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Abstract

It is commonly accepted that brain phospholipids are highly enriched with long chain 

polyunsaturated fatty acids (PUFAs). However, the evidence for this remains unclear. We used 

HPLC-MS to analyze the content and composition of phospholipids in rat brain and compared it to 

the heart, kidney, and liver. Phospholipids typically contain one PUFA, such as 18:2, 20:4, or 22:6, 

and one saturated fatty acid, such as 16:0 or 18:0. However, we found that brain phospholipids 

containing monounsaturated fatty acids in the place of PUFAs are highly elevated compared to 

phospholipids in the heart, kidney, and liver. The relative content of phospholipid containing 

PUFAs is ∼60% in the brain whereas it is over 90% in other tissues. The most abundant species of 

phosphatidylcholine (PC) is PC(16:0/18:1) in the brain, whereas PC(18:0/20:4) and PC(16:0/20:4) 

are predominated in other tissues. Moreover, several major species of plasmanyl and plasmenyl 

phosphatidylethanolamine are found to contain monounsaturated fatty acid in the brain only. 

Overall, our data clearly show that brain phospholipids are the least enriched with PUFAs of the 

four major organs, challenging the common belief that the brain is highly enriched with PUFAs.
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Introduction

It is commonly stated that the brain is highly enriched with polyunsaturated fatty acids 

(PUFAs) [1-3], implying that the brain contains higher amounts of PUFAs than other tissues 

[4, 5]. Furthermore, the high content of PUFAs has been proposed to be responsible for the 

high vulnerability of the brain to ischemia/reperfusion injury [6-8]. However, little evidence 

has been provided to support the high enrichment of PUFAs in the brain.

A majority of cellular fatty acids are esterified to phospholipids [9, 10]. Phospholipids are 

composed of a diacylglycerol moiety attached to a phosphate group, which in turn is 

connected to various head groups. Two acyl chains derived from fatty acids are attached to 

the first and the second carbons of the glycerol moiety, denoted as the sn-1 and sn-2 

positions, respectively. Typically, saturated fatty acids or monounsaturated fatty acids 

(MUFAs) are present at the sn-1 position and PUFAs, such as 20:4, and 22:6, at the sn-2 

position of phospholipids [11-13]. Phospholipids containing MUFAs at the sn-2 position are 

also found. The relative content of species containing PUFAs and species containing 

MUFAs at the sn-2 position determine the abundance of PUFAs in a tissue. However, 

different combinations of the head groups and the acyl chains give rise to numerous isobaric 

and isomeric species, which make analysis of phospholipids highly challenging.

Due to this challenge, analyses of phospholipids are often focused on specific classes or 

species of phospholipids [14-16]. Moreover, the acyl chain composition is often examined 

following trans-esterification [17-20]. These analyses discovered an abundance of 18:1 and a 

lack of 18:2 in brain phospholipids [21, 22]. However, the limitations of the trans-

esterification method, the low recovery of fatty acids from plasmalogens [14] and the loss of 

information on the original molecular structure, prevented capturing many key aspects of 

phospholipids.

Previously, we developed a normal-phase HPLC-MS method for comprehensive analysis of 

phospholipids [21]. The method includes extraction of lipid mixtures and separation of the 

phospholipid fraction using solid-phase extraction. Class separation by normal-phase HPLC 

prior to MS analysis allows the generation of full spectra of each class of phospholipid. The 

full spectra are particularly useful for comparing the molecular composition of each class of 

phospholipids between different samples.

Using this established HPLC-MS method, we analyzed the content and composition of 

phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), 

phosphatidylglycerol (PG), phosphatidylinositol (PI), and cardiolipin (CL) from the brain, 

heart, kidney, and liver. We also analyzed the content of lysophospholipids and free fatty 

acids to validate our sampling procedure and to support our conclusion. This thorough 

analysis revealed that the brain is least enriched with PUFAs of the four organs examined in 

this study.
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Materials and Methods

Chemicals and materials

“Reagent-grade chemicals and HPLC-grade solvents were purchased from major 

commercial suppliers (Fisher Scientific and Sigma Aldrich). Standard phospholipids, 

PC(16:0/16:0), PE(16:0/16:0), PG(16:0/16:0), PI(16:0/18:1), PS(16:0/16:0), CL(18:2)4, 

were purchased from Avanti Polar Lipids (Alabaster, AL, USA). 1,2-Dipalmitoyl-sn-

glycero-3-phospho-N-methylethanolamine (PME), the internal standard, was purchased 

from Santa Cruz Biotech (Santa Cruz, CA). Pre-packed silica gel SPE columns were 

purchased from Biotage (Charlotte, NC).

