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Abstract

This paper develops a nonparametric shrinkage and selection estimator via the measurement error 

selection likelihood approach recently proposed by Stefanski, Wu, and White. The Measurement 

Error Kernel Regression Operator (MEKRO) has the same form as the Nadaraya-Watson kernel 

estimator, but optimizes a measurement error model selection likelihood to estimate the kernel 

bandwidths. Much like LASSO or COSSO solution paths, MEKRO results in solution paths 

depending on a tuning parameter that controls shrinkage and selection via a bound on the 

harmonic mean of the pseudo-measurement error standard deviations. We use small-sample-

corrected AIC to select the tuning parameter. Large-sample properties of MEKRO are studied and 

small-sample properties are explored via Monte Carlo experiments and applications to data.

Keywords

bandwidth selection; feature selection; LASSO; Nadaraya-Watson; nonparametric regression; 
solution path

1 Introduction

Stefanski, Wu, and White (henceforth SWW; Stefanski et al., 2014) describe a very general 

variable selection method that results from modeling predictors as if they were contaminated 

with measurement error. A model is first embedded in a measurement error model (MEM) 

framework, then the resulting MEM selection likelihood is maximized subject to a lower 

bound on the total measurement error. The feasible region set by the constraints has sharp 

corners that admit feature sparsity. The total measurement error serves as a tuning parameter 

to balance model sparsity and fit.

When applied to linear models, the SWW procedure generates solution paths identical to 

those of LASSO (Stefanski et al., 2014; Tibshirani, 1996). Thus, one can regard SWW’s 

procedure as an extension of LASSO to any model—in this paper, to nonparametric 

regression. We show that applying the SWW procedure to nonparametric regression results 

in the Nadaraya-Watson (NW) estimator, but with a novel method of bandwidth estimation 

that simultaneously performs smoothing and finite-sample variable selection as 
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demonstrated by our simulation studies. Though bandwidth selection is much studied for the 

NW estimator, variable selection is less studied and generally only asymptotically. The 

measurement error kernel regression operator (MEKRO) integrates both.

Intentionally contaminating observations with noise has been previously studied under the 

terms “noise injection” or “training with noise,” among others. Predictor contamination is 

well-studied in general for artificial neural networks where small amounts of noise reduce 

overfitting and generalization error (Sietsma and Dow, 1991; Grandvalet and Canu, 1995; 

Grandvalet et al., 1997; Holmstrom and Koistinen, 1992). Simulation-extrapolation 

(SIMEX) estimation is a method to correct for measurement error in predictors by adding 

increasing amounts of known measurement error and extrapolating back to a hypothetical 

version of the data without error (J. R. Cook, 1994; Stefanski and Cook, 1995). Importantly, 

our method is distinguished from these noise-addition methods; we develop a likelihood 

under the false assumption that noise is present instead of contaminating observations.

This paper is organized as follows. Derivation of MEKRO and computational aspects of 

fitting and tuning are presented in Section 2. We extend the method to accomodate 

categorical covariates in Section 3. Section 4 describes related methods in the literature and 

provides numerical support for MEKRO with both simulated and real data examples. In 

Section 5 we study selection consistency. Section 6 closes with a discussion.

We observe data { Xi, Y i i = 1
n }, where Yi is the response, Xi = (Xi,1, …, Xi,p)T is the p × 1 

vector of covariates for the ith observation, and p is fixed. The (continuous) covariates are 

standardized so that ∑i = 1
n Xi = 0p × 1 and ∑i = 1

n Xi, j
2 /(n − 1) = 1, j = 1, …, p. Denote a 

generic observation as (X, Y) where X has jth component Xj. We assume the model

Y = g(X) + ε, (1)

where g(x) = gY X(x) =def E(Y X = x) is the unknown regression function, and ε is a random 

error independent of X with E(ε) = 0 and E(ε2) = σε
2 < ∞. For presentation simplicity, assume 

that Y and X are both continuous unless otherwise stated.

2 Measurement Error Kernel Regression Operator

In a supervised learning problem, if a covariate can be contaminated with a substantial 

amount of error without adversely affecting prediction performance, then it is not useful for 

predicting Y. Measurement error model (MEM) selection likelihoods introduced by SWW 

implement this concept by forcing ‘false’ Gaussian measurement error into the covariates X. 

We first build a selection likelihood that describes the prediction degradation for a certain 

allocation of measurement error to each covariate. Then we perform constrained 

optimization of the likelihood where the constraints force ‘false’ measurement error into the 

likelihood while the optimizer determines the distribution of errors that results in the least 

degradation. The likelihood optimization ensures that the least relevant covariates will be 

assigned the most (possibly infinite) error.
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Denote the measurement error variance associated with Xj as σu, j
2 . MEM selection 

likelihoods describe model degradation through λj = 1/σu, j and apply the optimization 

constraint 1Tλ = τ where τ > 0 is a tuning parameter. This constraint is equivalent to an 

equality constraint on the harmonic mean of σu and allows one or more σu, j = ∞ when τ > 

0, implying that each corresponding Xj can be measured with an infinite amount of ‘false’ 

measurement error and thus is irrelevant in the model. A constraint on the un-transformed σu 

could not achieve this as elegantly.

Applying the MEM selection likelihood framework from SWW to nonparametric regression 

results in a kernel regression bandwidth and variable selection method, the measurement 

error kernel regression operator (MEKRO). The MEM selection likelihood is

LSEL(λ) = − 1
n ∑

i = 1

n
{Y i − g(Xi, λ)}2, (2)

where

g(Xi, λ) =
∑k = 1

n Yk∏ j = 1
p exp{ − λ j

2(Xi, j − Xk, j)
2/2}

∑k = 1
n ∏ j = 1

p exp{ − λ j
2(Xi, j − Xk, j)

2/2}
. (3)

See online Appendix A for the full derivation. Notice that (2) is simply the (negative) mean 

squared error, and, more interestingly, (3) is the familiar Nadaraya-Watson estimator 

(Nadaraya, 1964; Watson, 1964) of g(⋅) from the data {(Xi, Y i)i = 1
n }, computed using a 

Gaussian product kernel and diagonal bandwidth matrix. One key difference is that the 

traditional smoothing bandwidths, hj, are parameterized as inverse bandwidths, λj = 1/hj. In 

this setting, λj = 0 ⇒ hj = ∞, or covariate Xj is infinitely smoothed and thus selected out. 

This parameterization is also found in Goutte and Larsen (2000).

Estimation of the (inverse-) bandwidths is done as prescribed in SWW, via maximizing 

LSEL(λ) subject to an L1-type constraint in the non-negative orthant,

λ j ≥ 0, j = 1, …, p; ∑
j = 1

p
λ j = τ, for fixed τ > 0, (4)

where τ is a tuning parameter controlling the roughness of g( ⋅ ). A small τ keeps ‖λ‖ small, 

implying large bandwidths and substantial smoothing; a large τ permits smaller individual 

bandwidths and more roughness in g( ⋅ ). Adding generated noise to predictors with this 

constraint has been successful in artificial neural networks (Grandvalet and Canu, 1997).

