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Abstract
In mammalian cells, there are seven members of the sirtuin protein family (SIRT1–7). SIRT1,

SIRT6, and SIRT7 catalyze posttranslational modification of proteins in the nucleus, SIRT3,

SIRT4, and SIRT5 are in themitochondria and SIRT2 is in the cytosol. SIRT1 can deacetylate

the transcription factor SOX2 and regulate induced pluripotent stem cells (iPSCs) reprog-

ramming through the miR-34a–SIRT1–p53 axis. SIRT2 can regulate the function of

pluripotent stem cells through GSK3b. SIRT3 can positively regulate PPAR gamma

coactivator 1-alpha (PGC-1a) expression during the differentiation of stem cells. SIRT4

has no direct role in regulating reprogramming but may have the potential to prevent senes-

cence of somatic cells and to facilitate the reprogramming of iPSCs. SIRT5 can deacetylate

STAT3, which is an important transcription factor in regulating pluripotency and differenti-

ation of stem cells. SIRT6 can enhance the reprogramming efficiency of iPSCs from aged

skin fibroblasts through miR-766 and increase the expression levels of the reprogramming

genes including Sox2, Oct4, and Nanog through acetylation of histone H3 lysine 56. SIRT7 plays a regulatory role in the process of

mesenchymal-to-epithelial transition (MET), which has been suggested to be a crucial process in the generation of iPSCs from

fibroblasts. In this review, we summarize recent findings of the roles of sirtuins in the metabolic reprogramming and differentiation

of stem cells and discuss the bidirectional changes in the gene expression and activities of sirtuins in the commitment of differ-

entiation of mesenchymal stem cells (MSCs) and reprogramming of somatic cells to iPSCs, respectively. Thus, understanding the

molecular basis of the interplay between different sirtuins and mitochondrial function will provide new insights into the regulation

of differentiation of stem cells and iPSCs formation, respectively, and may help design effective stem cell therapies for regener-

ative medicine.
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The sirtuin family

Metabolic reprogramming is the shift among oxidative
phosphorylation (OXPHOS), fatty acid oxidation and gly-
colysis during stem cell differentiation or reprogramming
to stem cells accompanied by changes in the levels of

metabolites, redox state, proliferation, and mitochondrial

mass. Furthermore, the epigenetic and genetic modifica-

tions are also regulated by some metabolites and metabolic

reprogramming. Among all epigenetic regulators, the silent

information regulator (SIR) protein was originally found to
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regulate DNA repair and mitosis through its deacetylase
activity.1 In yeast, a protein named silent information reg-
ulator 2 (Sir2) can regulate life span,2 and this is the first of
mammalian sirtuin family proteins. Sir2 domain is highly
conserved from bacteria to human in all seven members of
this protein family (SIRT1–7).3 Through long time of evolu-
tion, the catalytic function-related core domain contains no
variant of amino acid residues, while the diversity of its N-
and C-terminal regions contributes to its different sub-
cellular localization, enzymatic activity, and substrate spe-
cificity.4 SIRT1, SIRT6, and SIRT7 are mostly localized in the
nucleus but can translocate to the cytoplasm under some
conditions.5–7 SIRT2 is mainly present in the cytoplasm but
is translocated to the nucleus under special conditions.8,9

Notably, SIRT3, SIRT4, and SIRT5 are mostly present in the
mitochondria, but can translocate to the nucleus or cytosol
under some exceptional conditions.10–13 These sirtuins not
only maintain genome stability and telomere function, but
also control the metabolism of glucose and lipids, regulate
inflammation, and suppress the development of tumors. In
this review, we have summarized and discussed the roles of
SIRT1, SIRT2, SIRT3, and SIRT6 in the metabolic reprog-
ramming during the differentiation of stem cells, including
mesenchymal stem cells (MSCs), embryonic stem cells
(ESCs), and induced pluripotent stem cells (iPSCs). We
also provide the current understanding and future perspec-
tives of the potential roles of certain SIRTs in the reprogram-
ming of iPSCs from somatic cells.

SIRT1

SIRT1, the first identified member of sirtuins that regulates
various cellular functions through NADþ-dependent pro-
tein deacetylase activity. It is not only implicated in longev-
ity, development, tumor suppression, but also in metabolic
reprogramming (Table 1). Evidence is mounting to support
that the activity of SIRT1 is vital for the maintenance and
differentiation of stem cells, especially through metabolic
reprogramming. The decrease of the activity of SIRT1 in
skeletal muscle stem cells has been demonstrated to be
accompanied with a shift from fatty acid b-oxidation to
glycolysis by a decrease in the levels of NADþ and an
increase in H4K16ac, one of the substrates of SIRT1-
mediated deacetylation.14 Besides, the expression level of
SIRT1 in mouse ESCs (mESCs) was found to be higher than
that in differentiated cells, which is considered to be
required for the survival, differentiation, and speciation
of ESCs.15–17 SIRT1 has been postulated to act as ametabolic
sensor that directly connects transcriptional output with
metabolic function. Ryall et al. showed that epigenetic reg-
ulation by SIRT1 plays an integral role in metabolic
reprogramming-promoted activation of adult muscle stem
cells.14 Deacetylations of peroxisome proliferator-activated
receptor c (PPAR-c), PPAR c coactivator 1-alpha (PGC-1a),
AMP-activated protein kinase (AMPK), and Forkhead box
protein O1 (FoxO1) are important mechanisms underlying
SIRT1-mediated regulation of energy metabolism and
redox homeostasis, which have recently been linked to
the differentiation and speciation processes of MSCs.
FoxO1 is one of the Forkhead box O transcription factors

