes (Escobar & West (1995); MacEachern & Müller (1998); Neal (2000)) have lead to 

the widespread use of the Dirichlet Process Mixture (DPM) in density estimation.

Pólya trees provide another flexible nonparametric prior for density estimation (Ferguson 

(1974); Lavine (1992, 1994); Mauldin et al. (1992)). They are defined as follows: Let ϵ = 

(ϵ1, … , ϵk) ∈ Ek = {0, 1}k, and define a sequence of embedded partitions of ℝ to be Γk = 

{Bϵ : ϵ ∈ Ek}, where the Bϵ are defined recursively, such that Bϵ0 ∪ Bϵ1 = Bϵ. Now let E* = 

∪k≥1 Ek, the set of all countable sequences of zeros and ones, and let 𝒜 = αϵ:ϵ ∈ E *  be a 

set of nonnegative real numbers. Then, a random probability measure P is a Pólya tree 

process with respect to Γ = {Γk : k ≥ 1} and 𝒜 if P (Bϵ0 | Bϵ) ~ Beta(αϵ0, αϵ1), 

independently for all ϵ ∈ E*. There are two properties of the Pólya tree process that are 

appealing for density estimation: Pólya trees are conjugate, meaning that both the prior and 

the posterior have the same functional form, and, for certain choices of 𝒜, realizations are 

absolutely continuous probability distributions, almost surely. It is worth pointing out that 

empirically the model can depend heavily on the defined sequence of partitions Γ, although 

a mixture of Pólya trees proposed by Lavine (1992) can smooth out this dependence over 

multiple partitions. In what follows we make use of these nonparametric models to specify 

priors for the marginal distributions of covariates and response variables.

3 The statistical model

Let (Xi, Yi), i = 1, … , n be the covariates and responses and regression function 

λβ:𝒳 ℝ+. To build the dependence we introduce a latent random variable Zi that is used 

to capture the underlying relative level of the response via,

Zi | Xi = xi ∼ Exp λβ xi (6)

where Exp(a) denotes the standard exponential distribution of rate a. The latent variable Zi 

may be interpreted as an “arrival time” of individual i. The arrival times then define a 

conditional ranking of the predicted response variables Y1, … , Yn.

The model can be summarized as follows, for i = 1, … , n
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Xi
iid FX (7)

Zi | Xi, β ind EXP λβ Xi (8)

Y i = FY
−1 FZ Zi (9)

where

FZ z = ∫𝒳
FZ | X = x z dFX x

= ∫𝒳
1 − e

−λβ x z
dFX x .

Figure (1) shows the correspondence between the conditional exponential random variables, 

Z|X, shown in 1(a) for differing covariate values, and the resulting predictive distributions in 

1(b), where the marginal FY is a Gaussian mixture model shown as the black line. We can 

see visually that the distributions in 1(b) are stochastically ordered under the model. The 

coloured points shown in (a) are mapped to the points shown in (b), where again ordering is 

preserved.

As FY and FZ are cumulative density functions, FY
−1 ∘ FZ is a monotonically increasing 

function and

ℙ Yi ≤ Y j = ℙ Z ≤ Z j =
λβ xi

λβ xi + λβ x j
.

This clarifies the role of the regression function. More generally, given an ordering ν = (ν1, 

… , νn) (a permutation of {1, 2, … , n}), we have

ℙ Yv1
≤ Yv2

, …, ≤ Yvn
= ℙ Zv1

≤ Zv2, …, ≤ Zvn
= ∏

i = 1

n λβ xvi

∑ j ≥ i λβ xv j

.

The above model is the Plackett-Luce model (Luce, 1959; Plackett, 1975), popular in the 

ranking literature, and also corresponds to the partial likelihood used for Cox proportional 

hazards models (Cox, 1972).
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By construction FZ (Zi) is marginally uniformly distributed on [0, 1]. Thus, Y i = FY
−1 FZ Zi

is marginally distributed from FY . The joint distribution FX,Y can thus be described in terms 

of marginals FX and FY and a Plackett-Luce copula Cλβ such that

FX, Y x, y = Cλβ
FX x , FY y .

The Plackett-Luce copula takes the following form

Cλβ
u1, u2 = u1 − ∫

ω = 0

u1
exp − λβ ω FZ

−1 u2 dω . (10)

Figure 2 shows illustration of the copula for different functions λβ.

The conditional distribution function can then be expressed as

FY | X = x(y) = 1 − exp( − λβ(x)FZ
−1(FY(y))) .

