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Abstract

Purpose—Model based iterative reconstruction (MBIR) algorithms such as penalized-likelihood 

(PL) methods have data-dependent and shift-variant image properties. Predictors of local 

reconstructed noise and resolution have found application in a number of methods that seek to 

understand, control, and optimize CT data acquisition and reconstruction parameters in a 

prospective fashion (as opposed to studies based on exhaustive evaluation). However, previous 

MBIR prediction methods have relied on idealized system models. In this work, we develop and 

validate new predictors using accurate physical models specific to flat-panel CT systems.

Methods—Novel predictors for estimation of local spatial resolution and noise properties are 

developed for PL reconstruction that include a physical model for blur and correlated noise in flat-

panel cone-beam CT (CBCT) acquisitions. Prospective predictions (e.g., without reconstruction) 

of local point spread function and and local noise power spectrum (NPS) model are applied, 

compared, and validated using a flat-panel CBCT test bench.

Results—Comparisons between prediction and physical measurements show excellent 

agreement for both spatial resolution and noise properties. In comparison, traditional prediction 

methods (that ignore blur/correlation found in flat-panel data) fail to capture important data 

characteristics and show significant mismatch.

Conclusion—Novel image property predictors permit prospective assessment of flat-panel 

CBCT using MBIR. Such predictors enable standard and task-based performance assessments, and 

are well-suited to evaluation, control, and optimization of the CT imaging chain (e.g., x-ray 

technique, reconstruction parameters, novel data acquisition methods, etc.) for improved imaging 

performance and/or dose utilization.
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1. INTRODUCTION

Recently, CT image quality assessment has been a topic of increasing discussion. Two major 

elements of this discussion are: 1) that modern MBIR has complex image properties with 

shift-variant spatial resolution properties and nonstationary noise characteristics that are 
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substantially different than traditional reconstruction approaches; and 2) that conventional 

image quality metrics (e.g, contrast-to-noise ratio) fail to capture important aspects of 

imaging performance. As such, assessment is trending toward local measures that capture 

location- and data-dependent image properties, and more complete local characterizations of 

resolution and noise that may be used as inputs to task-based metrics like detectability index 

to quantify task performance. Such task-based descriptors have been used for optimization 

of system design,1 reconstruction parameters,2 and acquisition methods.3

Analysis of resolution4 and noise5 properties for a specific class of MBIR – quadratically 

penalized-likelihood (PL) reconstruction – was previously investigated and found to be well-

described by local point spread functions (PSFs) and local covariance. However, those 

analyses presumed an idealized CT system model without detector blur or noise correlations. 

Previous work in emission tomography6 reported that such assumptions are not valid for 

physical imaging system with blur, as well for flat-panel cone-beam CT (CBCT). In this 

work, we follow the general approach of prior work but expand system models to include 

flat-panel-specific effects, to develop predictive models of local noise and resolution for flat-

panel CBCT using PL reconstruction. We calibrate these models in CBCT test-bench 

experiments and validate the predictors in physical phantom experiments.

2. THEORETICAL AND EXPERIMENTAL METHODS

2.1 Prediction of Local Resolution Properties

This work focuses on PL reconstruction with a quadratic penalty. This estimator can be 

written implicitly as the maximizer of the following objective function,

μ = arg max
μ

L(μ, y) − βR(μ) (1)

L(μ, y) = ∑
i

yi log yi(μ) − yi(μ) (2)

where μ ∈ ℝ+
N × 1 represents the image volume as a vector of attenuation coefficients, 

y ∈ ℝ+
P × 1 is the vector of CT scanner measurements, and μ̂ denotes the reconstructed image. 

The objective function includes a Poisson likelihood term L and a quadratic roughness 

penalty term βR where β controls the overall resolution-noise tradeoff. The term ȳ 
represents the model of the mean measurements (i.e., the forward model).

PL reconstructed images have shift-variant resolution properties dependent on acquisition 

parameters, system geometry, and patient anatomy. Previous investigations4 have found that 

resolution properties are locally linear and shift-invariant for quadratic PL. As such we may 

explore the local PSF at jth voxel as
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l j = lim
δ 0

1
δ [μ (y (μ + δe j)) − μ (y (μ))] (3)

= ∂
∂μ j

μ (y (μ)) = ∇Yrecon
μ (Yrecon (μ)) ∂

∂μ j
Yacq (4)

where ej specifies an image location as indicated by a unit vector with 1 for the jth element 

and zeros otherwise. Here, Ȳrecon is the idealized forward model adopted in reconstruction, 

and Ȳacq is the actual acquisition forward model that includes physical effects like detector 

blur. For example, one may write

Yrecon = I0 exp ( − Aμ) (5)

Yacq = BI0 exp ( − Aμ) (6)

where the reconstruction model presumes ideal, unblurred projections (denoted by ideal 

projector matrix A) while the actual flat-panel acquisition model exhibits blur (denoted by 

B). Following previous mathematical derivations,5 a local PSF may be derived

l j = [ATWA + βR]−1 ATBWAe j (7)

where R is the Hessian of the penalty and W is a statistical weighting matrix which is data-

dependent and approximated as D{Yacq}. That is, the local PSF (and below, local noise 

properties) requires only a projection data estimate (e.g., the measurements), and 

reconstruction of the data is not required. This expression captures the location-dependence 

(j), the data-dependence (W), and dependence on reconstruction parameters and 

regularization (βR). The idealized resolution predictor4 presumes Ȳacq = Ȳrecon and B does 

not appear in (7).