involved in stress response, apoptosis, and autophagic reg-
ulation. There has been accumulating evidence to indicate
that FoxO1 serves as an interface for SIRT1-mediated sig-
naling in the maintenance of stem cell properties and reg-
ulation of lineage-specific differentiation of MSCs.
Induction of MnSOD and catalase by SIRT1 can increase
the capacity of antioxidant defense, which is supported
by our findings that antioxidant enzymes are upregulated
during osteogenic differentiation of human MSCs
(hMSCs).18 SIRT1/FoxO1-mediated signaling cascade
may contribute to enhanced antioxidant capacity to scav-
enge the intracellular reactive oxygen species (ROS) during
hMSCs differentiation. Activation of SIRT1 by silencing
miR-195 was shown to reverse age-related phenotype and
enhance cell proliferation of old MSCs via regulation of
telomerase reverse transcriptase (TERT) and FoxO1.19

Conversely, SIRT1 can trigger apoptotic cell death of
mESCs in response to an excess amount of ROS through
activation of FoxO1.20 In line with its downregulation
during adipogenesis, SIRT1 activation by resveratrol has
been shown to compromise the expression of adipogenic
genes and stimulate apoptosis in bovine intramuscular
adipocytes, which is associated with the induction of
FoxO1-mediated signaling cascade.21 Repression of SIRT1
transcription by miR-146b can promote adipogenic differ-
entiation of 3T3-L1 through FoxO1 signaling.22

In 2006, Takahashi and Yamanaka reported that mouse
somatic cells can be reprogrammed into iPSCs by Oct4,
Sox2, Klf4, and c-Myc.23 Oct4 and Sox2 act as the trigger
of major endogenous pluripotent genes during reprogram-
ming. The efficiency of reprogramming can be increased by
the hypoacetylation of Sox2, and Sox2 can be deacetylated
by SIRT1with themediation of Oct4. Compared to thewild-
type cells, SIRT1 knockout mouse embryonic fibroblasts
exhibited a decrease in the efficiency of reprogramming of
iPSCs, and SIRT1 overexpression could rescue the defect.24

Furthermore, miR-181a, miR-181b, miR-9, miR-204, miR-
199a/b, and miR-135a have been shown to suppress the
expression of SIRT1, which provides a new strategy in the
regulation of the reprogramming of somatic cells to iPSCs
(Figure 1).22,25 Among them, miR-199a negatively regulates
the differentiation of iPSCs to endothelial cells through tar-
geting SIRT1.22 Interestingly, Homma et al.26 compared the
proliferation, migration, and oxidative stress tolerance
among human adult aortic endothelial cells (HAECs),
human ESC-derived ECs (ESC-ECs), and human iPSCs-
derived ECs (iPSC-ECs). They found that iPSC-ECs and
ESC-ECs had higher levels of SIRT1 and were superior to
HAECs in the proliferation, migration, and oxidative stress
tolerance.26 These findings suggest that SIRT1 plays an
important role in regulating the proliferation, migration,
and oxidative stress tolerance of ESC-ECs and iPSC-ECs.
Jiang et al.27 further demonstrated that overexpression of
SIRT1 in iPSC-ECs could overcome early cell senescence
to maintain the phenotype and stemness of stem cells.
With regard to reprogramming and pluripotency, SIRT1
can facilitate the iPSCs reprogramming through the miR-
34a–SIRT1–p53 axis,28 whereas SIRT1, p53, and p38MAPK
are detrimental to the survival of Max-null ESCs with dif-
ferent levels of pluripotency.29 Therefore, SIRT1 plays an
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important role in the regulation of reprogramming and plu-
ripotency of iPSCs (Table 1 and Figure 1).

In addition, SIRT1 can also reduce abnormal DNAmeth-
ylation in mESCs through interfering with DNA methyl-
transferase Dnmt3l.15 Evidence from several studies on
SIRT1�/� mice suggested that SIRT1 also plays important
roles in the defects of embryonic and postnatal develop-
ment, especially in neurogenesis and spermatogenesis.15

It was found that the delayed differentiation was associated
with the downregulation of Oct4, Fgf5, Nanog, Scl,
b-globin, and the inactivation of Erk1/2.16 Interestingly,
Hayakawa et al.30 showed that a nutrient factor, ManNAc,
can induce the expression of Hcrt gene through activation
of its epigenetic regulators, including SIRT1, Ogt, and
Mgea5, to facilitate the generation of functional neurons
from mESCs. As for the deacetylase activity of sirtuins,
SIRT1 can deacetylate the cellular retinoid acid (RA) bind-
ing protein II (CRABPII) to modulate RA homeostasis and
regulate ESCs differentiation. Consequently, downregula-
tion of SIRT1 induces the accumulation of hyperacetylated
CRABPII in the nucleus, which in turn enhances RA signal-
ing, myogenic differentiation, and culminates in the devel-
opmental defects in mice.17