Given λβ, the random variables Y |X = x are stochastically ordered. For x1, x2 such that λβ 
(x1) ≤ λβ (x2)

FY | X = x1
(y) ≤ FY | X = x2

(y) ∀y ∈ ℝ .

If FY has a density with respect to Lebesgue measure, fY , then we can use a change of 

variables to calculate the conditional density as follows:

f Y | X = x(y) = f Y(y)
f Z | X = x(z(y))

f Z(z(y))

= f Y(y)
f Z | X = x(FZ

−1(FY(y)))

f Z(FZ
−1(FY(y)))

= f Y(y)
λβ(x)exp[ − λβ(x)FZ

−1(FY(y))]

∫𝒳
λβ(x′)exp[ − λβ(x′)FZ

−1(FY(y))]dFX(x′)
.

It can be seen from this representation that the conditional density of Yi, given Xi is simply 

the marginal density of Yi, re-weighted across its quantiles (FY (y)) by a function of Xi.

We end the construction of the model by assuming a prior over the finite-dimensional 

parameter β and Bayesian nonparametric prior over the marginal distributions FX and FY

β ∼ πβ (11)
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FY ∼ ℙY (12)

FX ∼ ℙX (13)

where πβ is some parametric prior and ℙX and ℙY may be a Dirichlet process mixture or a 

Pólya tree prior, as described in Section 2.

4 Approximations for posterior inference and prediction

Assume that both FX and FY admit a density with respect to Lebesgue measure, noted fX 

and fY. The unknown quantities for our regression model are therefore (fY, β, fX). Given 

data (x1:n, y1:n), where x1:n = (x1, … , xn) and y1:n = (y1, … , yn), we have the following 

likelihood:

L( f Y, β, f X; (x1:n, y1:n)) = ∏
i = 1

n
f Y(yi)

λβ(xi)exp[ − λβ(xi)FZ
−1(FY(yi))]

∫
𝒳

λβ(x′)exp[ − λβ(x′)FZ
−1(FY(yi))]dFX(x′)

f X(xi) .

(14)

Inference could proceed using numerical methods such as MCMC but for large datasets this 

is cumber-some. Hence we consider here a Bayesian composite marginal likelihood 

approach (Lindsay, 1988; Cox & Reid, 2004; Varin et al., 2011; Pauli et al., 2011; Ribatet et 
al., 2012) that we show offers computational tractability and the use of standard Bayesian 

methods. Define y1:n*  to be y1:n ordered from lowest to highest, and let ν1:n = (ν1, … , νn) 

be a vector representing the order of y1:n, so that yi* = yνi
. Then we can re-write our data 

{y1:n, x1:n} equivalently as y1:n* , ν1:n, x1:n .. Now let LC denote the composite marginal 

likelihood based on y1:n*  and {ν1:n, x1:n}. That is the product of the likelihood terms 

associated with each of these terms:

LC( f Y, β, f X; y1:n, x1:n ) = L( f Y, β, f X; y1:n* ) × L( f Y, β, f X; ν1:n, x1:n )

= n! ∏
i = 1

n
f Y(yi) × ∏

i = 1

n λβ(xνi
)

∑ j ≥ i λβ(xν j
)

× ∏
i = 1

n
f X(xi) .

(15)

We can see that this composite likelihood approach factors the likelihood into separate terms 

involving fY, β and fX, leading to the following pseudo posterior distribution
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πC( f Y, β, f X | y1:n, x1:n ) = πC( f Y | y1:n
⋆ )πC( f X | x1:n)πC(β | ν1:n, x1:n) (16)

Inference over the parameters fY, β, fX can thus be carried out independently under the 

composite likelihood approach. Standard software for Bayesian nonparametric univariate 

density estimation can be used for fY and fX, and software for fitting Plackett-Luce/Cox 

proportional hazard can be used for fitting β. Overall the advantages of the approximate 

composite likelihood approach include computational tractability and scalable inference 

using standard software, hence good numerical reproducibility, and high interpretability as 

the components in the composite likelihood have explicit form and meaning. This latter 

point aids in prior elicitation as it allows the analyst to separate out and represent their 

beliefs on the marginal distributions, which are simpler to specify than the full conditionals, 

and then consider the dependence given the marginals.

