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Abstract

Tripartite integrative and conjugative elements (ICE3) are a novel form of ICE that exist as

three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to

conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine

and excise to form a single circular element. This assembly requires three coordinated

recombination events involving three site-specific recombinases IntS, IntG and IntM. Here,

we demonstrate that three excisionases–or recombination directionality factors—RdfS,

RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that

expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quo-

rum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both

rdfG and rdfM. Therefore, RdfS acts as a “master controller” of ICE3 assembly and excision.

The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs

via a stepwise sequence of recombination events that avoids splitting the chromosome into

a non-viable configuration. These discoveries expose a surprisingly simple control system

guiding molecular assembly of these novel and complex mobile genetic elements and high-

light the diverse and critical functions of excisionase proteins in control of horizontal gene

transfer.

Author summary

Bacteria evolve and adapt quickly through the horizontal transfer of DNA. A major mech-

anism facilitating this transfer is conjugation. Conjugative DNA elements that integrate

into the chromosome are termed ‘Integrative and Conjugative Elements’ (ICE). We

recently discovered a unique form of ICE that undergoes a complex series of recombina-

tion events with the host chromosome to split itself into three separate parts. This
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tripartite ICE must also precisely order its recombination when leaving the current host

to avoid splitting the host chromosome and the ICE into non-viable parts. In this work,

we show that the tripartite ICEs use chemical cell-cell communication to stimulate recom-

bination and that recombination events are specifically ordered through cascaded tran-

scriptional activation of small DNA-binding proteins called recombination directionality

factors. Despite the inherent complexity of tripartite ICEs this work exposes a surprisingly

simple system to stimulate their precise and ordered molecular assembly prior to horizon-

tal transfer.

Introduction

Bacterial genome evolution proceeds at a rapid pace largely due to the sharing of genetic mate-

rial [1]. This gene exchange is often facilitated by mobile genetic elements (MGEs) such as

plasmids, bacteriophage and other chromosomally-integrating elements [2, 3]. MGEs have

evolved sophisticated mechanisms to maintain themselves in their host while opportunistically

infecting neighbouring organisms, maximising their dissemination through both vertical and

horizontal modes of descent [4]. MGEs frequently harbour genes conferring selective benefit

to hosts such as virulence, metabolism, symbiosis and antimicrobial-resistance determinants

[5–10]. The rapid progress in genome sequencing this century has revealed the ubiquity of

MGEs in microbial genomes and specifically, the abundance of MGE-encoded conjugation

systems highlights conjugation as a major mechanism of horizontal transmission [11]. It has

also become increasingly apparent that ‘non-conjugative’ plasmids and chromosomally-inte-

grating elements may exploit conjugation systems encoded by other MGEs for their own trans-

fer [12–14]. The bacterial mobilome can therefore be viewed as a DNA ecosystem where

MGEs compete for an environmental niche defined by the hosts in which they can infect and

persist.

Integrative and conjugative elements (ICEs) are the most recently defined MGE, but are

probably the most abundant conjugative elements in bacteria [11]. Unlike plasmids, ICEs

integrate within their host’s chromosome, negating a strict requirement for full-time extra-

chromosomal replication systems [15, 16]. Once stimulated to transfer, ICEs excise from the

chromosome to form a circular episome capable of conjugation. Rolling-circle replication is

an essential part of most conjugation systems so most ICEs likely have the capacity to replicate

via this mechanism once excised [17]. Cells carrying an excised ICE can persist in this trans-

fer-competent state and potentially donate ICEs to multiple recipients. Understanding the trig-

gers for ICE transfer requires knowledge of regulatory cues stimulating ICE excision.

Symbiosis ICEs ofMesorhizobium spp. are a diverse family of large (~0.5-Mb) ICEs capable

of converting non-symbiotic mesorhizobia into symbionts of plant legume species [8, 18–22].

The symbiosis ICE ofM. loti R7A, ICEMlSymR7A, is a 502-kb ICE encoding genes enabling

symbiosis with Lotus spp. [8, 18, 21, 23]. Integration of ICEMlSymR7A into mesorhizobial

chromosomes is facilitated by the tyrosine recombinase (integrase) IntS [23]. The IntS attach-

ment site attPS (the subscript denotes the integrase associated with the att site) located on the

excised circular ICEMlSymR7A contains a 17-bp DNA sequence identical to the 3’-end of the

sole phe-tRNA gene (attBS), which is the target for IntS-mediated recombination. Recombina-

tion between attPS and attBS produces the hybrid sites attLS and attRS, which flank the inte-

grated ICEMlSymR7A and together form a direct 17-bp repeat demarcating the ICEMlSymR7A

insertion site [18, 23].
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Integrase-mediated recombination can be modulated by additional protein factors that

alter the integrase-DNA complex and favoured direction of recombination [24, 25]. Recombi-

nation directionality factors (RDFs, or excisionases) are generally small winged-helix-turn-

helix domain DNA-binding proteins that bend DNA within integrase att sites [25]. Excision of

ICEMlSymR7A requires the RDF RdfS (S1 Fig). Overexpression of rdfS cures ICEMlSymR7A

fromM. loti R7A cells producing the non-symbiotic derivative R7ANS [23]. A synthetic non-

replicative mini-ICE carrying only attPS and intS is able to integrate into the attBS site of

R7ANS, confirming IntS is the only ICEMlSymR7A protein required for integration. Subse-

quent introduction of a plasmid constitutively expressing rdfS stimulates loss of the integrated

mini-ICE from R7ANS [23], suggesting that like other excisionases, RdfS probably binds the

IntS attachment sites to stimulate IntS-catalysed formation of attPS and attBS.

Recently we identified a new form of ICE, termed a tripartite ICE (ICE3), composed of

three separated chromosomal regions of DNA α, β and γ [19, 26]. Three site-specific recombi-

nation reactions assemble these ICE3 regions into a single circular entity prior to conjugation.

The ICE3 ofM. ciceriWSM1271 (ICEMcSym1271) carries homologues of rdfS, intS and all

genes identified as being required for horizontal transfer of ICEMlSymR7A. However, ICEMc-
Sym1271 carries two additional tyrosine recombinases IntG and IntM, two additional predicted

excisionases RdfG and RdfM and two additional sets of attachment sites attLG, attRG, attPG,

attBG, and attLM, attRM. attPM, attBM (Fig 1A) [19]. Using a synthetic non-replicative mini-

ICE3 element containing all three attP sites derived from ICEMcSym1271, IntS, IntG and IntM

were demonstrated to mediate chromosomal integration and subsequent dispersal of this

mini-ICE3 into the separate regions α, β and γ [19]. We additionally identified numerous puta-

tive tripartite ICEs in diverse symbiotic mesorhizobia, each carrying unique genetic cargo in

each ICE3 region. We propose that the tripartite integration pattern serves to stabilize the ICE

in the host and protect it from potential destabilisation by competing ICEs and other integra-

tive elements [26].