Recent studies revealed that SIRT1 deficiency induces
cell death by the impairment of DNA repair system in
human ESCs. Jang et al.31 showed that loss of SIRT1 in
human ESCs caused a dramatic reduction of DNA repair
proteins and simultaneously induced hyperacetylation of
p53, which then triggered an accumulation of DNA
damage. Under oxidative stress challenge, SIRT1 was
shown to maintain mitochondrial function and facilitate
autophagic induction via its inhibitory effect on mechanis-
tic target of rapamycin (mTOR) activity in mESCs.32 As a

result of its powerful effect on antioxidant defense, SIRT1
can rescue premature senescence in BM-MSCs when
exposed to oxidative stress33 and abate aging-dependent
dysfunction of somatic stem cells, an important mechanism
linking progressive decline in stemness and differentiation
potential through the control of ROS and telomere. It is
worth noting that a delicate control of intracellular ROS
levels is necessary for the maintenance of cell proliferation,
stemness, and differentiation of MSCs. Although our find-
ings showed that differentiated osteoblasts are more resis-
tant to oxidative stress compared with hMSCs, excess
production of ROS still hampers osteogenic differentiation
of hMSCs.18 Increase in the ROS level was associated with
age-related defect in bone formation. Upregulation of
SIRT1 in MSCs toward osteo-lineage may facilitate the
removal of excess production of ROS accompanied by
increased mitochondrial respiration during the differentia-
tion process. Nevertheless, researchers have demonstrated
that increase in the ROS levels during adipogenesis and
chondrogenesis of MSCs may confer the capacity of differ-
entiation.34,35 However, further study is needed to resolve
this contradictory observation. SIRT1 can directly interact
with telomeric repeats to attenuate telomere shorting.
Palacios et al.36 reported that overexpression of SIRT1
could increase the homologous recombination throughout
the whole genome, which links SIRT1 with DNA repair and
telomere. SIRT1 can also rescue MSCs from aging-related
DNA damage by promoting the expression and telomerase
activity of TERT.37

The role of SIRT1 in cell fate decision and differentiation
capacity of stem cells is garnering increased attention, and
studies in this field have shed light on its epigenetic regu-
lation for differentiation of stem cells. Activation of SIRT1

Figure 1. Schematic illustration of the regulatory roles of different sirtuins in the reprogramming of human skin fibroblasts to generate induced pluripotent stem cells.

Sirtuin1 (SIRT1) has been shown to positively regulate the formation of iPSCs through the miR34–SIR1–p53 axis. Furthermore, many miRNAs, such as miRNA-181a,

miRNA181b, miR-9, miR-204, miR-199a/b, and miR135a have been identified to negatively regulate the expression of SIRT1. By contrast, the expression of SIRT2 has

been shown to be downregulated during the formation of iPSCs. The expression of SIRT2 can be negatively regulated by miR200c. SIRT3 and SIRT6 have been shown

to play important roles to enable senescent skin fibroblasts to be reprogrammed into iPSCs through upregulation of the expression of antioxidant enzymes such as

catalase and MnSOD, and thereby leading to a decrease of ROS production. SIRT4 has been shown to negatively regulate the senescence of skin fibroblasts that are

exposed to UV irradiation. SIRT5 can negatively regulate the ground state pluripotency of naı̈ve iPSCs through downregulation of the LIF/JAK/STAT3 pathway. The role

of SIRT7 in promoting mesenchymal-to-epithelial transition (MET) is yet to be determined since MET is crucial for the successful reprogramming of skin fibroblasts to

iPSCs. (A color version of this figure is available in the online journal.)
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promotes osteogenic differentiation in both mouse and
human MSCs through positively regulating a master tran-
scription factor of osteoblasts, Runx2. However, inhibition
of SIRT1 was shown to stimulate the expression of adipo-
genic genes and increase the number of adipocytes.
Abundant evidence indicates that SIRT1 activation favors
osteogenesis but interferes with adipogenic and neurogenic
differentiations of hMSCs. In the SIRT1 heterozygous mice
(SIRT1þ/�), a marked reduction in bone formation and
enhancement of adipogenesis supports the role of SIRT1
in lineage determination of cell differentiation in vivo.38

MSCs obtained from MSC-specific SIRT1 knockout mice
also displayed decreased capacity of osteogenic differenti-
ation, nevertheless, the efficiency of adipogenesis was not
significantly changed. Suppression of SIRT1 by miR-132, a
repressor of SIRT1, was shown to impair osteogenic differ-
entiation and subsequently lead to diabetic osteoporosis in
MC3T3-E1 cells.39 Osteoporosis, characterized by a loss of
osteoblasts that results in defective formation and
decreased mineral density of bone, is commonly observed
in patients with type 2 diabetes. Increase of osteogenic dif-
ferentiation by activating SIRT1 may be an effective strate-
gy to treat osteoporosis associated with metabolic diseases
and aging.

In fact, the SIRT1 expression level is decreased during
adipogenic differentiation and activation of SIRT1 was
shown to impair adipocytes development. However, the
details of the mechanism underlying inhibitory effect of
the SIRT1 on adipogenesis of MSCs are still unclear.
According to the intendance in the differentiation of
MSCs to diverse lineages, SIRT1 represses nuclear receptor
PPAR-c, which contributes to the inhibition of adipogenesis
during osteogenic differentiation. This is supported by the
finding that resveratrol, a SIRT1 activator, blocks adipo-
genic differentiation and enhances the expression of osteo-
genic genes in MSCs. Recent studies indicated that SIRT1
blocks adipogenic differentiation through triggering Wnt/
b-catenin signaling, a well-known pathway regulating cell
fate determination of MSCs toward osteogenesis,40,41 in
C3H10T/2 stem cells,42,43 and hMSCs.44 Deacetylation of
b-catenin by SIRT1 promotes its nuclear localization and
consequently represses adipogenic gene expressions.43

Zhou et al. also showed that both resveratrol and overex-
pression of SIRT1 inhibit adipogenesis and enhance myo-
genic differentiation via Wnt/b-catenin signal cascade in
C3H10T/2 cells.45 Metabolic switch to active aerobic
metabolism of MSCs is a hallmark during multiple lineage
differentiation. A growing body of evidence shows altera-
tions in the bioenergetic function, morphology, and dynam-
ics of mitochondria during stem cell differentiation.
However, the details in the regulatory mechanism are still
poorly understood. We and other researchers have proved
that mitochondrial biogenesis and antioxidant defense
capacity are dramatically increased during adipogenic,
osteogenic, and myogenic differentiation.