Although MEKRO is the focus of this paper, the derivation of an estimator using MEM 

selection likelihoods itself is interesting and worth highlighting. SWW proved that applying 
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MEM selection likelihoods to the linear model is equivalent to LASSO. The proof hinged on 

equivalent ways to express linear model coefficients subjected to shrinkage, either through 

ridge regression, LASSO, or MEM selection likelihoods. Although the same relationships or 

concepts do not exist in more complicated models, MEM selection likelihoods have been 

shown via simulation to produce LASSO-like, finite-sample variable selection in a density-

based classification procedure (Stefanski et al., 2014) and in kernel regression (MEKRO).

A MEKRO solution λτ is the result of optimizing LSEL(λ) under the constraints in (4). To 

avoid constrained optimization, we introduce γ ∈ ℝp and let λ j(γ j) = τγ j
2/ ∑k = 1

p γk
2 , j = 1, 

…, p, for a fixed τ. We then maximize LSEL(λ(γ)) with respect to γ. This guarantees that the 

constraints (4) on λ are satisfied for any γ, at the cost of one additional parameter. 

Optimization is done in C using the gradient-based algorithm L-BFGS (Okazaki, 2010). 

With πik = ∏ j = 1
p exp{−λ j

2(Xi, j − Xk, j)
2/2} and Γ = ∑ j = 1

p γ2, then 

g(Xi, λ) = ∑k = 1
n Ykπik /∑k = 1

n πik and the required gradients are,

∂g(Xi, λ)/ ∂λt = ∑
k = 1

n
Ykπik{−λt Xi, t − Xk, t

2} × ∑
k = 1

n
πik −

∑
k = 1

n
πik{−λt Xi, t − Xk, t

2} × ∑
k = 1

n
Ykπik ∑

k = 1

n
πik

−2
.

Also, ∂λt / ∂γ j = − 2τγt
2γ jΓ

−2 when t ≠ j and 2τγ j(Γ − γt
2)Γ−2 when t = j. Finally,

∂LSEL/ ∂γ j =
4τγ j

nΓ2 ∑
t = 1

p
∑
i = 1

n
{Y i − g(Xi, λ)} ×(∂g(Xi, λ)/ ∂λt) (γt

2 − Γ𝟙t = j), (5)

where 𝟙(⋅) is the indicator function. LSEL(λ) is not concave but can be maximized well with 

neutral starting values. However, starting values near where at least one component of λ is 

zero and the initial gradient points in an unfavorable direction tends to trap the optimizer in 

non-global maxima. Further, (5) shows that ∂LSEL/ ∂γ j is 0 when γj = 0. Thus, using warm 

starts with components of λ set at or near 0 is ill-advised. We always start at γstart = 1p, 

equivalent to λstart = (τ/p)1p.

2.1 Example

We generate n = 100 iid observations from the model,

Y = sin(2πX1) + sin(πX2) + 0.5ε, (6)
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where p = 3, X1, X2, X3 ~ U(0, 1) and ε ~ N(0, 1), independent of X. The X1 component has 

the same amplitude but oscillates twice as quickly as the X2 component, and thus X1 is more 

important in describing the variation in Y; X3 is an irrelevant predictor.

Figure 1 illustrates how the inverse-bandwidth parameterization and constraint (4) 

encourages sparse solutions.

When τ = 1, the smallest kernel bandwidth, h, permitted in g(⋅) is h = 1/τ = 1, which results 

in considerable smoothing (recall that each Xj is scaled to have mean zero and unit variance 

before fitting, so at τ = 1 the data and kernel weights have equal variances). When such a 

smooth model is forced, the maximizer of LSEL(λ) rests in a corner of the feasible region 

defined by the constraints at λτ = (1, 0, 0). At this solution, both λ2 and λ3 have infinite 

kernel bandwidths and X2 and X3 are selected out. When τ = 2, maximizing LSEL(λ) still 

results in the solution λτ = (τ, 0, 0), however, the contours hint at the importance of X2 by 

bending along the diagonal boundary. When more roughness is permitted at τ = 3, the 

maximizer slides along the boundary and splits τ between λ1 and λ2, leaving λ3 = 0 (note 

that solutions along the line λ2 = τ − λ1 imply that λ3 = 0). As τ increases, the maximizer 

approaches (τ/3)13 and results in overfitting (plot not shown).

2.2 Tuning and Solution Paths

An optimal τ is chosen via small-sample nonparametric AIC, AICc, suggested in Hurvich et 

al. (1998) resulting in a sparse inverse-bandwidth solution λτ. Cross-validation is 

prohibitively slow. In preliminary simulation studies, AICc worked as well or better than 

other criteria (Hastie et al., 2009). The degrees of freedom are approximated by tr(Sτ), 

where Sτ is the n × n smoothing matrix with [r, s] element,

Sτ[r, s] =
∏ j = 1

p exp{−λ j
2 Xs, j − Xr, j

2/2}

∑k = 1
n ∏ j = 1

p exp{−λ j
2 Xr, j − Xk, j

2/2}
λ = λτ

. (7)

Thus, τ  minimizes,

AICc(τ) = ln{−LSEL(λτ)} +
n + tr(Sτ)

n − tr(Sτ) − 2 .

In practice, we first compute τ0 = argminτ ∈ τ ∗AICc(τ), where τ* is a predetermined coarse 

grid. Then we create a finer τ* grid around τ0 and repeat the search for the final τ .

The plot of λτ versus τ is an inverse-bandwidth solution path, similar to LASSO solution 

paths. To illustrate, again consider the example from Section 2.1 except with two additional 

irrelevant predictors (X4 and X5). The solution path is shown in Figure 2; solid dots 

represent active predictors and open dots represent irrelevant predictors. Overlaid is the 
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scaled AICc(τ) curve (dashed line). Predictor indices are shown in the right margin. In this 

example, τ = 5, for which λ1, λ2 > 0 and λ3 = λ4 = λ5 = 0 (perfect selection after tuning). 

Note that at the final solution, the inverse-bandwidth associated with the more rapidly 

varying predictor (X1) is larger than the more slowly varying one (X2), as expected.

3 Extension to Categorical Predictors

Let 𝒞 = { j: X j is continuous} and 𝒟 = { j: X j is categorical}. If j ∈ 𝒟 then assume without loss 

of generality that Xj takes values in the label set {0, …, Dj − 1} where there is no natural 

ordering. The ‘frequency approach’ (see Li and Racine, 2007) estimates a separate 

regression function for each permutation of observed discrete variables, but reduces the 

effective sample size of each separate estimator by a factor of approximately ∏ j ∈ 𝒟 D j
−1. 