The increased complexity introduced by the three separate recombination reactions

required for ICEMcSym1271 integration and excision allows for the potential formation of

eight distinct chromosomal recombination states [19]. The arrival at any particular state

depends on the prior order and direction of the recombination reactions catalysed by IntS,

IntG and IntM. Not all eight states can be reconstructed using the mini-ICE3, suggesting

some states are non-viable. Specifically, our model indicates that if the first excisive reaction

is catalysed by IntM, i.e. attLM + attRM> attPM + attBM, then the chromosome is split into

two parts, one part lacking the likely essential phe and his-tRNA genes and the other part an

origin-of-replication (Fig 1A) (ICE3 recombination reactions producing attP + attB do not

necessarily result in ICE3 excision per se, but for simplicity will be referred as ‘excisive’).

Quantitative PCR (qPCR) assays measuring IntM-mediated formation of attPM + attBM
indicate the excisive IntM reaction occurs at the lowest frequency of the three integrase-

mediated reactions [19], suggesting evolved regulatory control mechanisms might prevent

IntM-mediated excisive recombination occurring before other reactions, precluding forma-

tion of the non-viable chromosome state.

In this work, we show that the three excisive reactions of ICEMcSym1271 are dependent on

three distinct RDFs, RdfG, RdfM, and RdfS. ICEMcSym1271 excision and transfer is stimulated

by quorum sensing (QS). RNA sequencing (RNAseq) revealed QS activation results in activa-

tion of rdfS expression (Fig 1B). Surprisingly, all three attL + attR> attP + attB reactions were

dependent on rdfS and we demonstrated that this is because RdfS activates expression from

the rdfG and rdfM promoters. Therefore, the ordered assembly and excision of ICEMcSym1271

is accomplished through a cascade of transcriptional activation initiated by QS and finalised
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Fig 1. ICEMcSym1271 assembly, excision and regulation. (A) Schematic of the possible ICEMcSym1271 recombination states and recombination reactions leading to

formation of excised ICEMcSym1271 assembled from regions α, β and γ. The recombination targets attP, attB, attL and attR (triangles) and recombination reactions

(large arrows) are color-coded for each integrase: cyan for IntS; magenta for IntG; green for IntM. Primers for qPCR measurement of recombination are indicated as

block-headed arrows for attB sites and triangle-headed arrows for attP sites (see Materials and Methods and S1 Table for details). Data presented here support a model

where RDF-stimulated excisive reactions occur in the order IntS> IntG> IntM (highlighted in yellow) to produce excised ICEMcSym1271. (B) The regulatory model of

quorum-sensing mediated stimulation of ICEMcSym1271 assembly and excision. TraR1 and TraR2 bind AHLs produced by TraI1. TraR1/2-AHL complex(es) activate

transcription from the traI1 and traI2 promoters. traI2-msi172-msi171 expression leads to production of FseA and transcriptional activation of the rdfS operon. RdfS

stimulates excisive IntS-mediated recombination and promotes expression of RdfG and RdfM. RdfG stimulates the excisive IntG-mediated reaction and RdfM

stimulates excisive IntM-mediated recombination and excision.

https://doi.org/10.1371/journal.pgen.1007292.g001
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by RdfS, ensuring RdfS is always the first excisionase translated and that IntS-catalysed excisive

recombination occurs ahead of the IntG and IntM-catalysed reactions.

Results

RdfG and RdfM are required for excisive IntG and IntM-mediated

recombination

Integration (formation of attL + attR from attP + attB) and excision (formation of attP + attB
from attL + attR) of ICEMlSymR7A are catalysed by the integrase IntS, however, integration is

favoured in the absence of RdfS. Overexpression of rdfS in R7A stimulates the excision reac-

tion and results in loss of ICEMlSymR7A from the cell [23]. In contrast, the tripartite ICEMc-
Sym1271 of WSM1271 requires the concerted action of three integrases IntG, IntM, and IntS to

direct integration and excision [19]. In addition to a homologue of rdfS, two other putative

excisionase genes rdfG and rdfM are present on ICEMcSym1271 [19, 26]. rdfG is oriented con-

vergently with intG on ICEMcSym1271 region β and rdfM is encoded directly upstream of intM
on ICEMcSym1271 region γ. Like RdfS, RdfG (Mesci_2550) and RdfM (Mesci_2345) are MerR

superfamily proteins with a predicted winged-helix-turn-helix secondary structure (S1 Fig).

To investigate potential roles of rdfG and rdfM we replaced each gene with anΩaadA cassette

producing strains 1271ΔrdfG::ΩaadA and 1271ΔrdfM::ΩaadA, respectively, and using our pre-

viously validated qPCR assay [19], measured the abundance of each the three pairs of attP and

attB sites formed following each of the three excisive reactions. In wild-type WSM1271, attPG
+ attBG and attPS + attBS sites were detected at a frequency of 0.1–1% per chromosome and

attPM + attBM sites were detected at 0.01–0.1% (Fig 2A). In contrast, attPG + attBG sites were

undetectable in 1271ΔrdfG::ΩaadA and attPM + attBM sites were undetectable in 1271ΔrdfM::

ΩaadA. The abundance of the two remaining pairs of attP + attB sites in each of these mutant

strains was similar to that of WSM1271. Complementation of 1271ΔrdfG::ΩaadA with a

cloned copy of rdfG and its native promoter partially restored attPG + attBG formation and

complementation of 1271ΔrdfM::ΩaadA with a cloned copy of rdfM and its native promoter

restored attPM + attBM production. These experiments therefore confirmed the roles of RdfG

and RdfM in excisive IntG and IntM reactions, respectively.

Quorum sensing stimulates all three excisive Int-mediated recombination

reactions

All three pairs of ICEMcSym1271 attP and attB products are most abundant in stationary-phase

cultures and the α region of ICEMcSym1271 carries a subset of genes homologous to those

involved in quorum-sensing (QS) regulation of ICEMlSymR7A excision and conjugative trans-

fer in R7A [19, 23, 27]. These QS genes include a homologue of the ICEMlSymR7A N-acyl-

homoserine lactone (AHL)-synthase gene traI1 (Mesci_5572) and a homologue of the AHL-

dependent transcriptional regulator traR (Mesci_5573), here named traR1. A second traR
homologue (Mesci_5676), here named traR2, is present on ICEMcSym1271-α adjacent to a

homologue of the QS antiactivation gene qseM [28]. Therefore, we suspected that excision and

conjugative transfer of ICEMcSym1271 was under QS control.

