Skip to main content
. Author manuscript; available in PMC: 2019 Jan 1.
Published in final edited form as: Inf Commun Soc. 2016 Dec 20;21(2):163–173. doi: 10.1080/1369118X.2016.1266374

Table 3.

Generalized Linear Mixed Model (GLMM) – Modelling Weekly Sleep Quality and Twitter Use for Freshmen Students.

Section A: Tweeting Time of Day
Time of Day (Proportion of Weekly Tweets that are:) B SE AIC BIC
Weekdays1 Morning 0 0.111 3177 3269
Afternoon −0.12 0.102 3175 3268
Evening 0.189* 0.097 3173 3266
Late Night −.937** 0.352 3167 3260
Weekends1 Morning 0.167 0.135 3175 3268
Afternoon −0.186 0.111 3174 3267
Evening 0.1 0.116 3176 3269
Late Night −0.342 0.342 3173 3266
Section B: Characteristics of Weekday Tweets B SE AIC BIC
Short Tweets
Proportion of tweets during each time period that are short1: Morning 0.017 0.084 3177 3270
Afternoon 0.041 0.082 3177 3270
Evening −0.117 0.08 3175 3268
Late night −.413** 0.139 3167 3260
Long Tweets
Proportion of tweets during each time period that are long1: Morning 0.066 0.08 3177 3269
Afternoon −0.024 0.08 3177 3270
Evening .197* 0.087 3172 3265
Late night −0.025 0.137 3176 3269
Emotions
Proportion of tweets that are a given emotion2: Angry −0.205 0.169 3013 3106
Fearful −0.302* 0.131 3011 3102
Loving 0.026 0.138 3016 3108
Joyful 0.105 0.128 3015 3107
Neutral −0.135 0.131 3015 3107
1

: Total Number of Observations: 1,295, Total Number of Individuals: 166

2

: Total Number of Observations: 1,229, Total Number of Individuals: 165

*

P < 0.05,

**

P < 0.01