The Bayesian composite likelihood approach has attracted some attention over recent years 

(Pauli et al., 2011; Varin et al., 2011; Ribatet et al., 2012). In particular, Ribatet et al. (2012) 

considered two adjustements to the marginal likelihood approach in order to retain some of 

the desirable properties of the usual likelihood. However, their adjustments apply to a 

specific form of composite likelihood, where it factorizes as a product of composite 

likelihoods for each observation: Lc
total(y |θ) = ∏i = 1

n Lc(yi |θ) where Lc(yi|θ) is the composite 

likelihood for observation i. Our composite likelihood approach does not fit in this 

framework, as we do not have this product form over the observations, and we cannot 

therefore apply the adjustments suggested by Ribatet et al. (2012). Extending the adjustment 

of Ribatet et al. (2012) to our framework is an interesting direction, but beyond the scope of 

this article.

4.1 Asymptotics for the marginal composite posteriors

Consider first the pseudo-posterior for fY :

πC( f Y | y1:n, x1:n ) ∝ π( f Y)LC( f Y; y1:n, x1:n )

∝ π( f Y) ∏
i = 1

n
f Y(yi) .

So our pseudo-posterior is exactly the posterior based on the i.i.d sample {y1:n}, where y1:n 

~ FY. This is the standard setting for posterior inference, so we can apply consistency results 

from Bayesian nonparametric inference for FY, see for example Ghosal & Van der Vaart 

(2013). The same is true for fX. Now consider the log-linear form for λ: λ(x) = exp(−βx). 

Then, we have the pseudo-posterior:
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πC(β | y1:n, x1:n ) ∝ π(β)LC(β; y1:n, x1:n )

∝ π(β) ∏
i = 1

n e
βxνi

∑ j ≥ i e
βxν j

.

This is exactly the posterior considered by Kim (2006) in a different setting where a 

Bernstein-Von Mises theorem is proven, which can be applied here.

4.2 Posterior predictive

We can use simulation methods such as MCMC to easily generate samples FY
( j), β( j)

j = 1
m

from the pseudo-posterior (16); the predictive distribution can then be approximated by

p(y′ | x′, {y1:n, x1:n}) ≃ 1
m ∑

j = 1

m
p(y′ | x′, β( j), FY

( j)) .

To simulate from this distribution, we can use the forward generating process of our model, 

given X = x′:

Z′ | X′ = x′ ∼ Exp(λβ(x′)) (17)

Y′ = FY
−1(FZ(Z′)) . (18)

In many applications, modeling FX might be cumbersome, and not the primary object of 

interest. In this case we propose to use an empirical Bayes approach by setting FX = F̂
X at 

the empirical CDF. So, to generate a posterior predictive sample, given a posterior sample 

FY
( j), β( j)

j = 1
m , Eq. (18) becomes:

Y′( j) = FY
−1( j) 1 − 1

n ∑
i = 1

n
e
−Z′ j λβ( j)

(xi)

where we note that Z′(j) is conditional on X′ = x′, and the CDF inversion is tractable, 

depending on the form of FY. Alternately one can use Monte Carlo to draw samples from the 

predictive, which is trivial when FY can be sampled from. Some particular examples are 

discussed in Appendix A.

Gray-Davies et al. Page 9

Electron J Stat. Author manuscript; available in PMC 2018 April 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



5 Illustrations

In this Section we apply our method to two examples. The first is a simulation example 

where we generate from a multi-modal conditional and explore the ability of our method to 

fit the data. The second is a large real-world application in the regression analysis of US 

Census data.

5.1 Simulation example

In this section we apply the model to a dataset simulated from our model to consider how 

well we can recover known dependence. The marginal distribution of Y is set to a mixture of 

three Gaussian distributions, with means 3, 9 and 15, standard deviations of 2, 0.5 and 1 

with mixture weights of 0.5, 0.2 and 0.3 respectively. β is set to 0.25, with λβ (x) = exp(βx). 

X ~ Unif(0, 20) and n = 500. The data is shown in Figure 3(a).

Clearly any type of linear or non-linear regression with a parametric noise distribution will 

be inappropriate here. The conditional distribution of Y given x is multi-modal, rendering 

many popular regression models inappropriate.

We compared our approach to a linear dependent Dirichlet process mixture of normals 

(LDDPM) (De Iorio et al., 2004), using the R package DPpackage (Jara et al., 2011; Jara, 

2007). This model specifies that

Yi | xi ∼ ∫ 𝒩(yi; xiβ, σ2)G(dβ, dσ2)

G | α, μb, sb ∼ DP(αG0)

where G0 = 𝒩 μb, sb  Gamma(τ1/2, τ2/2) and

sb | ν, ψ ∼ IW(ν, ψ)

with α = 1, μb = (9, 0)T, ν = 4, τ1 = 1, τ2 = 2, ψ = 1 0
0 1  and sb = 36 0

0 36 .