We describe an extension of MEKRO for mixed continuous and categorical variables based 

on the approach in Racine and Li (2004). The kernel for smoothing categorical Xj is

l j(X j, x j) = (1 − δ j)
𝟙X j ≠ x j, (8)

where δj ∈ [0, 1]. If δj = 0, lj is identically equal to 1 and does not depend on Xj. If δj = 1, lj 
is zero unless Xj = xj. Any δj ∈ (0, 1) smooths the effect of covariate j, borrowing weight 

across the Dj different values of xj.

Simply letting δj play the role of λj in the MEKRO algorithm fails because δj is bounded 

above by 1; thus, continuous and categorical predictors would be penalized unequally by the 

sum constraint in (4) because of the scaling differences. To alleviate the scaling problem, we 

propose the univariate categorical kernel

k j
d(X j, x j) = exp − 1

2λ j
2w j𝟙X j ≠ x j

, (9)

where λj is the same inverse bandwidth parameter used throughout this paper, and wj is a 

weight. This is similar to the continuous kernel, except that the indicator and weight replace 

Xk, j − Xi, j
2
. To weight the categorical and continuous kernels similarly, note that if j ∈ 𝒞, 

E[(Xk,j − Xi,j)2] = 2 for i ≠ k. If j ∈ 𝒟, and again for i ≠ k, 

E[𝟙Xk j ≠ Xi j
] = 1 − P(Xk, j = Xi, j) = 1 − ∑t = 1

D j [P(Xk, j = t)]
2
. Then set 

w j = 2/[1 − ∑t = 1
D j {P(Xk, j = t)}2] where P(Xk, j = t) = n−1∑k = 1

n 𝟙Xk j = t. The weight 

requires that realizations be spread across two or more categories. When the data are 

balanced across the Dj categories, the weight reduces to wj = 2Dj/(Dj − 1). Observe that, like 

(8), λj = 0 implies that categorical covariate j is selected out, and λj large implies g( ⋅ , λ) is 

different for each category in Dj.
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The estimator for g(⋅) incorporating categorical variables is then

g(Xi, λ) =
∑k = 1

n Yk∏ j ∈ 𝒞exp{−λ j
2(Xi, j − Xk, j)

2/2}∏ j ∈ 𝒟exp −λ j
2w j𝟙Xk j ≠ Xi j

/2

∑k = 1
n ∏ j ∈ 𝒞exp{−λ j

2(Xi, j − Xk, j)
2/2}∏ j ∈ 𝒟exp −λ j

2w j𝟙Xk j ≠ Xi j
/2

,

where wj is described above. This is substituted into (2) and optimized under (4) by methods 

in Section 2.

4 Method Comparison and Numerical Results

Much of the nonparametric regression methodology incorporating variable importance can 

be separated into two classes: methods that downweight features with little or no effect, and 

methods that perform feature subset selection. Arguments can be made for either, based on 

either modeling philosophy or the particular application. It is unlikely that any judicious 

real-world regression application includes truly irrelevant variables, and downweighting can 

be superior to selection for predictions when there are a larger number of small effects 

present (ridge regression vs. LASSO in Tibshirani, 1996). On the other hand, sparsity 

attained from selection is valuable for parsimonious model descriptions, avoiding the curse 

of dimensionality (Lafferty and Wasserman, 2008), and predictions where there are only a 

few large effects.

MEKRO falls into the selection class, along with several other popular methods. Friedman 

(1991) developed MARS, a method that flexibly estimates models using a basis of linear 

splines with one knot, but it is prone to overfitting (Barron and Xiao, 1991). COSSO extends 

smoothing spline ANOVA models to perform selection by penalizing a least-squares loss 

similar to that of LASSO (Tibshirani, 1996; Lin and Zhang, 2006). Adaptive COSSO uses 

an adjusted weighting scheme analogous to the adaptive LASSO (Storlie et al., 2011). Both 

versions of COSSO typically truncate the model complexity at or below two-way 

interactions. SPAM (sparse additive models) is similar to COSSO in that it truncates 

complexity, but it allows p ≫ n (Ravikumar et al., 2009). Kernel iterative feature extraction 

(KNIFE) by Allen (2013) imposes L1-regularization on L2-penalized splines.

Many of the downweighting methods are similar to MEKRO by attaching individual weights 

to the separate input dimensions in a flexible model. Automatic relevance determination 

(ARD) first described by Neal (1996) puts prior distributions on weights for each input in a 

Bayesian neural network, and input weights of only irrelevant predictors remain 

concentrated around 0. Williams and Rasmussen (1996) put weights on the distance metric 

for each input dimension in the covariance function of a Gaussian process and demonstrate 

results similar to ARD. Grandvalet and Canu (1997) add noise to each input of an artificial 

neural network and use the harmonic mean to control the total noise added. They show 

greatly reduced generalization errors against trees and k-nearest neighbors on classification 

problems, but do not consider examples with irrelevant inputs. Adaptive metric kernel 

regression (AMKR; Goutte and Larsen, 2000) is a kernel regression bandwidth selection 

procedure that parameterizes the local-constant estimator with inverse-bandwidths. 
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However, it directly optimizes the leave-one-out cross-validation loss instead of MEKRO’s 

approach of choosing an optimal smoothness from an entire path of solutions with sparsity 

via cross-validation. RODEO (Lafferty and Wasserman, 2008) thresholds derivatives of the 

local-linear estimator to keep bandwidths associated with irrelevant variables large.

4.1 Simulation Preliminaries

This section presents numerical studies on the performance of MEKRO (MEK) against other 

variable selection methods for nonparametric regression, including KNIFE (KNI), two 

“regular” COSSO variants (additive COSSO, RC1; two-way interaction COSSO, RC2), two 

adaptive COSSO, or ACOSSO variants (additive ACOSSO, AC1; two-way interaction 

ACOSSO, AC2), and MARS (additive, M1; two-way interaction, M2; thee-way interaction, 

M3). We use the default GCV criterion for MARS. For KNIFE, we fix λ1 = 1 and use a 

radial kernel with γ = 1/p as suggested in Allen (2013). The weight power for the ACOSSO 

is fixed at γ = 2, as suggested by Storlie et al. (2011). Although these parameters serve as 

additional tuning parameters, we tune only one parameter per method for fairness. We also 

include AMKR (AM) because of its close relationship with MEKRO.

Each simulation sets Yi = g(Xi) + εi where εi ∼iid N(0, σε
2) and g(⋅) is defined for each model. 

We set σε
2 so that the theoretical model R2 = Var{g(X)}/ Var{g(X)} + σε

2  is 0.75 (a SNR of 3) 

unless otherwise noted. The predictors are generated as Xj = (Uj + kU*)/(1 + k); Uj ~ U(0, 

1), j = 1, …, p; U* ~ U(0, 1), so that Xj ∈ [0, 1] and X has compound symmetric correlation 

ρ = k2/(1 + k2). The covariates are independent when ρ = 0.