SIRT2

Cytosolic SIRT2 is involved in the modulation of microtu-
bule dynamics through catalyzing a-tubulin deacetylation.

Regulation of cell morphology and mitochondrial distribu-
tion by modification of microtubule dynamics is required
for neuronal development.46,47 There is no direct evidence
to show that SIRT2 can promote reprogramming by deace-
tylating key reprogramming factors or pluripotency genes.
Nonetheless, SIRT2 has shown to directly regulate metabol-
ic transition during somatic reprogramming by controlling
the acetylation status of glycolytic enzymes.48 SIRT2 was
shown to affect early lineage determination of mESCs via
activation of GSK3b,49 which plays a critical role in neuro-
genic differentiation.50 SIRT2 can regulate caloric
restriction-dependent lifespan extension through decreas-
ing the expression level of H4K16Ac during G2/M transi-
tion, which indicates that SIRT2 contributes to the alteration
of acetylation of histone proteins in cell cycle.8 It is also
involved in metabolic shift during reprogramming through
acetylation of glycolytic enzymes, such as GAPDH, PGK1,
ENO1, PKM, and ALDOA (Table 1).51 In contrast to SIRT1,
SIRT2 is downregulated in the iPSCs and is upregulated
upon neuronal differentiation.52 Furthermore, overexpres-
sion of SIRT2 in human skin fibroblasts reduced iPSC gen-
eration by approximately 80%, whereas knockdown of
SIRT2 significantly increased the efficiency, which was
abrogated by 2-deoxyglucose (2DG), indicating a key role
of SIRT2 in metabolic reprogramming during the formation
of iPSCs.52 Notably, miR200c has been identified to be
induced by Oct4, which in turn downregulates the
mRNA and protein expression of SIRT2. This further
enhances the efficiency of reprogramming and the pluripo-
tency of iPSCs. Downregulation of SIRT2 bymiR-200c upre-
gulates glycolysis by acetylation of glycolytic enzymes
GAPDH, PGK1, ENO1, PKM, and ALDOA. Taken together,
the miR200c–SIRT2 axis can regulate the reprogramming
and pluripotency of iPSCs through metabolic regulation
(Figure 1).47

In addition, Jeong and Cho51 recently proved that SIRT2
positively regulates neurogenesis through induction of the
ERK1/2 signaling and nuclear cAMP response element-
binding protein (CREB), and that the downstream target
of SIRT2 can regulate neuronal differentiation and brain
neuroplasticity. SIRT2 was found to be highly expressed
in the affected tissues of some of the patients with
Parkinson’s disease (PD) or Huntington’s disease (HD)
and has thus been implicated in neurodegeneration.53,54

In the neurons with insulin resistance, SIRT2 was shown
to negatively regulate insulin-stimulated glucose uptake.54

However, the role of SIRT2 in the progression of neurode-
generation is still controversial. A recent study indicates
that SIRT2 protects neuron cells from oxidative stress.54

Overexpression of SIRT2 reduces rotenone-elicited cell
death and a-synuclein aggregates in human SH-SY5Y
cells, partly effected through the induction of MnSOD. It
was suggested that the higher activity of SIRT2 in degener-
ative brains may be a compensatory effect to cope with the
stress. In contrast to the favorable effect on neurogenesis,
SIRT2 activity is harmful to adipogenesis and its expression
level is downregulated during the initiation of adipogenic
differentiation.55 Hyperacetylation of a-tubulin could facil-
itate mitochondrial transport along the microtubules,
which is essential for adipogenic differentiation46 and can
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initiate cytoskeleton remodeling to facilitate the differenti-
ation and maturation of adipocytes.47 Deacetylation of
FoxO1 by SIRT2 was demonstrated to block adipogenic dif-
ferentiation of MSCs through downregulation of PPAR-
c.49,56 Moreover, it was shown that downregulation
of SIRT2 led to hyperacetylation and phosphorylation of
FoxO1, which in turn promoted the differentiation of
3T3L1 preadipocytes.57

SIRT3

SIRT3, expressed in tissues with high metabolic activity, is
a major sirtuin in mitochondria. It has emerged as a
master regulator of oxidative metabolism, redox homeosta-
sis, oxidative response, and longevity. Induction of SIRT3 is
required for adipogenic and osteogenic differentiation.58–61

Recently, we demonstrated that the mRNA and protein
expression levels of SIRT3 were dramatically increased
during the initiation of adipogenic differentiation and
maintained at high levels throughout the differentiation
process. It was shown that induction of SIRT3 and concur-
rent changes in the acetylation levels of mitochondrial pro-
teins contribute to the activation of mitochondrial function
in adipogenic differentiation of MSCs.62 Recent studies
unraveled that the beneficial effect of SIRT3 involves the
upregulation of mitochondrial biogenesis, oxidative metab-
olism, and antioxidant capacity during differentiation of
MSCs.58,61 We observed that SIRT3 knockdown caused a
decrease in the expression levels of PGC-1a, respiratory
enzyme complexes, and antioxidant enzymes in adipogen-
esis.62 Silencing of SIRT3 led to abnormal differentiation of
myoblasts through the decrease in the expression levels of
PGC-1a and MnSOD.62 On the other hand, we showed that
impaired mitochondrial respiration caused by SIRT3 defi-
ciency induced a metabolic shift to glycolysis.
Mitochondrial pyruvate dehydrogenase complex (PDHC)
is the rate-limiting enzyme for pyruvate oxidation that pro-
duces acetyl-CoA to switch on aerobic metabolism in the
mammals. During adipogenic differentiation, activation of
PDH63 and downregulation of glycolysis64 are pivotal
events for the upregulation of aerobic metabolism. One of
our previous studies revealed that a decline of SIRT3
caused hyperacetylation of PDH and consequently attenu-
ated its enzymatic activity in human cells harboring a path-
ogenic mtDNA mutation.65 It is known that acetylation of
PDH-E1 inhibits the PDH activity by triggering
phosphoinositide-dependent kinase-1 (PDK1)66-mediated
phosphorylation, which promotes glycolysis.67