To confirm ICEMcSym1271 traI1 encoded a functional AHL synthase, traI1 was cloned into

pPR3 downstream of the nptII promoter. The resulting plasmid pPR3-traI1 was introduced

into E. coli DH5α andM. loti R7ANS and the resulting strains were screened for AHL produc-

tion using the Chromobacterium violaceum CV026 AHL bioassay [29]. CV026 violacein pro-

duction was induced by E. coli andM. loti strains carrying the pPR3-traI1 vector (S2 Fig), but

not by strains carrying the vector-only control pPR3, indicating that traI1 produced C4-C8
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Fig 2. qPCR measurement of excisive ICEMcSym1271 recombination. Measurements represent the mean percentage

of WSM1271 chromosomes in stationary-phase cultures harbouring each excisive Int-mediated recombination

product (attBS, attPS, attBG, attPG, attPM, and attPM) determined by qPCR [19]. Where appropriate, plasmids carried

by WSM1271 (here abbreviated as 1271) are listed in brackets after the strain name (see Table 3 for a description of

plasmids). Values for each of the assay types attBS, attPS, attBG, attPG, attPM, and attPM site were individually

compared between strains within the same panel (panel A, B, or C) using ANOVA and Fisher’s LSD test controlling

for type I error using the Bonferroni adjustment. Groups of values from the same assay type and in the same panel that

are not significantly different from each other have the same letter (a, b, c, d, e, f or g) indicated above. Expression from

the IPTG inducible promoter of pSDz constructs were not induced with IPTG as they exhibit leaky expression without

induction in TY medium used for assays. (A) Involvement of rdfG and rdfM in excisive recombination. (B) Quorum-

sensing induction of excisive recombination. (C) Involvement of rdfS in excisive recombination.

https://doi.org/10.1371/journal.pgen.1007292.g002
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AHLs in both backgrounds. InM. loti R7A, AHL-activated TraR stimulates transcription of

traI1 completing a positive feedback loop of regulation [27]. To confirm TraR1 and TraR2

activated expression from the traI1 promoter of ICEMcSym1271 (PtraI1), traR1 and traR2 were

cloned downstream of the lac promoter on a derivative of pSDz also carrying PtraI1 upstream

of the lacZ gene. The resulting constructs were mobilized into R7ANS additionally carrying

either pPR3-traI1 or pPR3. β-galactosidase assays of the resulting strains revealed that both

traR1 and traR2 partially induced expression from PtraI1 in the absence of traI1 and other ICE-

encoded genes, however, maximum expression from this promoter was only achieved in the

presence of traI1 (S3 Fig).

traI1, traR1 and traR2 were next each individually overexpressed in WSM1271 on plasmids

and ICE3 excision was measured by qPCR (Fig 2B). Constitutive expression of traI1 from the

nptII promoter stimulated a 10-100-fold increase in abundance all three attP + attB sites rela-

tive to vector-only controls. Non-induced lac promoter-driven expression of traR1 or traR2
only stimulated a modest increase in att site abundance relative to WSM1271, however, unex-

plainedly the vector-only control exhibited ~10-fold reduced excision frequencies, so relative

to this background overexpression of the traR1/2 genes each induced a 10-100-fold increase

for all attP + attB sites. Overexpression of traI1 and traR1 in the same background stimulated

~1000-fold increase in abundance all three attP + attB sites relative to the vector-only control

strain. To investigate effects of the QS genes on conjugative transfer, strains overexpressing

traR1, traR2, and traI1 were each used as donors in mating assays whereM. loti R7ANS carry-

ing pPR3 or pFAJ1708 was the recipient (Table 1). The pattern of fold-changes in conjugation

frequencies for each donor strain largely mirrored excision frequency changes observed in

qPCR assays (Fig 2B) confirming that traI1, traR1 and traR2 also stimulated conjugative

transfer.

Dissection of quorum sensing-induced ICE3 excision using RNA deep

sequencing

QS-induced excision and conjugative transfer of ICEMlSymR7A is dependent on the transcrip-

tional activation of rdfS [30]. InM. loti R7A, AHL-activated TraR stimulates transcription

from ‘tra-box’ promoters centred 69-bp upstream of traI1 and 67-bp upstream of the traI2-m-
si172-msi171 operon. A programmed ribosomal frameshift site encoded in the 3’ end of

msi172 facilitates translational fusion of Msi172 and Msi171, producing FseA, a regulator

Table 1. Quorum-sensing induced ICEMcSym1271 conjugative transfer.

abDonor Recipient Exconjugants (per donor) Standard deviation cFold-change

WSM1271 R7ANS(pPR3) 8.02 x 10−8 1.82 x 10−8 -

WSM1271(pSDz) R7ANS(pPR3) 2.22 x 10−8 9.12 x 10−9 -

WSM1271(pSDz-traR1) R7ANS(pPR3) 4.69 x 10−7 1.11 x 10−7 21.14

WSM1271(pSDz-traR2) R7ANS(pPR3) 5.97 x 10−7 1.66 x 10−7 26.90

WSM1271(pSDz-msi172171) R7ANS(pPR3) 8.49 x 10−7 8.23 x 10−8 38.30

WSM1271 R7ANS(pFAJ1708) 8.35 x 10−8 4.87 x 10−8 -

WSM1271(pPR3) R7ANS(pFAJ1708) 8.74 x 10−8 3.89 x 10−8 -

WSM1271(pPR3-traI1) R7ANS(pFAJ1708) 1.04 x 10−5 1.50 x 10−6 119.06

a Where appropriate, plasmids carried by WSM1271 are listed in brackets after the strain name (see Table 3 for a description of plasmids).
b Expression from the IPTG inducible promoter of pSDz constructs were not induced with IPTG as they exhibit leaky expression without induction in TY medium used

for assays.
c Fold-change is relative to control strains carrying the appropriate pPR3 or pSDz parent vector.

https://doi.org/10.1371/journal.pgen.1007292.t001
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essential for transcription from the rdfS promoter [27, 31, 32]. Homologues ofmsi172-msi171
and rdfS are also located on the α region of ICEMcSym1271 [19], therefore it seemed likely

these genes also stimulated ICEMcSym1271 excision. Transcriptome sequencing (RNAseq) was

carried out for a QS-induced (QS+) strain carrying plasmid-borne copies of traI1 and traR1
and an uninduced strain (QS-) carrying the appropriate empty vectors. Overall, 187 signifi-

cantly differentially expressed genes (adjusted P-value < 0.05) were identified (S1 Dataset) and

although ICEMcSym1271 comprised only ~7.6% of the chromosome, 29 (15.5%) of the differ-

entially expressed genes were located on ICEMcSym1271. Genes likely involved in activation of

excision and conjugation including rdfS, rlxS and the type-IV conjugative pilus gene cluster

msi031-trbBCDEJLFGI-msi021were all significantly induced (Table 2).