We apply our model, modeling the marginal as a Dirichlet Process mixture of Gaussian 

distributions using α = 1 and a normal-inverted-Wishart distribution for the base measure. 

That is, our base measure G0(μ, σ2) = 𝒩(μ | μ1, σ2
κ1

)IW(σ2 |ν1, ψ1), where μ1 = 9, κ1 = 0.5, ν1 = 

4 and ψ1 = 1. A Gaussian prior centered at 0 with unit variance is used for β.

In Figure 3(b) the simulated data is shown, with the 80% highest posterior density (HPD) 

intervals of the predictive distribution at each value of x. Qualitatively we see that the model 

can capture the nonlinearities in the data and demonstrates the flexibility to model the multi-

modal conditional response. In Figure 4 we show the predictive marginal, F̂
Y and the 

posterior distribution for β. Clearly the marginal distribution for Y is very well recovered 

from the data. This parameterization of the model in terms of the marginal distribution for 

the response allows this to be estimated from the complete dataset, without reliance on other 
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aspects of the model. The strength of information available is apparent in the quality of the 

fit to the sampling distribution. The posterior for the parameter β shows reasonable support 

around the true value, being slightly pulled towards 0 by the prior.

We can further inspect how these come together in the posterior predictive conditional 

distribution for Y given x. Consider this distribution for x = 5 and x = 12, for both our model 

and the linear DDP mixture model, as shown in Figure 5. Again, our model provides a 

reasonable fit. The predictive distribution is not as accurate as the marginal distribution for 

Y, but this is to be expected, since the conditional distribution is a product of the whole 

model, compounding uncertainties from both β and the marginal distribution for y. 

Nonetheless, the fit is good and noticeably better than the flexible linear DDP mixture, as 

you would expect, given that the sampling distribution is within the support of our model. 

Concretely, the L1-distance between the estimated conditional and the true conditional 

distribution can be calculated in each case. When x = 5 the distance to our prediction is 

0.00869, whereas the distance to the linear DDP is 0.0214, and when x = 12 the distance to 

our prediction is 0.0127 and the distance to the linear DDP is 0.0146.

A point of note is that these posterior predictive plots are smoothed kernel density estimates 

of MCMC samples. Therefore, Gaussian shapes are slightly exaggerated. Whilst not entirely 

clear from the plot, both our predictive and the sampling distribution comprise of slightly 

skewed Gaussian distributions, since the conditional distribution is the marginal distribution 

for Y weighted across the quantiles.

To illustrate that the model is capable of modeling a range of distributions, we consider data 

sampled from a Gaussian linear model. The covariates are simulated uniformly on [0, 10], 

with Y ~ N (3 + 2x, 2) and n = 300. We use our model, modeling the marginal for Y with a 

Pólya tree prior whose partition is set on a Gaussian distribution with mean 12.5 and 

standard deviation 6, and αϵ1…ϵm = m2. A Gaussian prior centered at 0 with variance 8 is 

used for for β. The posterior predictive 80% HPD intervals display a reasonable fit of the 

linear data, shown in Figure 6. The variance seems slightly inflated, but this is a 

consequence of the large support of the model.

5.2 US Census application

We apply the methodology to a regression task using US census data1 for personal annual 

income.

We use the American Community Survey data from 2013, which comprises of responses to 

questions on the survey given to a 1% sample of the US population. Since we are interested 

in income, the subset of 1, 371, 401 employed civilians over the age of 16 is used. We have 

used a relevant, linearly independent subset of the data as covariates, excluding highly 

informative questions such as occupation, which would almost completely explain the 

response. This leaves 15 explanatory variables, 10 of which are categorical variables, some 

of which have many levels. The result is a 1, 371, 401 × 114 design matrix.

1http://www.census.gov/acs/www/data_documentation/pums_data/
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The covariates are: US state (Texas as a baseline), weight, age, class of worker (employee of 

private for-profit company as a baseline), travel time to work, means of transportation to 

work (works from home as a baseline), language other than English spoken at home (no as a 

baseline), marital status (married as a baseline), educational attainment (regular high school 

diploma as a baseline), gender (male as a baseline), hours worked a week, weeks worked last 

year, disability status (without a disability as a baseline), quarter of birth (first quarter as a 

baseline), and world area of birth (United States of America as a baseline).