Results are summarized in terms of Type I selection error (irrelevant predictor inclusion 

rate), Type II selection error (active predictor exclusion rate), and average integrated squared 

error (AISE) over M = 100 Monte Carlo (MC) replications. AISE estimates 

MISE = E{g(X, λτ) − g(X)}2 = ET[E{g(X, λτ) − g(X)}2 T] by averaging the mean squared 

difference between g( ⋅ , λτ) and g(⋅) evaluated on test data over 100 MC replicates, where T 

is random training data used in defining the estimator g( ⋅ , λτ), and X and T follow the same 

distribution. We use a test set of 10,000 X data vectors for each model and vary the 

dimension of T as a simulation factor. AISE comparison plots (Fig. 3, 5–10) show 95% 

confidence bars for the MISE of each method. MISEs with non-overlapping confidence bars 

are statistically different based on the more powerful paired-difference test (not shown).

We give a measure of predictor effect size to provide additional context to regression 

functions and simulation results. In models with complex interactions, it is difficult to 

quantify the contribution of each covariate to the regression function variance. We quantify 

effect size with the scaled root mean squared risk difference between the regression function 

with and without Xj is replaced by its mean. Define v j = E{g(X) − g(X |X j = E(X j)
)}2. Then the 

predictor effect size for Xj is defined as v j
1/2/max{v j

1/2}. We compute effect sizes to two 

decimal places via numerical integration. When this method is applied to linear regression, 
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the effect sizes are the scaled absolute regression coefficients. Predictors with near-zero 

effect sizes are effectively irrelevant and inflate Type II selection errors for all methods.

As an example, consider two models used in Friedman (1991) for assessing variable 

selection and prediction performance of MARS,

Z(X1, X2, X3, X4) = X1
2 + X2X3 − 1

X2X4

2 1/2
, and (10)

ϕ(X1, X2, X3, X4) = arctan
X2X3 − 1/(X2X4)

X1
, (11)

where X1 ∈ [0, 100], X2 ∈ [40π, 560π], X3 ∈ [0, 1], and X4 ∈ [1, 11], all uniformly 

distributed. Both models contain all orders of interactions, although the contribution of the 

covariates to the model varies widely. Predictor effect sizes for active predictors (X1, X2, X3, 

X4) are (0.03, 0.90, 1.00, 0.00) in Z(⋅) and (0.55, 0.59, 1.00, 0.00) in ϕ(⋅). Because the 

contributions from X1 in Z(⋅) and X4 in both models are so low, Z(⋅) is well-approximated 

by two-way interaction models, and ϕ(⋅) is well-approximated by three-way interaction 

models. This was recognized in Lin and Zhang (2006) after model fitting and observing the 

performance of a two-way interaction model against a saturated model.

4.2 Simulation Results

Model 1—Nonlinear, three-way interaction; g(X) = sin{2π(X1 + X2)/(1 + X3)}; p = 10 (7 

irrelevant variables included); ρ = 0; n ∈ {50, 100, 200, 400}. Predictor effect sizes for 

active predictors (X1, X2, X3) are (1.00, 1.00, 0.48). Selection errors are displayed in Table 1 

and average integrated squared errors (AISEs) are in Figure 3. MEKRO (MEK) dominates in 

both prediction and selection, achieving perfect selection when n ≥ 100, and having a 

comparable AISE to AMKR only when n = 400. AMKR (AM) overselects irrelevant 

covariates. KNIFE (KNI) has approximately the same AISE as the two-way interaction 

COSSO models (RC2, AC2), but greatly underselects for smaller n. The two-way interaction 

COSSO models show a clear advantage over the additive COSSO.

(RC1, AC1) models for prediction in larger samples; the large effect sizes for X1 and X2 and 

smaller effect size of X3 indicates that g(⋅) is well-approximated by a two-way interaction 

model but not an additive model. The three-way interaction MARS model (M3) performs 

worst when n ≤ 100, but demonstrates good selection rates for n = 400.

We now elaborate on the selection performance for adaptive metric kernel regression 

(AMKR). Simulation studies in Goutte and Larsen (2000) suggest that inverse-bandwidth 

estimates for irrelevant covariates are shrunk from AMKR, but are frequently positive (non-

zero). Thus, for comparing to a selection method, one must select a cutoff to operationalize 

when an inverse-bandwidth is small enough to be selected out. Our simulation studies show 

that AMKR-estimated inverse-bandwidths are either near machine zero or large enough to 
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be regarded as relevant. The left panel of Figure 4 shows the AMKR estimates for Model 1, 

n = 400, where X4 through X10 are irrelevant and should each have 1/h = 0. Of the 700 

samples (100 MC replicates for 7 predictors), 48% of them had an AMKR estimate of 0. 

The right panel of Figure 4 shows the log10-value for the other 52% of estimates that were 

positive; many clump around 10−0.5, a smooth kernel bandwidth, but still large enough to be 

considered relevant. There are very few positive estimates below 10−4 even in this moderate 

sample size case, thus we chose a cutoff of 10−4 below which an AMKR inverse bandwidth 

was considered 0.

The high Type-I selection error for AMKR is reflective of a researcher being uncertain 

whether small inverse-bandwidths represent prunable features or not. However, despite this 

binary classification, small inverse-bandwidths will not greatly impact prediction error.

In our simulations, it is generally true that AMKR approaches MEKRO’s prediction error as 

n increases, but the Type-I selection error remains high.

Model 2—Identical to Model 1 with ρ = 0.5. Predictor effect sizes for active predictors are 

(1.00, 1.00, 0.44) and 0 for irrelevant predictors. The selection errors and average integrated 

squared errors for this model are given in Table 2 and Figure 5, respectively. Again, 

MEKRO (MEK) dominates in prediction and has the best selection rates for n ≥ 100, 

including perfect selection for n ≥ 200. The other models show improvements in prediction 

with correlated predictors because the three-way interaction in g(⋅) can be approximated 

more accurately by one- or two-way interactions. However, only additive COSSO (RC1) and 

KNIFE (KNI) show selection errors comparable to MEKRO at n = 400. Generally, but 

especially in the presence of correlation, three-way interaction MARS (M3) can produce 

unstable predictions by including near-degenerate basis functions in the training fit.

In response to a reviewer comment, we replicated Model 2 but changed the covariate 

distribution from uniform to Gaussian. Results of this additional experiment, described fully 

in the online Appendix C, show that prediction performance was adversely affected but that 

selection performance was not.