An alignment of the PtraI1 regions from ICEMlSymR7A and ICEMcSym1271 revealed a tra-
box sequence centred 69bp upstream of the ICEMcSym1271 traI1 start codon (S4A Fig). The

reads mapping to the traI1 coding sequence were filtered from our RNAseq libraries prior to

differential expression analyses (Table 2) because they were also present on the introduced

plasmid, however, a secondary comparison of the unfiltered RNAseq reads mapping to the

PtraI1 region in our QS+ relative to the QS- WSM1271 cells revealed a sharp 121-fold increase

in mapped reads beginning 44bp downstream from tra-box centre and 26bp upstream of the

traI1 start codon (Table 2 & S4A Fig).

Homologues ofmsi172 andmsi171 are present on ICEMcSym1271 (Fig 3A) [19] but our ini-

tial interrogations did not identify an ICEMlSymR7A traI2 homologue positioned upstream of

these genes. traI2 of ICEMlSymR7A appears to encode an AHLsynthase paralogous with TraI1,

however, mutation of traI2 has no effect on ICEMlSymR7A excision and no identifiable AHL

products are produced by TraI2 [27]. Further inspection of the ICEMcSym1271 msi172-msi171
region revealed the presence of a potential tra-box sequence centred 398bp upstream of the

msi172 start codon (S4A Fig). A nucleotide alignment with the corresponding ICEMlSymR7A

region revealed this tra-box was also centred 66bp upstream of an internally-truncated traI2
gene remnant (S4A Fig). This traI2 pseudogene overlapped the start codon ofmsi172 as does

traI2 on ICEMlSymR7A (Fig 3A). Interestingly, inspection of traI2-msi172 regions inM. loti
USDA 3471 andM. ciceri strains WSM4083, WSM1497, and WSM1284 revealed a similar

situation; the traI2 gene in each case was present as a potential protein-coding pseudogene

upstream ofmsi172 and overlapping themsi172 start codon (S5A and S5B Fig). Therefore,

although traI2 has likely become a pseudogene on ICEMcSym1271 and other symbiosis ICE/

ICE3s, the transcriptional coupling of the tra-box and translational coupling of the TraI2 and

Msi172 coding sequences has been maintained. In our RNAseq experiments, traI2, msi172 and

msi171 reads were increased ~60-160-fold in QS+ cells (Table 2). A sharp increase in relative

read depth was observed at the traI2 promoter 44bp downstream of the tra-box centre and

21bp upstream of the traI2 start codon (S4B Fig) which spanned the entire traI2-msi172-
msi171 operon (Fig 3A). The likely transcription start site for traI2 observed from RNAseq

reads was consistent with the previously mapped ICEMlSymR7A traI2 promoter (S4B Fig) [27].

Interestingly, comparison of the number of unfiltered transcripts mapping to the traI1 and

traI2 promoter regions revealed that QS-induced expression from the traI1 promoter (2196.16

± [SE] 434.70 TPM) is ~3-fold stronger than that of traI2 (660.88 ± 276.84 TPM) (S4A & S4B

Fig). A similar ratio of traI1:traI2 expression is also observed for ICEMlSymR7A [27].

For ICEMlSymR7A, FseA stimulates expression from an operon containing rdfS, traF and

msi107 [21, 31] (Fig 3B). The same gene cluster is present on ICEMcSym1271 and the RNAseq

read depth for the corresponding ICEMcSym1271 homologues was increased 20-58-fold in QS

+ cells (Table 2). A distinct read depth increase was observed 25bp upstream of the rdfS start

codon corresponding closely with the mapped transcriptional start site for ICEMlSymR7A rdfS
(S4C Fig) [31]. In summary, despite several genetic rearrangements, the QS regulon of
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ICEMcSym1271 appears functionally analogous to that of ICEMlSymR7A and importantly, QS

induces the expression ofmsi172,msi171 and rdfS.

rdfS is required for all three excisive Int-mediated recombination reactions

To explore the involvement of RdfS in ICE3 assembly and excision, a markerless deletion in

the WSM1271 rdfS gene was constructed. As expected, no attPS or attBS products were

Table 2. Quorum-sensing induced/repressed ICEMcSym1271-encoded genes.

Gene Locus ID aFold-change Standard error

Region-α

rdfS Mesci_5530 19.74 1.20

traF Mesci_5529 29.21 1.20

msi107 Mesci_5528 41.10 1.19

rlxS Mesci_5527 58.14 1.17

PtraI1 - 121.45 1.16

P traI2 - 37.54 1.18

traI2 - 141.41 1.16

msi172 - 61.71 1.18

msi171 - 156.99 1.16

msi021 Mesci_5513 8.28 1.19

trbI Mesci_5514 10.58 1.17

trbG Mesci_5515 18.07 1.19

trbF Mesci_5516 14.48 1.19

trbL Mesci_5517 19.35 1.19

trbJ Mesci_5518 42.31 1.18

trbE Mesci_5519 64.16 1.17

trbD Mesci_5520 14.43 1.20

trbC Mesci_5521 9.71 1.20

trbB Mesci_5522 5.39 1.21

msi031 Mesci_5523 13.88 1.20

traG Mesci_5524 2.75 1.16

queD Mesci_5560 -2.35 0.83

queC Mesci_5561 -2.29 0.82

queB Mesci_5562 -2.34 0.83

hypothetical Mesci_5526 1.90 1.18

Region-β

cbb3-type COx (SI) Mesci_5510 1.92 1.16

Nicotinate biosynthesis protein Mesci_5579 -1.85 0.83

rdfG Mesci_2550 2.46 1.18

Hypothetical Mesci_2555 2.03 1.19

Region-γ

intS Mesci_2349 2.85 1.15

a Differentially expressed genes (adjusted two-sided P-value of < 0.05) were identified using the DESeq2 package

[33]. Since introduced plasmids carried copies of the traI1 and traR ORFs (not including promoter regions), reads

mapping to these sequences were of an ambiguous origin and were therefore filtered and removed prior to mapping

reads. Differential expression analysis of the traI1 and traI2 untranslated mRNA promoter regions, PtraI1 and PtraI2,
was carried out prior to filtering–as these reads were able to be distinguished from plasmid-borne mRNAs. Reads

mapping to the plasmid backbones and rRNA genes were removed prior to mapping reads for both analyses.

https://doi.org/10.1371/journal.pgen.1007292.t002
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detected in this strain, but interestingly attPG + attBG and attPM + attBM products were also

undetectable (Fig 2A). Introduction of rdfS expressed from its native promoter restored attP +

attB production at all three sites, albeit at lower levels than wild-type WSM1271. Plasmid-

based overexpression of traR1 ormsi172-msi171 in the rdfS mutant did not induce excision,

however, the same plasmids did induce excision and conjugative transfer in the wild-type

WSM1271 (Fig 2C and Table 1). Together these data confirmed that the stimulation and coor-

dination of all three excision reactions by QS andmsi172-msi171 is dependent on rdfS.