The levels of annual income shown in Figure (7) can be seen to be heavy tailed, which 

requires a flexible model to capture. Another noticeable feature of the data is that the income 

levels are discontinuous, with large spikes in frequency at particular income levels. This 

could in part be due to standardized salary structures resulting in certain salary levels 

becoming common. This motivates the use of a nonparametric approach as it is difficult to 

imagine how a parametric density could conditionally capture the features shown in Figure 

(7). However, standard Bayesian nonparametric models simply cannot be applied to a 

problem of this scale. Attempting to apply existing methods in this literature, such as the 

linear dependent Dirichlet process mixture, failed to run due to the dimensionality and scale 

of the data.

For the analysis, we consider both the empirical distribution function and a Pólya tree prior 

for the marginal distribution of y. The partition of the Pólya tree is set on the quantiles of a 

Gaussian distribution with mean 35,000 and standard deviation 20,000, and αϵ1…ϵm = m2. 

We use a log-linear regression function λ(x) = exp(βx) and place independent Gaussian 

priors with mean 0 and unit variance on the coefficients in β.

5.2.1 Predictive performance—We compare the out-of-sample predictive performance 

of our model with three competing non-Bayesian approaches namely, a standard linear 

regression model, a median regression model and a LASSO2. For our model we investigated 

three distinct priors for the marginal distribution of the response: a Pólya tree centred on a 

Gaussian, a Pólya tree centred on a Laplace, and an empirical Bayes approach using the 

empirical CDF. To compare methods we use repeated random subsets of 1000 test samples 

and train each model on the remaining data, with 10 repeats. Predictive accuracy is judged 

by mean squared-error (MSE), mean absolute error (MAE) and qualitatively via a qq-plot. 

To create the qq-plots we compute the predictive distribution function F (y|x) evaluated at 

the observed value for each of these test samples. Under the assumption that we have a 

perfect predictive distribution, these values should be independent uniform random 

variables. A deviation from this distribution implies a mis-match of the posterior predictive 

and the actual distribution. We are unable to apply this approach to the median regression 

model, as it does not provide a predictive distribution and would require fitting the model for 

a large number of quantiles. In the case of the linear model we used maximum likelihood 

estimates for prediction, rather than a fully Bayesian approach. With such a large dataset the 

strength of any reasonable default prior would be significantly diminished, so this should 

mimic a Bayesian approach well.

2These models were fitted in R using the functions lm, rq (from the quantreg package) and lars (from the lars package). For LASSO 
the regularization parameter was chosen using cv.lars. Default settings were used for each.
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Summary statistics of predictive fit are shown in Table 1. Perhaps unsurprisingly on such a 

large data set the linear model targeting the conditional mean does best on MSE but this is at 

the expense of the median under MAE. In addition, studying the predictive qq-plot in 

Figure(8b) shows the inadequacy of the linear model to provide calibrated predictions. The 

LASSO performs relatively poorly suggesting most covariates are influential for prediction, 

whereas the median regression whilst, as expected, providing relative accuracy on the MAS 

does so at the expense of MSE and as mentioned above suffers from the lack of a fully 

predictive model. The Bayesian nonparametric methods perform relatively well on against 

both summary measures, with perhaps that based on the Laplace marginal showing greatest 

accuracy. In Figure(8a) we show the predictive qq-plot from this model, demonstrating that 

the full predictive distribution is captured well. There is some evidence of misfit in the upper 

tail of the Pólya tree model due perhaps due to the lack of heavy tails in the Gaussian base 

measure. These diagnostics suggest that even non-linear regression models with parametric 

noise would not provide a satisfactory fit for the data, since the unusual conditional 

distribution of the response cannot be captured by such models. This highlights the benefit 

of our nonparametric approach.

We next consider inference for covariate effects. In order to gain a measure of the relevance 

of each covariate we quantified the concentration of the posterior probability measure away 

from the prior “null” centring of βj = 0. To do this we estimated the Bayesian sign-

probability from the posterior marginal for each covariate as,

PrSign j = max ∫
β < 0

π(β j | ⋅ )dβ,∫
β > 0

π(β j | ⋅ )dβ (19)

where π(βj|·) is the posterior marginal for βj. This measures the relative tail area in the 

posterior marginal laying to the left or right of 0. A large value of PrSign suggests there is 

strong evidence against βj = 0. In certain respects this is akin to a Bayesian marginal version 

of a p-value, and is trivially calculated from MCMC output, or from normal approximations 

to the posterior distribution. Table 2 shows the most relevant covariates as ranked by this 

measure.