Model 3—Interaction model with categorical covariates; 

g(X) = arctan[10{X1(2X3 − 1) + X2}/( − 𝟙X4 = 0 + 𝟙X4 = 1 + 2𝟙X4 = 2)]; X1, X2 continuous, X3 

∈ {0, 1}, X4 ∈ {0, 1, 2}; p = 10; ρ = 0; n ∈ {50, 100, 200, 400}. Irrelevant predictors X5 ∈ 
{0, 1}, X6 ∈ {0, 1, 2}, X7 ∈ {0, 1, 2, 3}, and X8, X9, X10 are continuous. All of the discrete 

covariates follow a discrete uniform distribution and the continuous covariates are generated 

in the same manner as above. Predictor effect sizes for active predictors (X1, X2, X3, X4) are 

(0.38, 0.37, 0.65, 1.00). Both MARS and COSSO are designed to handle categorical 

covariates without modification. AMKR (AM) does not include a kernel for categorical 

covariates, however, it will still approximate the ‘frequency approach’ (Li and Racine, 2007) 

as n and thus the inverse-bandwidths grow. Selection errors are displayed in Table 3 and 

average integrated squared errors are in Figure 6. MEKRO’s good prediction and selection 

performance apparent in Table 3 and Figure 6 support the definition of the weights in (9). 
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The only competitor to MEKRO on prediction is AMKR when n = 400, lending insight that 

kernel regression is well-suited to pick up the complexities in this model.

Model 4—This example uses the functions Z(⋅) and ϕ(⋅) taken from Friedman (1991); see 

Section 4.1 for a description. We add a variable selection aspect to the original simulation in 

Friedman by including six additional irrelevant covariates having iid U(0, 1) distributions, 

for a total of ten covariates. We also increase the residual error so the model R2 is 0.75 

(lowering the signal-to-noise ratio from 9 to 3) to match Models 1–3. From Section 4.1, we 

know that X1 in Z(⋅) and X4 in both models are essentially irrelevant predictors, and we 

consider them as irrelevant when calculating selection error rates.

Selection error rates for Model 4 are displayed in Table 4. Average integrated squared errors 

(AISE) are shown in Figure 7; AISEs too large to display in the plot windows are indicated 

by dashed horizontal lines.

Although MEKRO (MEK) exhibits very good selection rates for both sample sizes and 

response functions, it falls short in predictions to COSSO (RC and AC variants) depending 

on the setup. MEKRO suffers from the same boundary effect problems as the Nadaraya-

Watson estimator (Scott, 1992). Both Z(∙) and ϕ(∙) vary rapidly near their boundary points 

(see Friedman (1991) for surface plots), inflating MEKRO’s prediction error rate. 

Examining a plot of Z(⋅, X2, X3, ⋅) (not shown) reveals that much of the surface variation is 

attributed to the X2X3 interaction. The additive COSSOs (RC1, AC1) cannot pick this effect 

out and predict poorly. When n = 100, the weights in two-way interaction ACOSSO (AC2) 

reduce the component penalties too far and irrelevant covariates are overly selected. Even in 

the larger sample size, when two-way interaction ACOSSO selects well, the weights impart 

too much component variation leading to poor predictions. The two-way interaction COSSO 

(RC2) performs well.

Model 5—For this model, data are generated from the deterministic function describing the 

kinematics of the Puma 560 robotic arm (the data are available from the DELVE1 data 

repository; see www.cs.toronto.edu/~delve/data/pumadyn/desc.html2 for details). The arm 

has six independently-operating joints. The goal is to estimate the linear acceleration in Joint 

3, given the position, velocity, and torque of all of the joints. This example sets several 

parameters to zero to reduce the number of active covariates to eight. We append four 

irrelevant covariates to judge selection performance. DELVE adds noise to both the input 

parameters and the response in two levels, medium and high (‘pumadyn-8nm’ and 

‘pumadyn-8nh’ respectively in DELVE). We cannot estimate predictor effect sizes because 

we do not have access to the data generating function.

There are N = 8192 observations available. Because we do not have the luxury of generating 

a test data set, we randomly select n training observations without replacement and use the 

remaining N − n samples to estimate the conditional squared prediction error, 

SPE = (N − n)−1∑i = 1
N − n{Y i − g(xi)}

2. The sampling process is repeated 100 times, and the 

1Copyright (c) 1995–1996 by The University of Toronto, Toronto, Ontario, Canada. All Rights Reserved.
2Updated: 08 Oct. 1996. Accessed: 02 Mar. 2014.
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average of the SPE values, the ASPE, estimates the squared prediction error. We report 

results for training sizes of n = 100, 200.

ASPEs are given in Figure 8 and main effect selection rates, the proportion of main effects 

selected out of the 100 MC samples, are given in Table 5. Note that these are not selection 

errors as shown on the previous tables. Interaction effect selection rates are excluded 

because we do not know which interactions are weak and effectively irrelevant. Table 5 

shows selection rates averaged over the four simulations (main effect selection rates are 

similar across the four simulations). The ‘IRR’ row is the average inclusion rate for the four 

irrelevant covariates that are extraneous to the original data set.

MEKRO includes X2 and X3, the positions of the second and third joints, on every replicate, 

and excludes every other variable at a very high rate. Additive MARS (M1) shows a very 

similar selection performance. KNIFE, AMKR, and the four COSSO variants (KNI, AM, 

RC and AC) show generally higher selection rates for both active and irrelevant predictors, 

suggesting that the selection procedures are discriminating poorly. The two-way and three-

way interaction MARS (M2 and M3) models show elevated active covariate selection rates, 

while keeping the irrelevant covariate selection rate low. Despite only selecting two of the 

eight active covariates, MEKRO has a better prediction rate than any other method, 

including the two MARS methods that show better covariate discrimination.

Goutte and Larsen (2000) benchmark AMKR (AM) against an artificial neural network 

(without ARD) and Gaussian process on the same Puma DELVE data sets, giving us indirect 

comparisons on prediction error. AMKR outperformed the artificial network, suggesting that 

MEKRO would do the same if ARD is not implemented. The Gaussian process generally 

predicted better than AMKR by 2–5% (quadratic loss comparison as a percentage) for n near 

100 or 200, indicating that MEKRO would enjoy the best prediction rates in the high noise 

scenario and similar prediction rates in the medium noise scenario.

Prostate Data Example—The data are from a study of 97 men with prostate cancer 

(Stamey et al., 1989) and were used in the original LASSO paper (Tibshirani, 1996). The 

data contain the log level of a prostate-specific biomarker (response) along with eight other 

clinical measures (predictors): log cancer volume, log prostate weight, age, log benign 

prostatic hyperplasia amount, seminal vesicle invasion (binary), log capsular penetration, 

Gleason score, and percentage of Gleason scores equal to 4 or 5.

We evaluate the nonparametric methods by training on two-thirds of the data and evaluating 

the predictions on the remaining third. This process is repeated 100 times and the squared 

prediction errors are averaged. We also include LASSO, tuned with 10-fold cross-validation, 

and evaluate it in the same way.

The average squared prediction errors (ASPE) are given in Figure 9 and the selection rates 

(not errors) are given in Table 6. Predictions in the prostate data favor simpler methods as 

evidenced by LASSO and additive MARS (M1, versus M2 and M3, the higher-order MARS 

methods). Among the nonparametric methods, MEKRO (MEK) and KNIFE (KNI) have the 

smallest average model size while maintaining a low prediction error and high correlation 
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with LASSO (LAS) selection. The MARS methods overfit and have high prediction errors. 