We hypothesized that RdfS was either directly required to stimulate excisive recombination

at attG and attM sites or that RdfS stimulated rdfG and rdfM expression. We overexpressed

rdfG and rdfM in the rdfS mutant to see if it would restore the formation of attPG + attBG and

attPM + attBM sites, respectively. rdfG was cloned downstream of the strong constitutive nptII
promoter and rdfM was cloned downstream of the lac promoter. Interestingly, introduction of

lac-driven rdfM resulted in growth arrest even in the absence of IPTG inducer and in the pres-

ence of glucose to repress lac expression. This was consistent with our model for excision, in

which expression of rdfM alone splits the chromosome and results in loss of viability. Constitu-

tive expression of rdfG in the rdfS mutant resulted in the restored detection of attPG + attBG
products in approximately 0.01% of cells (Fig 2A) while the other two sites remained undetect-

able. In contrast to lac-driven expression, introduction of the cloned copy of rdfM downstream

of its native promoter restored the production of attPM + attBM sites in 0.001–0.01% of cells.

Therefore, it was clear that attP + attB formation was abolished in the rdfS mutant but RdfS

was not directly essential for excisive IntG and IntM recombination. The observation that

Fig 3. Quorum sensing activation of ICEMcSym1271 promoters. Overlayed relative read coverage (or sequencing

depth) plots represent standardised values for the mean number of reads mapped to the positive strand of the regions

shown in this figure from the three unfiltered QS+ (grey) and QS- (black) transcriptome libraries of WSM1271. QS

+ strains were induced for QS by overexpressing both traI1 and traR1 from the plasmids pPR3-traI1 and pSDz-traR1,

respectively, whereas the QS- control strains carried the parent vectors pPR3 and pSDz. The mean read depth for the

(A) traI2-msi172-msi171, and (B) rdfS-traF-msi107 and rlxS regions of ICEMcSym1271 in QS- transcriptome libraries

were almost non-existent relative to that of the QS+ strain (See S1 Dataset for a full list of TPM values from the filtered

reads). A magnified view of reads mapping to the promoter region and the DNA sequence is shown in S4 Fig. These

plots were produced using Integrated Genome Browser [73].

https://doi.org/10.1371/journal.pgen.1007292.g003
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artificially increased levels of rdfG or rdfM compensated for the loss of rdfS implied RdfG and

RdfM expression was abolished in the rdfS mutant.

Overexpression of rdfS stimulates expression of rdfG and rdfM
Inspection of RNAseq data revealed rdfG mRNA abundance was ~2.5-fold higher in QS+ cells

(Table 1). rdfM was very weakly expressed in both QS+ and QS- cells and while there was

~2-fold more rdfM reads in QS+ cells, this difference was not statistically significant. To clarify

the potential role for RdfS in activation of the rdfG and rdfM promoters, the non-coding regions

present upstream of each gene were cloned upstream of the promoterless lacZ gene. Plasmid

constructs carrying this fusion were introduced into WSM1271 carrying a constitutively

expressed copy of rdfS (Fig 4A). β-galactosidase expression from the rdfG and rdfM promoters

was induced ~4.5 and ~8-fold respectively in the presence of constitutively expressed rdfS. Con-

sistent with RNAseq data, rdfM expression was much lower than rdfG expression and almost

undetectable in the absence of rdfS. To discount the possibility that RdfS induced expression

indirectly through other factors on ICEMcSym1271, the same set of experiments were repeated

using the heterologousM. loti R7ANS background, which lacks all ICE genes (Fig 4B). These

assays produced comparable results to those carried out in WSM1271, supporting the hypothe-

sis that the transcriptional activation of rdfG and rdfM promoters by RdfS was likely direct.

Discussion

Excision and circularization is an essential prerequisite for conjugative transfer of ICEs. Inte-

grase proteins of ICEs and temperate phages generally catalyse both the excision and integra-

tion reactions, but integrative recombination is generally favoured in the absence of a cognate

RDF [25]. Unlike most ICEs that excise following a single Int-mediated recombination,

ICEMcSym1271 requires three Int-mediated reactions to excise [19]. Here, we demonstrated

that three ICEMcSym1271-encoded RDFs RdfG, RdfM, and RdfS are required for the ICEMc-
Sym1271 excisive IntG, IntM, and IntS-mediated recombination reactions, respectively. We

also demonstrated that overexpression of the QS sensors TraR1 and TraR2 or autoinducer

synthase TraI1 in WSM1271 simultaneously increased the proportion of cells in a population

undergoing all three ICEMcSym1271 excision reactions 10-100-fold. QS significantly induced

mRNA abundance for the WSM1271 traI1, traI2-msi172-msi171, rdfS, and rdfG genes, as well

as those for conjugative pilus formation [23, 27, 31]. In addition to stimulating the

Fig 4. Transcriptional regulation of rdfG and rdfM by RdfS. β-galactosidase assays [67] were performed for (A)

WSM1271 and (B) R7ANS carrying either control vector pPR3 or pPR3-rdfS (constitutively expressing rdfS) together

with one of three RDF promoter-lacZ fusion constructs cloned into the pSDz vector. Assays were performed with six

biological replicates and mean β-galactosidase activity values (Relative Fluorescent Units/s/OD600) were compared by

Bonferroni adjusted student’s t-tests. SD is denoted by error bars.

https://doi.org/10.1371/journal.pgen.1007292.g004
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ICEMcSym1271 IntS-mediated excisive recombination, RdfS was shown to transcriptionally

activate the rdfG and rdfM genes. Therefore, RdfS acts as the master regulator for ICEMc-
Sym1271 excision.

Our model for the assembly and excision of ICEMcSym1271 indicates that if the first excisive

reaction is catalysed by IntM, then the chromosome is split into two inviable parts (Fig 1A).

However, transcription of rdfM and rdfG is dependent on RdfS, and thus excisive IntS-medi-

ated recombination probably occurs prior to that of IntM and IntG in WSM1271 cells induced

for ICEMcSym1271 assembly an excision. This hierarchical genetic regulation of the three

RDFs has likely evolved to minimise the potential for formation of the non-viable split chro-

mosome configuration following spurious rdfM expression. In wild-type WSM1271 or QS-

induced WSM1271 cells, the frequency attPM + attBM site formation was also significantly less

than either that of attPG + attBG and attPS + attBS, as was expression of rdfM relative to rdfG
and rdfS. Moreover, introduction of a plasmid-borne copy of rdfM under the control of the rel-

atively weak lacI promoter on pSacB [34] resulted in arrested growth of 1271ΔrdfS cells sug-

gesting that even a low level of RdfM expression in the absence of RdfS and RdfG is

deleterious. It is possible that the rdfM promoter, in addition to evolving transcriptional

dependency on RdfS, has evolved to promote only subtle levels of rdfM expression to further

reduce the likelihood of the formation of a non-viable chromosomal state. Considering the

data, it seems probable that the in situ excisive recombination pathway of ICEMcSym1271 fol-

lows the sequence IntS> IntG> IntM (Fig 1A).