2.2 Prediction of Local Noise Properties

Again following previous work,5 the local covariance of μ̂ can be expressed as the jth column 

of

Cov{μ} = ∇Yrecon
μ Yrecon (μ) Cov{Yacq} ∇Yrecon

μ Yrecon (μ)
T

(8)
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Traditionally, CT measurements are presumed independent making Cov{Yacq} the diagonal 

matrix D{Ȳacq}. A more realistic model7 for flat-panel detectors with a scintillator and 

stochastic blurring may be expressed as

Sout = (Sin − q0) T2 + q0 = kσ2T2 + bσ2 (9)

where S denotes the noise power spectrum (NPS) of input/output signals, σ2 represents the 

variance and T denotes the MTF of detector. The parameters k and b control the relative 

strengths of noise that is correlated by the detector MTF and the noise that is uncorrelated, 

respectively.

Combining (8) and (9), the flat-panel-specific predictor of local covariance in PL CBCT is

Cov{μ, μ j} = ATWA + R −1 AT 1
auav

(kBWBT + bW)A ATWA + RT −1 e j (10)

where au and av are the detector pixel size. By contrast, the idealized noise predictor is

Cov{μ, μ j} = ATWA + R −1 ATWA ATWA + RT −1 e j (11)

Since predictors in 7 and 10 include computationally expensive matrix inverses, local 

Fourier approximations 8 are applied to estimate the local PSF and local NPS (Fourier 

transform of the local covariance):

l j = ℱ−1{
ℱ{ATBWAe j}

ℱ{ATWAe j + Re j}
} (12)

NPS j =
ℱ{kATBWBTAe j + bAWATe j}

auav[ℱ{ATWAe j + Re j}]2 (13)

here ℱ{·} denotes discrete 3D Fourier transform and ℱ−1{·} denotes the inverse transform. 

Once the projection measurements (W), system geometry (A) and impulse location j are 

known, the local resolution and noise properties with arbitrary reconstruction parameter β 
are predicted with a forward and backward projection computation. By contrast, the 

idealized resolution and noise predictors are,
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l j
ideal = ℱ−1{

ℱ{ATWAe j}
ℱ{ATWAe j + Re j}

} (14)

NPS j
ideal =

ℱ{AWATe j}

[ℱ{ATWAe j + Re j}]2} (15)

2.3 System Blur and Noise Model Validation and Measurement

To validate the resolution or noise predictors with a realistic models, we measured and 

modeled system blur and NPS in a flat-panel cone-beam CT (CBCT) system. As in previous 

work,9 we used a 5 mm thick tungsten plate to estimate a blur kernel via an edge response.10 

Detector blur was estimated using five different orientations (10°, 15°, 20°, 70° and 75°) of 

the tungsten edge to obtain 1D detector MTFs. These experiments were repeated with the 

tungsten edge at the center of rotation to estimate the total system blur (including focal spot 

blur).

For the detector noise model, parameters k and b in (9) need to be estimated. To validate the 

model and find the parameter estimates, we first measured detector NPS under various 

exposures.11 Under an isotropic assumption, each 2D NPS is radially averaged to compute a 

1D NPS profile. After normalization by variance, we fit the measured NPS profile to the 

model in (9), where the MTF-squared profile is obtained from the above measurements. This 

fitting procedure yields parameter estimates for k and b.

2.4 Resolution and Noise Properties Prediction and Measurement in CBCT Bench Data

We seek validation of both resolution and noise predictors with physical experiments using 

the CBCT test-bench (Figure 1a). A water-filled elliptical phantom was used for each 

investigation. For the resolution investigation, a tungsten wire (ϕ=127 μm) was placed in 

three different locations to measure local 2D PSFs (Figure 1b). The wire is thin and high-

contrast, making it a good physical approximation to an ideal impulse. To estimate the PSF, 

a water value was calculated from an annulus surrounding the wire and subtracted from the 

volume. Gaussian fitting was used to find the wire center over 20 axial slices. Subpixel 

centering was used to estimate the response on a finer grid. After deconvolving the in-plane 

spread function with wire cross section model and normalization, we obtain a 2D PSF that 

corresponds to a integral of the 3D PSF over the axial direction.