All COSSO (RC and AC variants) methods perform similarly in terms of prediction, 

selection, and correlation with LASSO, and have both higher average model sizes and higher 

prediction errors than MEKRO.

5 Asymptotic Results

Consider the model Y = g(X) + ε, where Var(ε | X) = σε
2 and g(x) = E(Y|X = x). Define the 

important predictor set 𝓘 = { j: X j is important in g( ⋅ )} and so its complement 𝓘c is the set of 

unimportant predictors. We argue in online Appendix B that we can generally expect, if τ → 
∞ and satisfies τ 𝓘 + 4/n 0 and τp log(n)/n → 0 as n → ∞, then the maximizer λ of (2) 

subject to the constraints (4) satisfies λ j ∞ and λ j′ 0 in probability for j ∈ 𝓘 and 

j′ ∈ 𝓘c, i.e., the MEKRO asymptotically discriminates important from unimportant 

predictors and achieves variable selection consistency.

6 Discussion

We developed a new method for performing simultaneous variable and bandwidth selection 

in nonparametric regression using the SWW (Stefanski et al., 2014) paradigm. The resulting 

method is kernel regression with a novel bandwidth estimator (MEKRO). The bandwidth 

selection strategy is such that certain bandwidths are set to infinity (inverse bandwidth of 0), 

thereby allowing for complete removal of variables from the model. It is also attractive in 

that it does not require a complexity truncation and can fit models with many interactions. 

Simulation studies show that MEKRO is a viable option for selection and prediction 

generally, and especially useful when the underlying model is nonlinear with complex 

interactions.

Measurement error model selection likelihoods in linear models share a connection with 

LASSO, and also perform well when used for nonparametric classification. Although 

current implementations of the SWW approach focus on estimators with closed-form 

selection likelihoods, the favorable performance of such estimators suggests further study of 

selection likelihoods in more complex cases.

Despite the advantages of the new selection strategy, MEKRO is a local-constant kernel 

regression estimator and does not avoid the known drawbacks of the method. Future work 

will address boundary corrections, and an adaptive-bandwidth MEKRO that we suspect will 

boost prediction performance. Also, the scope of MEKRO can be expanded by adapting an 

ordinal kernel analogous to that in Racine and Li (2004) or allowing different response 

types. It is likely that major computational gains can be realized by implementing an 

approximate MEKRO that takes advantage of binning.
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Appendix

A MEKRO Selection Likelihood Derivation

Stefanski et al. (2014) proposed a four-step approach for building a measurement error 

model (MEM) selection likelihood from any ‘traditional’ likelihood of covariates and a 

response. The measurement error kernel regression operator (MEKRO) is derived from these 

steps, and so they are included below for completeness. See Stefanski et al. (2014) for 

comprehensive details on the motivation for MEM selection likelihoods, their relationship to 

LASSO, and an application that yields a nonparametric classifier that performs variable 

selection. Let diag{a} be a diagonal matrix with the vector a on the diagonal. The MEM 

selection likelihood construction proceeds in four basic steps:

S1. Start with an assumed ‘true’ likelihood for { Xi, Y i i = 1
n }, denoted LTRUE(θ), 

where θ could be finite (parametric) or infinite dimensional (nonparametric).

S2. Construct the associated measurement error model likelihood under the ‘false’ 

assumption that the components of X are measured with independent error. That is, 

assume that W is observed in place of X where W | X ∼ N(X, diag{σu
2}) with 

σu
2 = (σu, 1

2 , …, σu, p
2 ). The resulting likelihood depends on θ and σu

2 and is denoted 

LMEM(θ, σu
2). Note that even though LMEM(θ, σu

2) is derived under a measurement error 

model assumption, it is calculated from the error-free data { Xi, Y i i = 1
n }.

S3. Replace θ in LMEM(θ, σu
2) with an estimate, θ, resulting in the pseudo-profile 

likelihood LpMEM(σu
2) = LMEM(θ , σu

2). Note that θ  is an estimator for θ calculated from 

the observed data without regard to the ‘false’ measurement error assumption, e.g., θ
could be the maximum likelihood estimator from LTRUE(θ).

S4. Reexpress the pseudo-profile likelihood LpMEM(σu
2) in terms of precision (or 

square-root precision) λ =(λ1, …, λp) where λ j = 1/σu, j
2  (or λj = 1/σu, j), resulting in 

the MEM selection likelihood LSEL(λ).

LSEL(λ) is maximized subject to: λj ≥ 0, j = 1, …, p; and ∑ j = 1
p λ j = τ. Setting the tuning 

parameter τ < ∞ in the latter constraint ensures that the harmonic mean of the measurement 

error standard deviations is p/τ > 0. This is how the approach forces ‘false’ measurement 

error into the likelihood.

We show that application of the measurement error model selection likelihood approach to 

nonparametric regression results in MEKRO. Consider the quadratic loss pseudo-likelihood 

(negative loss) functional,
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LTRUE(FY , X) = − 1
n ∑

i = 1

n
{Yi − gY X(Xi)}

2,

where

gY X(X) =
∫ y f Y , X(y, x)dy

∫ f Y , X(y, x)dy
,

and fY,X(y, x) = ∂p+1/(∂y∂x1 ⋯ ∂xp)FY,X(y, x). Note that FY,X(⋅, ⋅) plays the role of θ in the 

four-step algorithm. Assume that Wi is observed instead of Xi, where Wi = Xi + diag{σu} Ui 

and Ui ∼iid Np(0, Ip) and is independent of all other data, to give

LMEM(FY , W,σu
2) = − 1

n ∑
i = 1

n
{Yi − gY W(Xi)}

2

where gY|W(∙) depends on σu implicitly. We derive an expression for gY|W(⋅); observe,

f Y , W(y, w) = ∂p + 1
∂y∂w1⋯∂wp

P(Y ≤ y, W ≤ w)

= ∫ f Y , X(y, w − diag{σu}u) ∏
j = 1

p
ϕ(u j)du,

where the interchange of differentiation and integration is justified for the Gaussian product 

kernel and many others. Consequently,

gY |W(x) = E(Y |W = x)

= ∫ y f Y |W(y | x)dy

=
∫ y∫ f Y , X(y, x − diag{σu}u)∏ j = 1

p ϕ(u j)dudy

∬ f Y , X(y, x − diag{σu}u)∏ j = 1
p ϕ(u j)dudy

=
∫ y∫ f Y , X(y, t)∏ j = 1

p ϕ{(x j − t j)/σ j}(σu, j)
−1dtdy

∬ f Y , X(y, t)∏ j = 1
p ϕ{(x j − t j)/σu, j}(σu, j)

−1dtdy

=
∬ y∏ j = 1

p ϕ{(x j − t j)/σu, j}FY , X(dy, dt)

∬ ∏ j = 1
p ϕ{(x j − t j)/σu, j}FY , X(dy, dt)

after noting the change of variables uj = (xj − tj)/σu,j and that ϕ(∙) is the standard normal pdf. 