Deacetylation of PDH by SIRT3 enhances oxidative metab-
olism through increasing the enzymatic activity of PDH.68

The finding of the upregulation of PDH activity and mito-
chondrial respiration by overexpression of SIRT3 implies
the potential role of SIRT3-mediated deacetylation in mod-
ulating the metabolic prolife during adipogenic
differentiation.

SIRT3 deficiency has been linked to multiple human dis-
eases and aging-associated syndrome. In a previous study,
we found that oxidative stress led to the decline of SIRT3 in
human cells harboring pathogenic mtDNA mutations.69 In
addition, SIRT3 activity is crucial for brown adipocytes

differentiation in vitro.70 Giralt et al.70 demonstrated that
increased expression of SIRT3 stimulated CREB phosphor-
ylation, which induced the expressions of PGC-1a, uncou-
pling protein 1 (UCP1), and an array of mitochondrial
biogenesis-related genes in murine brown adipocyte. In
contrast to the function of white adipocytes to store
energy, brown adipocytes act to increase the energy expen-
diture and thermogenesis. Many researchers have paid
much attention to the development of brown adipocytes
from white adipocytes to counteract obesity and insulin
resistance.71,72 In miPSCs, PGC-1a overexpression was
shown to promote brown-like adipogenic differentiation
with the induction of brown adipocyte marker genes such
as UCP1 but repressed expression of UCP2, a white adipo-
cyte marker.73 Regarding the potential role of MSCs in the
treatment of diabetes,71,72 commanding the adipogenesis of
MSCs may be a therapeutic strategy for prevention of
obesity-related diseases.

SIRT3�/� cells showed lower ROS levels and decreased
expression of antioxidant enzymes such as MnSOD, which
supports the notion that SIRT3 plays a role in mediating
cellular response to oxidative stress in aging and disease.63

Moreover, the expression level of endogenous SIRT3 was
decreased when BM-MSCs were stimulated by a high dose
of hydrogen peroxide.

63 Decrease in the level of SIRT3
induced by oxidative stress may interfere with the differ-
entiation ability of aged MSCs. Actually, the SIRT3 level
was recently found to decrease with replicative senescence
of human bone marrow-MSCs (hBM-MSCs) at a later pas-
sage.63 Depletion of SIRT3 was found to compromise adi-
pogenesis and osteogenesis. It was shown that exogenous
SIRT3 overexpression can ameliorate the differentiation
ability and slightly restore aging-related phenotype in
senescent hMSCs. A recent study reported that SIRT3 over-
expression reduces oxidative stress injuries in neural stem
cells (NSCs).74 This neuroprotection of SIRT3 on NSCs
involves the increase of mitochondrial membrane potential
and attenuation of the ROS levels and apoptotic cell death.
Downregulation of SIRT3 can regulate the ROS detoxifica-
tion by direct deacetylation of FoxO3a and upregulating the
expression of MnSOD and catalase, which can attenuate
oxidative damage and age-related pathological changes in
mice fed with a calorie-restricted diet. SIRT3/FoxO3a sig-
naling can protect mouse BM-MSCs from mitochondrial
dysfunction and apoptosis.75 In this study, knockdown of
SIRT3 was shown to significantly decrease the protein level
of FoxO3a in BM-MSCs. Recently, Lorenowicz and co-
workers60 claimed that FoxO3-mediated autophagy is
involved in the maintenance of redox homeostasis during
osteogenic differentiation of hMSCs. Autophagy is a con-
served proteolytic mechanism underlying the degradation
of damaged molecules and organelles to maintain intracel-
lular homeostasis. For example, activation of mitophagy, an
autophagic degradation of mitochondrion, causes higher
mitochondrial turnover wherebymaintainingmitochondri-
al quality during early chondrogenesis.76 Autophagy has
been functionally linked to the maintenance of pluripo-
tency and differentiation capacity of stem cells.
Lorenowicz’s group used H2O2 stimuli to demonstrate
that ROS induced the phosphorylation and activation of
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FoxO3 by MAPK8/JNK-mediated signaling, by which
MSCs could trigger autophagic induction to prevent oxida-
tive stress-elicited damage and cell death.60 The authors
showed that FxoO3 knockdown in MSCs elevates the intra-
cellular ROS levels and compromises osteogenic differenti-
ation. Inhibition of the autophagic process was also shown
to impair adipogenic differentiation of 3T3-L1 preadipo-
cytes and MSCs. However, the role of autophagy in MSCs
and different lineage differentiation is still controversial
and its regulation by SIRT3 is worthy of further study.
Taken together, the above findings imply that SIRT3 assists
stem cells in coping with the external stress, and its induc-
tion during differentiation is responsible for mitochondrial
activation and meanwhile eliminates the ROS overpro-
duced in the process (Table 1).