Animals

The experimental protocol was approved by the Institutional Animal Care and Use 

Committee. Adult male Sprague–Dawley rats (weight 465–530 g, Charles River Production, 

Wilmington, MA) were anesthetized with 4% isoflurane and sacrificed by decapitation to 

harvest the brain, heart, kidney, and liver. Rats were maintained under a 12-h light/dark cycle 

with free access to food and water and used without starvation. The tissues were 

immediately pulverized in liquid nitrogen and stored at -80 °C until analyzed.

Extraction of Phospholipids

Extraction and separation of phospholipids was performed as previously reported [23, 24]. 

Briefly, ∼ 1 mg of homogenized tissue was treated with 950 μL of chloroform:methanol 

(2:1, v:v) solution containing butylated hydroxytoluene (2 mM) and 50 μL of potassium 

phosphate buffer (100 mM, pH 7.4). The organic solution was added first to inactivate any 

enzymatic reaction that may facilitate the hydrolysis of phospholipids. Phospholipid 

mixtures were separated using solid-phase extraction [23] and reconstituted in 200 μL of 

isopropanol:t-butyl methyl ether:ammonium formate (34:17:5, v:v:v) solution. For HPLC-

MS analysis, 20 μL phospholipid mixture was injected into the HPLC.

Normal-phase HPLC-MS and MS/MS

The HPLC conditions for separating each class of phospholipids were reported previously 

[23]. A nucleosil diol column (5 μm, 3×250 mm) (Macherey-Nagel, Duren, Germany) was 

used. Eluent A contained isopropanol:t-butyl methyl ether:ammonium formate (34:17:5, 

v:v:v) and eluent B contained methanol. Aqueous ammonium formate was prepared by 

dissolving 295 mg of ammonium formate and 1.9 mL of formic acid in 50 mL of water. The 

gradients used for the 40 min chromatogram were as follows: 100 % A for 20 min, 100% A 

to 20% A over 6 min, 20% A for 8 min, 20% A to 100% A over 1 min, and hold 100% A for 

5 min. The flow rate was 0.3 mL/min and the column temperature was 30°C. MS and 

MS/MS data were collected using a Thermo LTQ XL spectrometer (Thermo Scientifics, San 

Jose, CA) operated in the negative ion mode.

Analysis of molecular species in each class of phospholipids

The content of each class of phospholipids was expressed as a mole fraction of the total 

phospholipids. Concentrations of individual classes were determined using standard curves 
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and an internal standard as previously reported [23]. Standard curves were generated using 

the standard phospholipids with PME as an internal standard. The concentration of PE 

includes both diacyl PE and PE plasmalogens (PEP), which contain an ether linkage at the 

sn-1 position. Species between diacyl PE and PEP were distinguished based on their 

molecular weights and fragmentation patterns by MS/MS [25]. The concentrations of PE 

and PS in brain tissue were extrapolated from the standard curve.The abbreviations 

previously described for ether alkyl chains of PEP were used [25].

The content of individual species within a class was calculated from the area of M0 and M1 

peaks using the Quan Browser in Xcalibur Version 2.2 software [26]. The content of each 

species of phospholipid was expressed as a percentage of total content of the class of 

phospholipid. We only included species, whose relative content is greater than 1% of the 

total phospholipid content in each class. Assignment of individual species in each class of 

phospholipids was made based on retention time and MS and MS/MS analyses [23]. If a 

peak contains more than one major isomeric species (over 10% of the total peak intensity), 

the area was corrected based on the relative abundance determined by MS/MS. The relative 

intensity of CL and PS species was calculated based on the relative intensity of each peak 

compared to total CL and PS peaks identified. The isotope abundance and the peak ratio of 

sodium adduct of individual species were calculated from authentic standards purchased 

from Avanti Polar Lipids. All data are presented as mean ± standard deviation.

Measurement of free fatty acids

To measure free fatty acids, 20 mg homogenized tissue were extracted in 500 μL of 

methylene chloride: methanol: isopropanol 25:65:10 (v/v/v), with 50 μg/mL butylated 

hydroxytoluene. UPLC (Ultra-performance LC) was performed using a 1.8 μm particle 100 

× 2.1 mm id HSS T3 column (Waters, Milford, MA) coupled to a quadrupole time-of-flight 

(TOF) mass spectrometer (AB SCIEX, TripleTOF 5600) operated in information-dependent 

MS/MS acquisition mode. The LC and MS conditions were as previously described [27]. 