Step S3 in the four-step algorithm calls for estimation of θ, which in this setting means 

estimation of FY,X(⋅,⋅). The empirical cdf is substituted to give LpMEM (not shown). Finally, 
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the measurement error standard deviations are parameterized as inverse standard deviations 

(S4) to produce the MEM selection likelihood,

LSEL(λ) = − 1
n ∑

i = 1

n
{Yi − g(Xi, λ)}2,

where,

g(Xi, λ) =
∑k = 1

n Yk∏ j = 1
p exp{ − λ j

2(Xi, j − Xk, j)
2/2}

∑k = 1
n ∏ j = 1

p exp{ − λ j
2(Xi, j − Xk, j)

2/2}
.

There is now an explicit dependence of g( ⋅ ) on λ that have entered the selection likelihood 

as inverse smoothing bandwidth parameters.

B Asymptotic Selection Consistency

Using a mix of known results, detailed derivations, and heuristics, we explain the apparent 

large-sample selection consistency manifest in our simulation studies. For the multivariate 

Nadaraya-Watson estimator, we denote the smoothing bandwidth for predictor j by hj and h 
= (h1, …, hp)T. In Section 2.1 of Li and Racine (2007), the pointwise asymptotic bias and 

variance are rigorously established for the multivariate Nadaraya-Watson estimator, 

g(x, 1/h) − g(x) = Op ∑ j = 1
p h j

2 + n∏ j = 1
p h j

−1/2
, where 1/h = (1/h1, …, 1/hp)T.

In MEKRO, one maximizes the MEM selection likelihood (2) subject to constraint (4), 

which is equivalent to minimizing the fitted mean squared error −LSEL(λ) subject to this 

constraint. In order to study the asymptomatic properties for the optimizer, we need to 

characterize the asymptotic behavior of −LSEL(λ) in a similar format as Lemma A1 in Wu 

and Stefanski (2015). Their Lemma A1 follows from technical proofs of Fan and Jiang 

(2005), whose techniques can be used to extend the pointwise asymptotic results of Li and 

Racine (2007) and argue that under regularity conditions of the type in Fan and Jiang (2005), 

if bandwidths satisfy hj ⟶ 0 for j = 1, …, p and n∏ j = 1
p h j/log(n) ∞ as n → ∞, it holds 

that,

1
n ∑

i = 1

n
{Y i − g(Xi, 1/h)}2 = σε

2 + Op ∑
j = 1

p
h j

4 + n ∏
j = 1

p
h j

−1
. (12)

In (12), the smoothing bandwidth for each predictor shrinks to zero as the sample size 

diverges to infinity. Yet, it is well known that the use of a small bandwidth in local 

polynomial smoothing reduces approximation bias in Taylor-series expansions and thus also 

estimation bias (Fan and Gijbels, 1996). This is echoed in the asymptotic bias formula that 

appears below Equation (2.8) on page 62 of Li and Racine (2007), where it is explicitly 
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shown that the bias corresponding to predictor j has a factor of 2∂ f (x)
∂x j

∂g(x)
∂x j

+ f (x)∂2g(x)
∂x j

2 , 

where f (∙) is the density of X. If j ∉ 𝓘, the index set of important predictors in g(⋅), this 

factor is equal to zero because ∂g(x)
∂x j

= 0 and ∂2g(x)
∂x j

2 = 0 when predictor j is not important. 

Thus in a Taylor-series expansion of the multivariate Nadaraya-Watson estimator, predictor j 
does not contribute to the approximate bias if j ∉ 𝓘 and the corresponding smoothing 

bandwidth is not required to shrink to zero as the sample size diverges. This suggests that 

(12) can be further refined to show that if bandwidths satisfy hj → 0 for j ∈ 𝓜, hj′ ≥ c0 > 0 

for j′ ∈ 𝓜c and some c0 > 0, and n∏ j ∈ 𝓜h j/log(n) ∞ as n → ∞ for a set 𝓜 satisfying 

𝓘 ⊆ 𝓜 ⊆ {1, …, p}, we have,

1
n ∑

i = 1

n
{Y i − g(Xi, 1/h)}2 = σε

2 + Op ∑
j ∈ 𝓜

h j
4 + n ∏

j ∈ 𝓜
h j

−1
. (13)

To gain insight, we now consider a deterministic version of the Op in (13) with 

transformation tj = 1/hj. For a set 𝓜 satisfying 𝓘 ⊆ 𝓜 ⊆ {1, …, p} and n large enough, 

denote t 𝓜 = (t j, j ∈ 𝓜)T as the minimizer of

∑
j ∈ 𝓜

t j
−4 + n−1 ∏

j ∈ 𝓜
t j, subject to t j ≥ log(n), j ∈ 𝓜, and ∑

j ∈ 𝓜
t j = Tn > 0, (14)

where Tn satisfies Tn → ∞ and Tn
plog(n)/n 0 as n → ∞. Here the constraint tj ≥ log(n) 

guarantees that hj = 1/tj converges to zero as required by (13), where log(n) can be replaced 

by any sequence that slowly diverges to infinity. Note that the optimization problem is 

symmetric in tj and thus it follows that the minimizer is given by t j = T / |𝓜|, j ∈ 𝓜, and the 

corresponding objective function takes value 𝓜 5/T4 + (T / 𝓜 ) 𝓜 /n, where 𝓜  denotes the 

cardinality of set 𝓜 and T ≡ Tn. By treating 𝓜  as a continuous variable and examining the 

first derivative with respect to 𝓜 , we conclude 𝓜 5/T4 + (T / 𝓜 ) 𝓜 /n is monotonically 

increasing in 𝓜  if 0 < 𝓜 < T /e. We next appeal to these results to assert that λ j ∞ for 

j ∈ 𝓘 and λ j 0 for j ∈ 𝓘c

Selection consistency of MEKRO

We first argue that λ j ∞ in probability for j ∈ 𝓘 as n → ∞. According to (13), −LSEL(λ)

converges to σε
2 as long as the smoothing parameters of all important predictors shrink to 

zero as the sample size diverges to infinity. On the other hand, according to the proof of the 

asymptotic bias and variance in Li and Racine (2007), the multivariate Nadaraya-Watson 

estimator is not consistent if smoothing bandwidths of any important predictor do not shrink 
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to zero as the sample size diverges to infinity. Correspondingly, −LSEL(λ) will converge to σε
2

plus a squared bias term that does not shrink to zero asymptotically. Recall that λj is the 

reciprocal smoothing bandwidth and λ is the solution that minimizes −LSEL(λ) subject to 

subject to constraint (4), thus, minimization will not lead to λ j ↛ ∞ for j ∈ 𝓘 as the 

corresponding limit of the objective function is larger than σε
2, which is attainable. 

Consequently, we have λ j ∞ in probability for any j ∈ 𝓘 as n → ∞.