It has been shown that the NADþ levels and NADþ-
dependent enzymes are downregulated in the aging pro-
cess. Decrease of the enzyme activities of sirtuins has been
shown to associate with mitochondrial diseases,77 DNA
repair defects,78 and deficiency in intermediary metabo-
lism. It has been shown that the efficiency of reprogram-
ming from somatic cells to generate iPSCs declines with age
of the donor.79,80 It is thus important to identify regulatory
factors that can overcome aging during the reprogramming
processes. Interestingly, it was observed that
downregulation of p16 signaling could facilitate the cell
fate transition and increase SIRT3 protein expression in
aging cells to the level of young cells, but no such changes
were detected in SIRT1 and SIRT2.81 The iPSCs reprogram-
ming efficiency and protein levels of SIRT3 in mouse iPSCs
(miPSCs), generated from tail-tip fibroblasts (TTFs) of old
mice, were significantly lower than those of the miPSCs
generated from TTFs of young mice. Interestingly, overex-
pression of nicotinamide nucleotide transhydrogenase
(NMT) and nicotinamide mononucleotide adenylyl trans-
ferase 3 (NMNAT3) could restore the NADþ levels and
SIRT3 activity in the mitochondria of old TTFs and further
enhanced the iPSCs reprogramming efficiency (Figure 1).81

These findings suggest that low NADþ levels and SIRT3
activity in the mitochondria of somatic cells from aged
animal sources are barriers to cell fate transition.

SIRT4

Among the sirtuin family proteins, SIRT4 is the only
member with no deacetylase activity and exhibits catalytic
limitation to NADþ-dependent ADP-ribosyl transferase
activity.82 SIRT4 is localized in mitochondrial matrix and
plays roles in cell metabolism, redox homeostasis, and lon-
gevity. Unlike other sirtuins, SIRT4 negatively regulates
oxidative metabolism in adult tissues by repressing mito-
chondrial glutamine metabolism. Upregulation of SIRT4
was observed in senescent spermatogonial stem cells.83 In
trophoblast stem cells, SIRT4 activation by mTOR-
mediated signaling was found to disturb mitochondrial
function and redox homeostasis, which contributed to
lysine-specific demethylase 1 deficiency-induced senes-
cence.83 The most common source of somatic cells is skin
fibroblasts, which are frequently exposed to UV irradiation
and oxidative stress-elicited DNA damage, a known

etiology in cell senescence of skin tissues. It was shown
that photo-damage could upregulate the mRNA expression
of both SIRT1 and SIRT4. Notably, SIRT4 was found to be
degraded at the early stage of photo-damage and was then
accumulated at the later stage. Upregulation of SIRT2 and
SIRT4 by niacin restriction increased DNA damage
(Figure 1),84 which implies that SIRT4 may be a promising
target to prevent senescence of somatic cells and to facilitate
the iPSCs reprogramming (Table 1). However, up to now
there has been no direct evidence to support the role of
SIRT4 in the reprogramming, pluripotency, and differenti-
ation of iPSCs.

SIRT5

Mitochondrial SIRT5 catalyzes lysine deacylation to
remove acetyl, succinyl, malonyl, and glutaryl groups
from target proteins and consequently regulates mitochon-
drial metabolism. SIRT5 is the only sirtuin exhibiting pro-
tein desuccinylase and demalonylase activities in
mammalian cells. Accumulated evidence suggests that
SIRT5 and SIRT3 collaboratively regulate several metabolic
pathways, such as b-oxidation of fatty acids and OXPHOS,
and they even share the same protein targets. Although
SIRT5 was found to be linked to several human diseases
including cancer and neurodegenerative disorders, its
physiological and pathophysiological functions remain elu-
sive. In addition to regulating the metabolism of lipids,85

SIRT5 was found to be dramatically decreased in the pro-
tein level during adipogenic differentiation of hMSCs.61

Moreover, we found that overexpression of SIRT5 could
negatively regulate mitochondrial respiration during adi-
pogenic differentiation, which has substantiated the poten-
tial role of SIRT5 in stem cell differentiation. It was shown
that SIRT5 plays an important role in glycolysis and energy
metabolism in cancers.86 Interestingly, Yang et al.87 reported
that SIRT5 can deacetylate STAT3, thereby inhibit its func-
tion in mitochondrial pyruvate metabolism. Notably,
STAT3 is the downstream effector of LIF/JAK signaling,
and plays an important role in the maintenance of the
ground state pluripotency of iPSCs and is involved in the
reprogramming of somatic cells (Figure 1).88,89 These obser-
vations suggest that SIRT5 could negatively regulate the
pluripotency of iPSCs through down-regulation of the
LIF/JAK/STAT3 axis.

SIRT6

SIRT6 has been known as an important regulator of genome
stability and is associated with transcription, telomere
integrity, genomic repair, and metabolic homeostasis. Its
deficiency in mice induced premature aging multiple age-
related syndromes, which ultimately led to premature cell
death.90 Deletion of SIRT6 in mouse bone marrow cells
could reduce osteogenic differentiation and affect the
bone mineral density.91 Since SIRT6 has a role in aging, Li
and co-workers92 demonstrated a link of the expression of
SIRT6 to tooth development by using mouse odontoblasts.
They showed that SIRT6 is required for the differentiation
of dental MSCs, the formation of the tooth root, tooth
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eruption, and tooth germs through the regulation of mito-
chondrial energy metabolism. Impairment of cell prolifer-
ation and cell senescence were also observed in hBM-MSCs
deficient of SIRT6.93,94 Loss of SIRT6 in hMSCs led to the
aberrant redox metabolism and less tolerance to oxidative
stress.94 It was found that SIRT6 prevented hMSCs from
oxidative stress-induced damage and premature senes-
cence by activating nuclear factor erythroid 2-related
factor 2 (Nrf2), a critical redox sensor that modulates the
antioxidant responses.94 There has been increasing evi-
dence to suggest that SIRT6 positively regulates osteogenic
and adipogenic differentiation of MSCs.95–97 In neurons,
oxidative stress results in acute decline in the protein
expression level of SIRT6.98 In contrast to the benefit of
SIRT6 in adult hippocampal neurogenesis,99 overexpres-
sion of SIRT6 was found to induce autophagy via repres-
sion of the AKT/ERK signaling, which is responsible for
H2O2-induced neuronal cell death.