Unsurprisingly, hours worked a week and weeks worked last year show high certainly of a 

positive effect on income. After these, educational achievement measured via degrees 

unsurprisingly imply higher earnings compared to the regular high school diploma. Since 

these are part of the same variable it is simple to compare the effects due to these degrees. 

Despite Bachelor’s degree providing the most certainty of a positive effect, a further 

Professional degree beyond bachelor’s has the highest posterior mean effect. The ranking in 

Table 2 reflects the greater evidence in the data for a non-zero Bachelor effect, due to a 

much higher number of observations of those with Bachelor’s degrees, and hence lower 

variance in the effect size compared with those with a higher degree. There is also strong 

evidence for Female workers earning less than their male counterparts, as well as increasing 

income with age and even travel time to work.
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Finally, we show it is simple to provide the full posterior predictive distribution of annual 

income of somebody in the test sample, using the Pólya tree model. We choose as a 

hypothetical person a 57 year old female from North Carolina, who is self employed, 

married, 140 lbs bodyweight, who works from home, speaks English at home, went to 

college but for less than a year, who usually works 30 hours a week, for 43.5 weeks last year, 

was born in the first quarter of the year in the USA. The structure and shape of the posterior 

predictive, represented in Figure 9, match that of the marginal distribution for Y in the data, 

just on a narrower range.

6 Discussion

We introduced a new Bayesian semiparametric regression model that is designed to scale to 

large data applications. In doing so we make use of an interpretable model for ranks, via a 

Plackett-Luce copula method, and nonparametric density models for the marginals. We used 

a composite marginal likelihood approximation that leads to a number of advantages. It 

affords computationally tractability, aids in the interpretation of the model, and makes prior 

specification explicit on known objects.

The key to the scalability of the method is the use of the composite likelihood 

approximation, which splits the inference into two simpler tasks. The use of the Laplace 

approximation for the covariate effect and the Pólya tree for the marginal response allow for 

fast posterior inference, without requiring any MCMC sampling methods. In fact, sampling 

methods are only used for prediction, which is by far the slowest part of the inference 

procedure.

Going forward, it would be interesting to see if theoretical bounds on the approximation 

error as a function of sample size could be derived. It may also be possible to apply results 

such as those found in Kim (2006) to provide further guarantees of asymptotic behavior such 

as properties of the predictive distribution. In addition, it would be interesting to explore 

non-linear models for the regression function λ(x), such as those based on a random forests 

methodology. In fact, random forests applied to the US Census dataset (with restricted node 

size to enable application to this scale) gives a highly competitive MSE to our tested models. 

This might be because random forests is able to capture interaction terms between 

covariates, which seem highly plausible a priori in this particular dataset. It will be 

interesting to incorporate such flexibility into a Bayesian nonparametric approach using 

Plackett-Luce regression functions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

Caron, F., Davy, M., Doucet, A. Generalized Polya urn for time-varying Dirichlet process mixtures. 
23rd Conference on Uncertainty in Artificial Intelligence (UAI’2007); 2007. 

Caron F, Davy M, Doucet A, Duflos E, Vanheeghe P. Bayesian inference for linear dynamic models 
with Dirichlet process mixtures. IEEE Transactions on Signal Processing. 2008; 56(1):71–84.

Gray-Davies et al. Page 14

Electron J Stat. Author manuscript; available in PMC 2018 April 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Chipman HA, George EI, McCulloch RE. BART: Bayesian additive regression trees. Ann Appl Stat. 
2010; 4(1):266–298.

Chung Y, Dunson DB. Nonparametric Bayes conditional distribution modeling with variable selection. 
Journal of the American Statistical Association. 2009; 104(488)

Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B 
(Methodological). 1972; 34(2):187–220.

Cox DR, Reid N. A note on pseudolikelihood constructed from marginal densities. Biometrika. 2004; 
91(3):729–737.

De Iorio, Maria, Müller, Peter, Rosner, Gary L., MacEachern, Steven N. An ANOVA model for 
dependent random measures. Journal of the American Statistical Association. 2004; 99(465):205–
215.

Denison, DGT., Holmes, CC., Mallick, BK., Smith, AFM. Bayesian methods for nonlinear 
classification and regression. John Wiley & Sons; 2002. 

Dunson DB, Park J-H. Kernel stick-breaking processes. Biometrika. 2008; 95(2):307–323. [PubMed: 
18800173] 

Dunson DB, Pillai N, Park J-H. Bayesian density regression. Journal of the Royal Statistical Society: 
Series B (Statistical Methodology). 2007; 69(2):163–183.