RDFs have diverse roles in the control of MGE transfer. Several bacteriophage excisionases

act as both RDFs and transcriptional regulators [35–44]. Phage-P2 Cox and the coliphage-186

Apl excisionases bind and bend attP and attL DNA to promote prophage excision, but they

also stimulate induction of the lytic cycle by blocking transcription of repressor genes cl and c,
respectively [35–43]. The Cox protein additionally stimulates derepression of neighbouring P4

prophages by activating transcription from the late P4-phage promoter [39, 45]. Cox-bound

promoter and attP regions each contain six or more repeats of a “cox-box” consensus sequence

that may vary in direction or percentage identity between different binding targets, and may

be bound with variable affinity [38, 39, 42]. A protein sharing structural homology with exci-

sionases has recently been shown to be essential for relaxasome processing of the conjugative

plasmid pIP501 [46]. These examples and our findings here emphasise that RDFs/excisionases

have evolved differential and evolutionarily flexible roles in the control of MGE dissemination.

The RdfS proteins of R7A and WSM1271 are almost identical at the amino-acid level apart

from the extreme C-terminus (S1 Fig). Therefore, it is possible that the rdfG and rdfM promoter

regions could have evolved DNA-binding targets that respond to RdfS, rather than RdfS having

evolved specific new functions associated with ICE3
. We were unable to identify any clearly con-

served DNA sequence motifs on attLS, attPS or the rdfG or rdfM promoter regions. However,

excisionase binding sites are often poorly conserved at the DNA-sequence level and for most

the mode of site recognition is not well understood. Most characterized RDFs have a winged-

helix-turn-helix structure that contacts both major and minor DNA grooves, therefore overall

DNA topology is believed to be especially critical for recognition [47]. Given that RdfS presum-

ably binds multiple distinct sites on ICEMcSym1271, RdfS presents itself as an enticing research

focus for gaining a deeper understanding of excisionase-DNA recognition characteristics and

the multifaceted roles of excisionases in stimulating horizontal transfer of diverse MGE.

ICEMcSym1271-α carries two functional QS-sensor genes, traR1 and traR2. Sequence com-

parisons of the ICEMlSymR7A and ICEMcSym1271 QS loci suggest that the ICEMcSym1271-

derived TraR2 protein is the more immediate orthologue of R7A-derived TraR. Broader com-

parisons of the QS loci organisation between these ICEs suggest that each ICE may have

evolved from an ancestral ICE carrying two complete sets of traR-traI loci (S6 Fig). The DNA
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sequence upstream of traI1 on ICEMlSymR7A lacks a traR1 homologue but does contain

sequence homologous to the 3’-end of traR1 from ICEMcSym1271, suggesting deletion of an

ancestral copy of traR1 has occurred in R7A. The traI2 gene on ICEMcSym1271 appears to have

become a pseudogene with several internal truncations, but a truncated seemingly nonsense

open-reading-frame remains that has retained both its position relative to the upstream tra
box and translational overlap withmsi172, as is the case on other related ICEs (S5 Fig). On

ICEMlSymR7A, traI2 is a complete and potentially functional gene, but ICEMlSymR7A excision

or transfer is unaffected for a markerless deletion traI2 mutant, suggesting it too may be in the

early stages of pseudogenisation.

For both ICEMcSym1271 and ICEMlSymR7A the functional AHL-synthase traI1 and the

apparent traI2 pseudogene that is translationally coupled tomsi172-msi171 are proceeded by a

tra-box sequence allowing for transcriptional control by TraR. ICEMlSymR7A is exquisitely sen-

sitive to overexpression ofmsi172-msi171 or rdfS, which cause growth inhibition and loss of

ICEMlSymR7A respectively [23, 31, 48]. In the presence of AHLs, expression of traI2-m-
si172-msi171 in R7A is lower than that observed for traI1 [27]. Our RNAseq data similarly indi-

cates that that expression from the ICEMcSym1271 traI1 promoter is stronger than from the

traI2-msi172-msi171 promoter (Table 2, S4A and S4B Fig). As previously speculated [27], this

separation of QS-activated genes involved in stimulation of excision (msi172-msi171) and AHL-

production (traI1) has likely facilitated independent adjustment of expression levels from each

QS-activated promoter. This type of genetic uncoupling of AHL synthase genes from other QS-

activated genes could in some instances explain the presence of orphan–or solo—QS regulators

and AHL-synthase genes frequently identified throughout gram-negative bacteria [49, 50].

ICE3s are a novel and unexpected form of MGE and the three-integrase system seemingly

introduces considerable unnecessary complexity. However, in this work we show that the

activity of RdfS as a master regulator of ICE3 excision greatly simplifies the pathway to exci-

sion. With RdfS in control, the excisive recombination reactions are induced in a predeter-

mined order to excise ICEMcSym1271. As previously discussed [19, 26], despite the complex

arrangement of integrase att sites, the formation of the prototype ICE3 may have occurred fol-

lowing only two chromosomal inversions between three single-part ICEs or non-conjugative

integrating elements. We also suspect that the regulatory control of RdfS over rdfG and rdfM
transcription could have pre-existed ICE3 on these ancestral single-part constituents. Several

putative symbiosis ICEs carry rdfS but lack an associated IntS gene and instead carry a unique

integrase and distinct attL site within one of five serine tRNA genes (Mesorhizobium spp.

strains CC1192 [51]; WSM3873 (NZ_LYTM00000000.1), AA23 (NZ_LYTP00000000.1) and

WSM3859 (NZ_NSGG00000000.1)). Moreover, numerous more distantly related putative

ICEs in the α-proteobacteria carry a homologue of rdfS but lack an obvious intS homologue

[28]. The conservation of rdfS but lack of conservation of intS on these ICEs suggests that RdfS

homologues may be able stimulate excisive recombination through interactions with multiple

distinct recombination systems. With this view in mind, the evolution of ICE3 and capture of

unique ICE genes [26] potentially involves recombination between groups of distinct ICE3,

ICEs and non-conjugative integrative elements that already share common regulatory control

elements. In summary, this work provides substantial insight into the molecular control and

evolution of these complex tripartite elements.

Materials and methods

Bacteria, plasmids, and growth conditions

Strains and plasmids are listed in Table 3. Strains were cultured as previously described [23,

27, 29, 52, 53]. Allelic replacement, and markerless deletion mutants were constructed using
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double crossover homologous recombination as previously described [23]. Plasmids for con-

struction of mutants are described in Table 3 and primers used are listed in S1 Table. Con-

struction of plasmids is detailed in Supplementary materials and methods (S1 File).