SIRT6 regulates the balance between pluripotency and
differentiation through ten-eleven translocation enzymes
(TETs) and 5-hydroxymethylcytosine (5hmC).100 In addi-
tion, a combination of SIRT6 and the Yamanaka factors
during reprogramming significantly promotes DNA
double-strand break (DSB) repair by activating non-
homologous end joining (NHEJ) in iPSCs derived from
old mice. Therefore, SIRT6 can improve the quality of
iPSCs derived from aged cells through the stabilization of
their genome.101 Sharma et al.102 demonstrated that SIRT6
can enhance the reprogramming efficiency of iPSCs from
aged skin fibroblasts. In addition, miR-766 was identified to
regulate SIRT6 and iPSCs reprogramming (Figure 1).
Furthermore, SIRT6 was shown to regulate the expression
of pluripotent genes, such as Sox2, Oct4, and Nanog,
through acetylation of histone H3 lysine 56 (H3K56ac)
(Table 1).101

SIRT7

SIRT7 is located in the nucleus and its dysfunction has been
linked to the occurrence of cancer and age-related patholo-
gies. Expression of SIRT7 is declined during aging of hema-
topoietic stem cells (HSCs), its downregulation induces
mitochondrial protein folding stress (PFSmt) and contrib-
utes to dysfunction of HSCs.103 SIRT7 activation can ame-
liorate the regenerative capacity of aged HSCs.104 SIRT7
binds to the promoter of NRF1 target genes and thus
represses transcription of these genes to impair mitochon-
drial biogenesis and respiration.105 During osteogenic dif-
ferentiation, SIRT7 is downregulated and Wnt/b-catenin
signaling is activated.106 Conversely, induction of SIRT7 is
required for adipogenic differentiation, but the regulation
of adipogenesis by SIRT7 has not been fully explored. Loss
of SIRT7 impairs the adipogenic differentiation ability of
mouse embryonic fibroblasts and 3T3L1 preadipocytes.
Besides, SIRT7 knockout mice also exhibited high adiposi-
ty.107 Interestingly, the expression level of miR-93, a repres-
sor of SIRT7 that negatively regulates adipogenesis, was
found to decrease in ob/ob mice.108 miR-93 has been
reported to be associated with the turnover of mature adi-
pocytes and its inhibition promotes fat formation in vivo.

These findings suggest a potential role for SIRT7 in promot-
ing obesity. Therefore, it can be expected that SIRT7 is a
probable candidate for the treatment of obesity in the
future.

It has been reported that SIRT7 also plays an important
role in oncogenic transformation and tumor biology.109 It
was shown that SIRT7 could regulate metastatic pheno-
types in either epithelial or mesenchymal type of cancer
cells, and that inactivation of SIRT7 could inhibit metastasis
of cancer cells in vivo.110 In addition, SIRT7 plays a regula-
tory role in the process of mesenchymal-to-epithelial tran-
sition (MET) (Table 1), which has been suggested to be a
crucial process in the generation of iPSCs from fibro-
blasts.111,112 However, more studies are required to prove
that SIRT7 actually regulates the EMT and MET processes,
respectively (Figure 1).

Potential molecular signals to specify the
functions of sirtuins

The level of sirtuins and the modulation of their activities
are considered to be the key factors in determining stem cell
fate. Because of the requirement of NADþ for the enzyme
activity of sirtuins, intracellular ratio of NADþ/NADH is
the major factor that controls sirtuin function. Mammalian
nicotinamide phosphoribosyltransferase (Nampt) is a rate-
limiting enzyme in the process of NADþ biosynthesis. Its
activity is highly related to intracellular levels of NADþ and
SIRT1 activity. Decline of Nampt in senescent MSCs was
shown to attenuate the expression and activity of SIRT1.
However, Nampt overexpression can restore age-related
phenotype in MSCs.113 During osteogenic differentiation,
induction of Nampt contributes to elevated NADþ content
and SIRT1 activation.114 Evidence indicates that Nampt
promotes osteogenic differentiation and is negatively relat-
ed to adipogenesis.113,115 A recent study demonstrated that
Nampt deficiency by inhibitor or knockdown resulted in a
decrease of the NADþ concentration and SIRT1 activity,
and subsequently interfered osteoblastogenesis of BM-
MSCs.113 Nampt is also involved in oligodendrocytic line-
age determination via modulation of SIRT1 and SIRT2.116