Consistency of MEKRO is achieved provided λ j 0 in probability for j ∈ 𝓘c, which we 

now argue. First we show λ j ↛ ∞ in probability for j ∈ 𝓘c. The MEKRO solution converges 

to σε
2 with an asymptotic rate of Op ∑ j ∈ 𝓜h j

4 + n∏ j ∈ 𝓜h j
−1

 according to (13). The 

deterministic version of this rate is a monotonically increasing function of the cardinality 

𝓜  of the set of predictors whose corresponding λj → ∞ by noting λj = 1/hj. Thus, the 

MEKRO solution must satisfy λ j ↛ ∞ in probability for j ∈ 𝓘c because minimization favors 

a faster convergence rate, and so 𝓜 = 𝓘. Further, λ j has the same order as τ for j ∈ 𝓘.

It remains to argue that λ j converging to a positive constant in probability for j ∈ 𝓘c is not 

favored. Denote 𝒜∞ = { j:λ j ∞ in probability as n ∞}, 

𝒜0 = { j:λ j 0 in probability as n ∞}, and 
𝒜1 = {1, …, p}\ 𝒜0 ∪ 𝒜∞
 

. From the above 

argument we have 𝒜∞ = 𝓘. Then, for j ∈ 𝒜1, the sequence λ j is asymptotically bounded 

away from both 0 and ∞. We assume without loss of generality that λ j c j in probability 

for j ∈ 𝒜1 and some 0 < cj < ∞; otherwise, we consider any convergent subsequence of λ j. 

Thus τ − ∑ j ∈ 𝒜∞
λ j ∑ j′ ∈ 𝒜1

c j′ in probability. Now consider an alternative solution 

sequence λ
∼

j = λ jτ /(τ − ∑
j′ ∈ 𝓘c λ j′) for j ∈ 𝓘 and λ

∼
j′ = 0 for j′ ∈ 𝓘c. Equation (13) gives 

σε
2 + Op(∑ j ∈ 𝓘 λ j

−4 + ∏ j ∈ 𝓘 λ j/n) for the solution λ j and 

σε
2 + Op(b−4∑ j ∈ 𝓘 λ j

−4 + b 𝓘 ∏ j ∈ 𝓘 λ j/n) for the alternative solution λ
∼

j, where 

b = τ /(τ − ∑
j′ ∈ 𝓘c λ j′) ≥ 1. Note that b = 1 iff 𝓘c = ∅ in which case all λ j ∞ as desired; 

we henceforth assume at least one predictor is unimportant and thus b > 1. We argued above 

that λ j has the same order as τ for j ∈ 𝓘 and because τ → ∞ satisfies τ 𝓘 + 4/n 0 as n → 

∞ by assumption, the asymptotic bias Op(∑ j ∈ 𝓘 λ j
−4) dominates the asymptotic variance 

Op(∏ j ∈ 𝓘 λ j/n). The alternative solution λ
∼

j will be favored in the process of minimizing 

the fitted mean squared error because b > 1 and thus the leading term of 

Op(b−4∑ j ∈ 𝓘 λ j
−4 + b 𝓘 ∏ j ∈ 𝓘 λ j/n) has a smaller constant than that of 

Op(∑ j ∈ 𝓘 λ j
−4 + ∏ j ∈ 𝓘 λ j/n) even though they share the same asymptotic rate. This 
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implies 𝒜1 = ∅ and 𝒜0 = 𝓘c, completing the argument for every convergent subsequence 

of λ j and thus λ j in general.

C Numerical Study with Gaussian X

We explore MEKRO’s performance when X follows a Gaussian distribution to address a 

concern from reviewers that it may greatly underperform without uniform data. We copied 

Model 2 from Section 4.2, but with X drawn from N(0, 1) such that Corr(X) has an AR(1) 

structure with ρ = 0.5. To generate the predictor matrix X of stacked predictor vectors XT, 

we generate a n × p matrix Z with each element iid N(0, 1) and define X = ZΣ where ΣTΣ is 

the population AR(1) correlation matrix with ρ = 0.5. The predictors are scaled to be in [0, 

1] to generate Yi, i = 1, …, n, then scaled to have mean 0 and unit variance. Recall that Y is 

generated according to g(X) = sin{2π(X1+X2)/(1+X3)} so that there are three active and 

seven irrelevant predictors. The predictor effect sizes are (1.00, 1.00, 0.32) for (X1, X2, X3) 

and 0 for X4 through X10.

The average integrated squared errors (AISE) and selection errors for Model 2 with 

Gaussian X are shown in Figure 10 and Table 7, respectively. MEKRO (MEK) does not do 

as well with prediction in this scenario. Gaussian data are spread too thinly near the 

boundaries to give MEKRO good surface estimates; see Section 4.2, Model 4 for more 

details. However, MEKRO maintains superior selection performance when compared to all 

other methods at n ≥ 100 and achieves perfect selection at n = 400. The additive COSSO 

(RC1) that is similar to MEKRO for selection in Model 2 at n = 400 falls short with 

Gaussian X by frequently failing to include the weak predictor, X3. Adding a boundary 

correction to boost MEKRO’s prediction performance is part of future work.
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Figure 1. 
LSEL(λ)contours and gradient vector fields of example model (6) for λ = (λ1, λ2, λ3 = τ − 

λ1 − λ2) and τ ∈ {1, 2, 3}; global maxima are denoted with solid circles and the neutral 

starting values λstart = (τ/p)1p are denoted with solid diamonds.
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Figure 2. 
Solution paths of λτ versus τ for Section 2.1 example with two active (solid) and three 

irrelevant (open) predictors. Dashed line: scaled AICc(τ), τ ∈ τ*= {0, 0.5, …, 7}.
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Figure 3. 
AISEs for Model 1. Note the scale differences. Out of the 400 MC samples, 3 AISE outliers 

are omitted from M3.
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Figure 4. 
Study of AMKR estimates for Model 1, n = 400.
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Figure 5. 
AISEs for Model 2. Note the scale differences. Out of the 400 MC samples, 19 and 6 AISE 

outliers are omitted from M3 and M2, respectively.
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Figure 6. 
AISEs for Model 3. Note the scale differences. Out of the 400 MC samples, 2 and 1 AISE 

outlier(s) are omitted from M3 and M2, respectively.
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Figure 7. 
AISEs for Model 4; units for Z(⋅) plots are 103 and units for ϕ(⋅) plots are 10−3. Note the 

scale differences. Dashed lines indicate methods with AISEs too large to display.
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Figure 8. 
ASPEs (average squared prediction errors) for Model 5. Note the scale differences. Out of 

the 400 MC samples, 3 ASPE outliers are omitted from both M3 and M2.
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Figure 9. 
ASPEs (average squared prediction errors) for the prostate data. Out of the 100 MC samples, 

2 and 4 ASPE outliers are omitted from M3 and M2, respectively.
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Figure 10. 
AISEs (average integrated squared errors) for Appendix C Model. Note the scale 

differences. Out of the 400 MC samples, 2 AISE outliers are omitted from both M2 and M3.
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