Molecular techniques, assays, and bioinformatics

DNA extractions, purifications, electrophoresis and PCR were carried out as previously

described [18, 23]. Sanger sequencing was performed by the Australian Genome Research

Facility. Nucleotide and amino acid alignments were performed using the T-Coffee multiple

sequence aligner [63]. Protein secondary structures were predicted using Jpred(v4) [64]. Syn-

teny comparisons were performed using the Artemis Comparison Tool [65] and plotted with

genoplotR [66]. β-galactosidase assays were performed as previously described with three to

six biological replicates per treatment [31, 67].Mesorhizobium conjugation experiments were

performed as previously described [19]. CV026 bioassays were performed on E. coli strains by

streaking them adjacent to CV026 on LB agar and plates and incubating these plates for 24 h at

28˚C [29]. CV026 well-diffusion bioassays were performed onM. loti strains as previously

described [28, 29]. All cloning was carried out in E. coliDH10B and constructs were chemically

transformed [68] into E. coli ST18 for mobilisation intoMesorhizobium spp. via biparental

mating [54].

qPCR assays for ICE3 excision

Genomic DNA for qPCR was extracted from 64-h TY broth cultures as previously described

[19]. Our previously validated qPCR assay [19] was used to measure the percentage of chromo-

somes carrying each individual attB (attBG, attBM, and attBS) and corresponding attP (attPG,

attPM, and attPS) site in samples of genomic DNA extracted from WSM1271 cultures. This

was achieved by comparing the standardised relative abundance of each attP and attB site to

the chromosomal genemelR. Primer sites for the qPCR assay are shown in Fig 1, and described

in S1 Table.

RNA-Sequencing and statistical analysis

TY broth cultures (OD600 0.8–1.0) were grown for RNAseq experiments as previously

described [69] with three biological repetitions per treatment and two technical repetitions per

sample. Total RNA was isolated as previously described [70]. RNA quality and concentration

was analysed at various points throughout processing using Experion StdSense or HighSens

analysis kit assays (Bio-Rad Technologies). DNA was removed from approximately 3 μg of

total RNA using the TURBO DNA-free kit (Invitrogen) and confirmed using a Qubit fluorom-

eter dsDNA BR assay. rRNA was depleted from total RNA using a Ribo-Zero rRNA magnetic

kit (Illumina) and resulting RNA was purified using a RNA Clean & Concentrator (Zymo

Research). Barcoded cDNA libraries were prepared from rRNA depleted RNA samples using

Ion Total RNA-Seq kit v2 (Thermo Fisher). Each barcoded cDNA library was diluted in DEPC

treated milliQ water to a final concentration of 75 pM and templates for sequencing were pre-

pared using an Ion Chef instrument (Thermo Fisher). Sequencing was performed using the

Ion Proton system (Thermo Fisher). Read sets from technical repetitions were combined.

Adapter sequences were removed using nesoni clip (http://www.vicbioinformatics.com/

software.nesoni.shtml). To reduce any potential rRNA/total-RNA abundance biases intro-

duced during rRNA depletion, reads mapping to rRNA genes were removed using FastQ

Screen (https://www.bioinformatics.babraham.ac.uk). Reads were mapped to the WSM1271

genome (accession NC_014923) using Bowtie 2 [71] and visualised using Artemis [72] or Inte-

grated Genome Browser [73]. For gene expression analysis, read sets were additionally filtered
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Table 3. Bacterial strains and plasmids.

Strain a Relevant Characteristics Reference

Escherichia coli
DH10B

F- endA1 deoR+ recA1 galE15 galK16 nupG rpsL Δ(lac)X74φ80lacZΔM15 araD139 Δ(ara,leu)7697 mcrA Δ(mrr-hsdRMS-
mcrBC) StrR λ–

Invitrogen

ST18 S17 Δpir ΔhemA [54]

Chromobacterium
violaceum
CV026 Biosensor strain for detection of C4-C8 N-acyl-homoserine lactones [29]

Mesorhizobium ciceri
WSM1271 Bisserula pelecinus symbiont, harbours ICEMcSym1271 (accession NC_014923.1) [55]

1271ΔrdfG::ΩaadA WSM1271 rdfG ΩaadA replacement mutant This study

1271ΔrdfM::ΩaadA WSM1271 rdfM ΩaadA replacement mutant This study

1271ΔrdfS WSM1271 rdfS in frame deletion mutant This study

M. loti
R7ANS Symbiosis ICE cured derivative of M. loti R7A [23]

Plasmids

pJQ200 SK Suicide vector in Mesorhizobium, contains sacB, GmR [56]

pEX18Tc Suicide vector in Mesorhizobium, contains sacB, TcR [57]

pHP45Ω Insertional inactivation vector carrying an ΩaadA1 cassette, SmR, SpR [58]

pJET-aadA pJET 1.2 carrying the ΩaadA cassette from pHP45Ω amplified using primers 34 & 35, SmR, SpR, ApR This study

pJQΩrdfG pJQ200 SK carrying the ΩaadA cassette from pHP45Ω flanked by regions upstream and downstream of rdfG amplified

using primers 1, 2 & 3, 4, respectively, used to create 1271ΔrdfG::ΩaadA, SmR, SpR GmR

This study

pJQΩrdfM pJQ200 SK carrying the ΩaadA cassette from pHP45Ω flanked by regions upstream and downstream of rdfM
amplified using primers 5, 6 & 7, 8, respectively, used to create 1271ΔrdfM::ΩaadA, SmR, SpR GmR

This study

pEXΔrdfS pEX18Tc carrying regions flanking intS amplified using primers 9, 10 & 11, 12 respectively, used to create

WSM1271ΔrdfS, TcR

This study

pJP2 Stable (contains Par region), low copy number BHR IncP vector, TcR [59]

pJP2-rdfG pJP2 carrying rdfG from WSM1271 amplified using primers 13 & 14, TcR This study

pJP2-rdfM pJP2 carrying rdfM from WSM1271 amplified using primers 15 & 16, TcR This study

pJP2-rdfS pJP2 carrying rdfS from WSM1271 amplified using primers 17 & 18, TcR This study

pPR3 pPROBE-KT carrying the nptII promoter from pFAJ1708, NmR [60–62]

pPR3-rdfG pPR3 carrying rdfG from WSM1271 amplified using primers 19 & 20, NmR This study

pPR3-traI1 pPR3 carrying traI1 from WSM1271 amplified using primers 21 & 22, NmR This study

pSacB BHR vector carrying inducible IPTG promoter and sacB gene, NmR [19]

pSacB-rdfM pSacB carrying rdfM from WSM1271 amplified using primers 23 & 16, NmR This study