For the noise investigation, two uniform cylinders (one polyethylene and one acetal) were 

inserted in the phantom (Figure 1c). Two repeated scans were acquired, reconstructed, and 

subtracted to form a noise-only image volume. Presuming local stationarity, a 3D NPS was 

estimated using a sliding window technique with 9 3D ROIs (regions-of-interest, placed 

axially and half-overlapped in the z-direction).
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Quadratic PL was applied with a first-order neighborhood and pairwise voxel differences, 

and 0.3 mm cubic voxels for noise studies and 0.2 mm for resolution studies. All local 

computations used a cubic ROI 71 voxels on a side. Barebeam fluence for projection data 

was estimated, through variance calculations with no object in the scanner, as 4.3 × 104 and 

6.0 × 104 photons/pixel for resolution and noise studies, respectively. A separable quadratic 

surrogates algorithm12 used a separable footprints projector13 and 600 iterations to find the 

PL reconstruction. Regularization strength (β) was 105 for resolution and 106 for noise 

studies, respectively.

3. RESULTS

3.1 System Characteristics Measurement

Results from the CBCT bench characterization of resolution are summarized in Figure 2a. 

Since little variation was found as a function of angle, only the average 1D MTF is shown in 

Figure 2a. The detector PSF is ~1.04 mm FWHM. Total system blur (measured at the center-

of-rotation) is only slightly larger than the detector blur. This is consistent with nominal x-

ray tube specifications of a 0.4 mm focal spot size. Based on a system magnification of 1.26, 

this focal spot will introduce less than 0.1 mm blur.

With the measured detector MTF and NPS measurements for different exposures, we 

performed a linear regression to fit the squared MTF to the angularly averaged NPS profile. 

The measurements and fitted model are shown in Figure 2b. We estimate model parameters 

k = 0.2123, b = 0.0441, which demonstrate a relatively good fit to the measurements with 

RMSE lower than 0.1%.

3.2 Validation of the Spatial Resolution Predictor

Figure 3 shows predicted and measured local PSF images. The local 2D PSF, the integral of 

the local 3D PSF along axial direction that corresponds to a infinitely thin line response, is 

shown for three different locations. The idealized local PSF predictions without a blurring 

kernel, new flat-panel-specific (FP-specific) PSF predictions, and wire-based PSF 

measurements are shown in each row. Both the shift-variant and anisotropic spatial 

resolution properties are evident across the three positions with greater anisotropy in 

positions 1 and 2 than in position 3. This is reflected in both the idealized and new FP-

specific predictions. The FP-specific predictions are a better match to the measurement data. 

This is most evident in horizontal and vertical profiles through the PSF slices (shown at the 

bottom of Figure 3). Intuitively, the mismatch in the idealized predictors showed decreased 

blur as compared with the measurements since the blur due to the flat panel and x-ray source 

has not been integrated into the predictive model.

The greatest mismatch between the measured PSF and the predicted PSF for the new FP-

specific predictor occurs at location 2. This may result from the incomplete modeling of the 

shift-variant focal spot blur. Since the system blur was approximated with edge 

measurements from the center of rotation, there may be increasing mismatches due to 

changes in the apparent focal spot size for more oblique measurements. To achieve a more 
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accurate prediction, one could build a complete focal spot blur model and apply a shift-

variant blurring kernel.

3.3 Validation of the Noise Predictor

Each column of Figure 4 shows predicted and measured local NPS at three locations 

illustrating noise nonstationary. A central slice of the 3D NPS (fz = 0) is shown for each 

predictor and from phantom measurements in each row. Despite the noise in the measured 

NPS, the magnitude and shape of measured NPS are matched well with the predictions of 

the FP-specific NPS predictor. By contrast, the traditional idealized prediction model 

underestimates noise level by 70% and the shape of the NPS is inconsistent with 

measurements.

4. DISCUSSION AND CONCLUSION

New prospective resolution and noise predictors for flat-panel CBCT were presented. To our 

knowledge, this is the first time such predictors have been developed and validated in 

physical experiments. The results show that our new predictors can precisely capture local 

resolution and noise properties in CBCT data, whereas idealized predictors have substantial 

mismatches. Since these estimates integrate the dependence on the specific acquisition, 

reconstruction parameters, and patient anatomy; these tools are suitable for prospective 

design of desirable image properties and system performance either directly through 

specification of noise and resolution properties or through more sophisticated task-based 

metrics that use the local PSF and local NPS as inputs to an observer model.
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Figure 1. 
Details of the physical experiments including: a) The CBCT test bench setup. b) The 

resolution phantom with a tungsten wire. The wire was fixed in three different positions to 

explore shift-variant resolution properties. c) The noise phantom with two uniform 

cylindrical inserts. Three positions are chosen for noise properties validation.
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Figure 2. 
a) Detector blur and system blur measured with a tungsten edge. b) Measured projection 

NPS and fitted, modeled NPS based on the measured detector MTF.
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Figure 3. 
Predicted versus measured local PSFs.
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Figure 4. 
Predicted versus measured local NPS.
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