Escobar MD, West M. Bayesian density estimation and inference using mixtures. Journal of the 
American Statistical Association. 1995; 90(430):577–588.

Ferguson TS. A Bayesian Analysis of Some Nonparametric Problems. The Annals of Statistics. 1973; 
1(2):209–230.

Ferguson TS. Prior Distributions on Spaces of Probability Measures. The Annals of Statistics. 1974; 
2(4):615–629.

Gelfand A, Kottas A. Bayesian semiparametric regression for median residual life. Scandinavian 
Journal of Statistics. 2003; 30(4):651–665.

Ghosal, S., Van der Vaart, AW. Fundamentals of nonparametric Bayesian inference. Cambridge 
University Press; New York: 2013. 

Griffin JE, Steel MFJ. Order-Based Dependent Dirichlet Processes. Journal of the American Statistical 
Association. 2006; 101(473):179–194.

Hannah LA, Blei D, Powell WB. Dirichlet process mixtures of generalized linear models. The Journal 
of Machine Learning Research. 2011; 12:1923–1953.

Hjort, NL., Holmes, CC., Müller, P., Walker, SG. Bayesian Nonparametrics. Cambridge Series in 
Statistical and Probabilistic Mathematics. Cambridge University Press; 2010. 

Jara A. Applied Bayesian Non- and Semi-parametric Inference Using DPpackage. R News. 2007; 7(3):
17–26.

Jara A, Hanson T, Quintana F, Müller P, Rosner G. DPpackage: Bayesian Semi- and Nonparametric 
Modeling in R. Journal of Statistical Software. 2011; 40(5):1–30.

Kim Y. The Bernstein–von Mises theorem for the proportional hazard model. The Annals of Statistics. 
2006; 34(4):1678–1700.

Kottas A, Gelfand AE. Bayesian semiparametric median regression modeling. Journal of the American 
Statistical Association. 2001; 96(456):1458–1468.

Lavine M. Some Aspects of Polya Tree Distributions for Statistical Modelling. The Annals of 
Statistics. 1992; 20(3):1222–1235.

Lavine M. More Aspects of Polya Tree Distributions for Statistical Modelling. The Annals of 
Statistics. 1994; 22(3):1161–1176.

Lavine M, Mockus A. A nonparametric Bayes method for isotonic regression. Journal of Statistical 
Planning and Inference. 1995; 46(2):235–248.

Lindsay BG. Composite likelihood methods. Contemporary Mathematics. 1988; 80(1):221–39.

Lo AY. On a Class of Bayesian Nonparametric Estimates: I. Density Estimates. The Annals of 
Statistics. 1984; 12(1):351–357.

Luce, RD. Individual Choice Behavior: A Theoretical Analysis. John Wiley and sons; 1959. 

MacEachern, SN. Dependent Nonparametric Processes. Proceedings of the Bayesian Statistical 
Science Section. American Statistical Association; 1999. 

Gray-Davies et al. Page 15

Electron J Stat. Author manuscript; available in PMC 2018 April 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



MacEachern SN, Müller P. Estimating Mixture of Dirichlet Process Models. Journal of Computational 
and Graphical Statistics. 1998; 7(2):223–238.

Mauldin, R. Daniel, Sudderth, William D., Williams, SC. Polya Trees and Random Distributions. The 
Annals of Statistics. 1992; 20(3):1203–1221.

Müller P, Quintana FA. Nonparametric Bayesian data analysis. Statistical Science. 2004; 19(1):95–
110.

Müller P, Erkanli A, West M. Bayesian curve fitting using multivariate normal mixtures. Biometrika. 
1996; 83(1):67–79.

Neal RM. Markov Chain Sampling Methods for Dirichlet Process Mixture Models. Journal of 
Computational and Graphical Statistics. 2000; 9(2):249–265.

Pati D, Dunson DB. Bayesian nonparametric regression with varying residual density. Annals of the 
Institute of Statistical Mathematics. 2014; 66(1):1–31. [PubMed: 24465053] 

Pauli F, Racugno W, Ventura L. Bayesian composite marginal likelihoods. Statistica Sinica. 2011; 
21(1):149.

Plackett RL. The Analysis of Permutations. Journal of the Royal Statistical Society Series C (Applied 
Statistics). 1975; 24(2):193–202.

Rasmussen, CE. Gaussian processes for machine learning. MIT Press; 2006. 