pSDz BHR plasmid, carries IPTG inducible promoter and promoterless lacZ, TcR [31]

pSDz-traR1 pSDz carrying tra1R from WSM1271 amplified using primers 24 & 25, TcR This study

pSDz-traR2 pSDz carrying traR2 from WSM1271 amplified using primers 36 & 37, TcR This study

pSDz-msi172171 pSDz carrying msi172-msi171 from WSM1271 amplified using primers 26 & 27, TcR This study

pSDz-PrdfG pSDz carrying the rdfG promoter from WSM1271 amplified using primers 28 & 29, TcR This study

pSDz-PrdfM pSDz carrying the rdfM promoter from WSM1271 amplified using primers 30 & 31, TcR This study

pSDz-PrdfS pSDz carrying the rdfS promoter from WSM1271 amplified using primers 32 & 33, TcR This study

pSDzPtraI1-lacZ pSDz carrying the traI promoter from WSM1271 amplified using primers 38 & 39, TcR This study

pSDz-traR1PtraI1-lacZ pSDz-traR1 carrying the traI promoter from WSM1271 amplified using primers 38 & 39, TcR This study

pSDz-traR2PtraI1-lacZ pSDz-traR2 carrying the traI promoter from WSM1271 amplified using primers 38 & 39, TcR This study

pTHQP-1 Standard construct for qPCR assays for ICE3 excision, GmR [19]

pJET 1.2. Commercial blunt cloning vector, ApR Thermo Fisher

Scientific

a Abbreviation for antibiotic resistances are as follows; ApR, ampicillin; GmR, gentamycin; NmR, neomycin; SpR, spectinomycin; SmR, streptomycin; TcR, tetracycline.

See S1 Table for primer details.

https://doi.org/10.1371/journal.pgen.1007292.t003
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to remove sequences matching plasmids pPR3-traI1 and pSDz-traR1 prior to mapping. An

average (per biological replicate) of 14 million (standard deviation (SD) = 3.3 million) QS

+ and 8.5 million (SD = 1.5 million) QS- post-filter reads were mapped to WSM1271 with

96.7–98.6% alignment rate. Read counts for gene features were performed using HTSeq [74]

with default settings then imported into DESeq2 [33] for identification of differentially

expressed genes (S1 Dataset).

To measure expression from the traI1 and traI2 promoter regions, the unfiltered reads were

mapped to the WSM1271 chromosome using the procedures described above, and read count-

ing was performed using the—nonunique all function on HTSeq so that reads mapping

ambiguously to the traI1 and traI2 regions and ORFs were counted for both features.

Supporting information

S1 Fig. Predicted secondary structures of RdfG, RdfM, and RdfS. Secondary structures were

predicted using Jpred(v4) [64]. α-helices are highlighted in yellow, β-sheets are highlighted in

blue. All three proteins carry a predicted two stranded MerR-family winged helix-turn-helix

motif characteristic of RDFs [25].

(TIF)

S2 Fig. Production of AHLs by TraI1. The C. violaceum CV026 biosensor strain [29] was used

to detect the production of AHLs in (A) E. coliDH10B or (B)M. loti R7ANS either constitu-

tively expressing ICEMcSym1271-derived traI1 from the plasmid pPR3-traI1, or carry the empty

vector pPR3. Production of a purple violacein halo indicated production of C4-C8 AHLs.

(TIF)

S3 Fig. TraI1-dependent activation of the traI1 promoter by TraR1 and TraR2. β-galactosi-

dase assays [67] were performed on a set of R7ANS strains carrying the same traI1 promoter-

lacZ fusion on either pSDz, pSDz-traR1, or pSDz-traR2. These strains were induced for expres-

sion of traR1/traR2 with 1 μM IPTG, and also carried either a constitutively expressed copy of

traI1 (pPR3-traI1), or the empty vector pPR3. Assays were performed with three biological

replicates and mean β-galactosidase activity values (Relative Fluorescent Units/s/OD600) were

compared by Bonferroni adjusted student’s t-tests. SD is denoted by error bars.

(TIF)

S4 Fig. RNA-Seq mapping of the transcriptional start sites for traI1, traI2, and rdfS. The

promoter regions of traI1 (A), traI2 (B), and rdfS genes (C) from WSM1271 were identified

based on similarity with homologous regions in R7A. Nucleotide alignments were performed

using the T-Coffee multiple sequence aligner [63]. Transcriptional start sites for R7A genes

previously mapped by 5’RACE are shown in bold [27, 31]. Relative read depth (or sequencing

depth) plots represent a standardised value for the mean number of reads mapped to the posi-

tive strand of the regions shown in this figure from the three unfiltered QS+ transcriptome

libraries of WSM1271.These plots were produced using Integrated Genome Browser [73]. QS

+ strains were induced for QS by overexpressing both traI1 and traR1 from the plasmids

pPR3-traI1 and pSDz-traR1, respectively. Mean values of 2196.16 ± (SD) 434.70 TPM unfil-

tered reads and 660.88 ± 276.84 TPM unfiltered reads were mapped to the non-coding regions

between the transcriptional start sites and start codons for traI1 and traI2, respectively. A stu-

dents t-test revealed that this difference was significant (P = 0.01).

(TIF)

S5 Fig. Alignment of traI2 promoter regions and TraI2 protein sequences in diverse Mesor-
hizobium spp. (A) The nucleotide sequence of traI2 promoters and (B) the TraI2 amino acid
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sequences from sixMesorhizobium strains were aligned using the T-coffee multiple sequence

aligner [63].

(TIF)

S6 Fig. Possible evolution of QS loci on ICEMlSymR7A and ICEMcSym1271. On ICEMl-
SymR7A, traR is encoded upstream of an operon encoding the likely non-functional AHL-

synthase gene traI2, msi172-msi171 and qseM-qseC. The functional AHL synthase TraI1 is

encoded at a separate location. ICEMcSym1271 carries traR2 upstream of qseM-qseC, however,

the traI2-msi172-msi171 region has been translocated to a different position and traI2 has

become internally truncated. ICEMlSym1271 carries a second traR gene traR1 paired with the

traI1 gene. It is likely that ICEMlSymR7A originally had a traR1 gene that has subsequently

been deleted. Consistent with this notion, the 100-bp upstream of traI1 closely resembles the

3’-end of traR1. Thus, it seems likely that an ancestral ICE carried an operon comprising

traR2-traI2-msi172-msi171 upstream of divergent qseC and qseM genes and a second QS locus

containing traR1-traI1. Synteny comparisons were performed using the Artemis Comparison

Tool [65] and plotted with genoplotR [66].

(TIF)

S1 Table. Oligonucleotides used in this study.

(PDF)

S1 Dataset. TPM values and DESeq2 output for differential gene expression analysis.

(XLSX)

S1 File. Supplementary materials and methods.

(DOCX)
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