Like SIRT1, SIRT3 has been emerged as a metabolic sensor
of the NADþ/NADH level in cells to meet the energy
demand. The NADþ and SIRT3 levels in mitochondria
were observed to increase in mice subject to CR or during
fasting.117,118 Rui and co-workers observed that Nampt
overexpression enhanced mitochondrial function and pro-
tected neurons from lethal stress.119 It has been reported
that SIRT3 and SIRT4 are involved in the cytoprotection
effect of Nampt against genotoxic stress. Actually, AMPK
is also involved in the salvage pathway of NADþ synthesis
via regulating Nampt transcription. AMPK activation
induced by glucose restriction was shown to increase intra-
cellular ratio of NADþ/NADH and thereby activate
SIRT1.120 AMPK activation can enhance SIRT1-mediated
deacetylation on its targets such as PGC-1a, FoxO1, and
other differentiation-related factors. It has been recently
demonstrated that AMPK downstream signaling facilitates
osteogenic differentiation and may be associated with the
lineage commitment of MSCs61 and reprogramming of
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iPSCs.121 On the other hand, mitochondrial pools of Nampt
and NADþ are also regulated by PKCE activation in an
AMPK-dependent manner in rat cortex upon resveratrol
treatment or ischemic preconditioning.122 Another research
group demonstrated that an increase of mitochondrial
Nampt by PKC e activation could upregulate the
expression and desuccinylase activity of SIRT5 in rat
neuronal-astrocyte cortical cells, but did not influence
SIRT3 activity.123 Moreover, they demonstrated the impor-
tant role of SIRT5 in PKC e–Nampt axis-mediated ischemic
neuroprotection.123 Interestingly, unlike a downstream
target of AMPK pathway, SIRT6 regulates metabolic
homeostasis by activating AMPK in skeletal muscle124

and liver.125 Under energy deficient condition, AMPK
was induced to directly modulate phosphorylation and
subsequent redistribution and degradation of nuclear
SIRT7 in cells.126 Collectively, these findings suggest that
AMPK and PKC e represent potential pathways for the reg-
ulation of sirtuins during stem cell differentiation.

Conclusions and future perspectives

Throughout the past decade, fast progress in stem cell
research has hold great promise for cell therapy and regen-
erative medicine. Besides epigenetic regulation mecha-
nisms, posttranslational modification of master proteins
have been demonstrated to play important roles in the
maintenance of pluripotency and differentiation potential
of stem cells. Emerging evidence suggests that sirtuin
family proteins regulate many protein functions, signaling
pathways and cell fates in the differentiation of MSCs and
reprogramming of iPSCs from somatic cells. The potential
of sirtuins, especially SIRT1 and SIRT3, in regulating met-
abolic reprogramming and lineage-specific commitment of
MSCs and iPSCs have received increasing attention in
recent years. In previous studies, we showed that SIRT3
function is important for the upregulation of the mitochon-
drial biogenesis and respiration, and induction of antioxi-
dant enzymes during adipogenic differentiation of
hMSCs.60 However, the underlying mechanisms regulating
the expression of sirtuins during these processes are largely
unknown. It is important to specifically address the effects
of SIRT3 and other sirtuins on oxidative metabolism and
further delineate the role of master transcription factors
such as FoxO1, FoxO3a, and PGC-1a in the metabolic
reprogramming modulated by sirtuins in stem cell differ-
entiation and iPSCs formation. During these processes, the
expression levels of different sirtuins and mitochondrial
biogenesis-related PGC-1a, NRF-1, NRF2, mtTFA, and
respiratory enzyme complexes subunits, and antioxidant
enzymes should be examined in an integrated and systemic
manner. The potential signaling molecules that govern sir-
tuins activation, the role of PKCE–AMPK–Nampt axis in
the regulation of different sirtuins, their crosstalk in mito-
chondrial protection during differentiation and mainte-
nance of stem cells should be further investigated.
Besides, the newly identified role of Sirt5 in catalyzing
the succinylation and malonylation of mitochondrial pro-
teins indicates the complexity of lysine acylations and sug-
gests the possible crosstalk between these modifications in

mitochondrial metabolism. Since succinylation and acety-
lation have the same protein targets in mitochondria,85 it is
worthy to clarify if different lysine acylation at overlapped
or adjacent residues results in an antagonistic or synergistic
effect. We assume that Sirt3 could function coordinately
with Sirt5 to modulate various metabolic processes
during stem cell differentiation, iPSC reprogramming, or
in cellular response to environmental stress.

In this article, we have reviewed and summarized the
regulatory roles of SIRT1–7 in the reprogramming, mainte-
nance of pluripotency, and differentiation of stem cells. We
have also discussed the known miRNAs that target at dif-
ferent sirtuins. It is noteworthy that SIRT1 can be positively
regulated by miR34 to promote reprogramming of iPSCs.
Furthermore, the roles ofmiRNA-181a,miRNA181b,miR-9,
miR-204, miR-199a/b, and miR135a in the regulation of the
expression of SIRT1 have been proved. Besides, SIRT2 has
been shown to be downregulated by miR200c during the
formation of iPSCs. The miRNAs targeting at SIRT1 and
SIRT2 could be applied in promoting stem cell translational
medicine to make the reprogramming of iPSCs from somat-
ic cells or stem cell differentiation more efficient and safe.
However, the miRNA profile targeting SIRT3–7 remains to
be investigated since the potential roles of SIRT3, SIRT4, and
SIRT6 in enabling senescent skin fibroblasts to be reprog-
rammed into iPSCs have remained unclear. SIRT5 is crucial
for the ground state pluripotency of naı̈ve iPSCs. The
understanding of the functions of sirtuins in stem cell biol-
ogy are rather limited and areworthy ofmore investigation.
The underlying molecular mechanisms of sirtuin family
proteins and related miRNAs in the reprogramming and
differentiation of iPSCs and other types of stem cells
remain to be investigated. Further studies are warranted
to identify potential natural products, chemical com-
pounds, or drugs that specifically target at certain sirtuins
to modulate stem cell differentiation or iPSCs formation.
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