Ribatet M, Cooley D, Davison AC. Bayesian inference from composite likelihoods, with an application 
to spatial extremes. Statistica Sinica. 2012; 22:813–845.

Shahbaba B, Neal R. Nonlinear models using Dirichlet process mixtures. Journal of Machine Learning 
Research. 2009; 10:1829–1850.

Trippa L, Müller P, Johnson W. The multivariate beta process and an extension of the Polya tree model. 
Biometrika. 2011; 98(1):17–34. [PubMed: 23956460] 

Varin C, Reid N, Firth D. An overview of composite likelihood methods. Statistica Sinica. 2011; 21(1):
5–42.

Wade S, Dunson DB, Petrone S, Trippa L. Improving Prediction from Dirichlet Process Mixtures via 
Enrichment. Journal of Machine Learning Research. 2014; 15:1041–1071.

Gray-Davies et al. Page 16

Electron J Stat. Author manuscript; available in PMC 2018 April 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig 1. 
Illustration of the latent variable used to capture the regression dependence. In (a) we show 

the distribution of the conditional latent variable, Z, at various points in X assuming a log-

linear dependence. In (b) we see the corresponding predictive distributions using a Gaussian 

mixture model for the marginal, FY, shown as the black line. The points in Z shown in (a) 

are mapped to the points in Y shown in (b) where the ordering is preserved.
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Fig 2. 
Examples of the Plackett-Luce copula for different functions λβ. The top figures (a-d) plot 

the different functions λβ. The bottom figures (e-h) represent samples from the copula Cλβ 
(ux, xy), where X ∈ [0, 1] and FX is uniform.
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Fig 3. 
(a) Data simulated from the model with mixture of three Gaussians marginal distribution for 

Y. (b) 80% highest posterior density intervals of the predictive distribution at each value of 

x.
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Fig 4. 
(a) The posterior predictive marginal for y under our model in blue, compared to the actual 

sampling distribution in black. (b) The posterior distribution for β, compared to the true 

value of 0.25 marked in red.
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Fig 5. 
Predictive densities for (a) x = 5 and (b) x = 12. The true predictive is shown in black, the 

predictive distributions under our model in blue, and the predictive under the linear DDP 

mixture in green.
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Fig 6. 
Simulated data from a linear model with Gaussian residuals (black dots). 80% HDP intervals 

of the predictive distribution of our model at each value of x are represented in blue, and true 

HDP interval in black
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Fig 7. 
Histograms of annual income on different scales. Right hand plot is zoomed in on incomes 

up to 120,000.
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Fig 8. 
qq-plots (a) under our model using a Pólya tree prior centred on Laplace for the marginal 

distribution of the response and (b) using a standard linear model.
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Fig 9. 
Posterior predictive distribution using a Pólya tree for the marginal distribution, zoomed in 

on incomes up to 120,000
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Table 1

Mean out-of-sample prediction errors with standard deviation of this error after 10 repetitions

Mean square error (109) Mean absolute error(104)

Empirical model* 2.79 ± 0.51 2.44 ± 0.15

Pólya tree (Gaussian)* 2.81 ± 0.64 2.41 ± 0.16

Pólya tree (Laplace)* 2.71 ± 0.52 2.44 ± 0.14

Linear model 2.66 ± 0.59 2.67 ± 0.16

LASSO 2.99 ± 0.65 2.81 ± 0.16

Median regression 2.99 ± 0.68 2.48 ± 0.17
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Table 2

Top covariate parameters ranked by (19): the log posterior probability of the parameter being a different sign 

to the posterior mean. A negative parameter value has a positive effect on income.

Log probability of different sign Posterior mean

Hours worked a week −1.1 × 105 -0.044

Weeks worked last year −1.0 × 105 -0.045

Bachelor’s degree −4.2 × 104 -0.80

Master’s degree −4.16 × 104 -1.0

Professional degree beyond a bachelor’s degree −2.7 × 104 -1.4

Age −2.6 × 104 -0.018

Female −1.8 × 104 0.35

Doctorate degree −1.5 × 104 -1.2

Never Married −1.3 × 104 0.37

Associate’s degree −6.5 × 103 -0.39

Travel time to work −3.2 × 103 -0.0035

1 or more years of college credit, no degree −2.0 × 103 -0.18

Self employed (incorporated) −2.0 × 103 -0.30

Grade 11 in school −1.8 × 103 0.38

Walks to work −1.5 × 103 0.36

Disabled −1.3 × 103 0.19
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