The quantification of free fatty acids was performed using MutliQuant Software version 

3.0.2 (SCIEX), based on the accurate masses and retention times of each fatty acid.

Results

Concentration of phospholipids

Ion chromatograms of individual classes of phospholipids from heart tissue separated by 

normal-phase HPLC are shown in Fig. S1. The retention time of each class of phospholipids 

is similar to the previous reports [23, 26]. The concentrations of individual classes of 

phospholipids are shown in Table 1. PE, including diacyl PE and PEP, is the most abundant 

class of phospholipids in the brain, heart, and kidney, accounting for 55% of the total 

phospholipid content in the brain, 49% in the heart, and 48% in the kidney. PC is the second 

most abundant, making up 31%, 38%, and 35% of total phospholipids in the brain, heart and 

kidney, respectively. In the liver, PC is the most abundant species, contributing 48% of the 

total membrane phospholipids, while PE contributes 35%. The lower content of PE in the 

liver compared to other tissues is due to the minimal amount of PEP found in the liver. PS is 
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another major class in the brain, accounting for ∼8%. In the kidney and liver, PI is the third 

abundant class accounting for ∼ 10% and 13% of total phospholipids, respectively.

Molecular composition of PE

The mass spectra of PE including diacyl PE and PEP from the brain, heart, kidney, and liver 

are shown in Fig. 1, and the molecular structures of the major species determined by MS/MS 

are listed in Table 2. Most MS peaks are composed of one dominant species with more than 

90% of the peak intensity. If the relative content of minor isomeric species is more than 20% 

of the major isomers, these minor species are also noted in Table 2. Fig. 2 shows the 

calculated mole percentages of the major species of PE as described in the material and 

methods section. We provide the relative contents of individual species for an easy 

comparison of phospholipid profiles between tissues. However, the relative contents can be 

readily converted to absolute concentrations using the values provided in Table 1.

In brain and heart tissue, PE(18:0/22:6) and PE(18:0/20:4) are the most abundant species, 

accounting for 11% and 8% in the brain (Fig. 2a), respectively and 20% and 16% in the 

heart (Fig. 2b), respectively. In the kidney, arachidonic acid containing species, 

PE(18:0/20:4) and PE(16:0/20:4), account for 28% and 9% respectively (Fig. 2c). In the 

liver, one dominant species, PE(18:0/20:4), accounts for 30% of total PE. Other major 

species, PE(18:0/22:6), PE(16:0/20:4), and PE(18:0/22:6), also make up a substantial 

portion of PE in the liver (Fig. 2d). Interestingly, brain PE is also comprised of species 

containing MUFAs, such as PE(18:0/18:1) and PE(18:1/18:1), whereas these species are 

negligible in other tissues. Since PE(18:1/18:1) found in the brain has the same molecular 

weight (m/z 743) as PE(18:0/18:2) found in other tissues, we provide MS/MS spectra of the 

nominal peak at 743 as an example to compare the structure of the PE species between brain 

and other tissues (Fig. 3). In the brain, the peak at 281 corresponding to 18:1 and the peak at 

478 corresponding to octadecenoyl glycerol confirm the structure as PE(18:1/18:1) (Fig. 3a). 

In the heart, the peaks at 279 and 283 corresponding to free fatty acids 18:2 and 18:0, 

respectively, and the peak at 480 corresponding to octadecanoyl glycerol confirm the 

structure as PE(18:0/18:2) (Fig. 3b). The MS/MS spectra of the MS peak at 743 in the 

kidney and liver are the same as the heart. Overall, most major PE species contain PUFAs, 

such as 22:6 and 20:4, and the relative content of these species are not higher in the brain.

Molecular composition of PEP

PE contains a substantial amount of plasmalogens (Fig. 4), which are known to be enriched 

with PUFAs. The overall concentration of PEP is the highest in the brain. The major species 

of PEP contain PEP(16:0/20:4), PEP(18:0/20:4), PEP(16:0/22:6), and PEP(18:0/22:6). In 

addition to these PUFA containing species, significant levels of PEP species containing 18:1 

at the sn-2 position are present in brain tissue as well (Fig. 4a). Interestingly, 

PEP(16:0/18:1), PEP(18:1/18:1), and PEP(18:0/18:1) account for 20% of the total PE 

content, which is similar to the relative abundance of the five major PEP species containing 

PUFAs (26%) (Fig. 4a).

In the heart, the major species of PEP, such as PEP(16:0/20:4), PEP(16:0/22:6), 

PEP(18:0/20:4), and PEP(18:0/22:6), all contain long chain PUFAs (Fig. 4b). These species 
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account for ∼26% of the total PE in heart tissue. A similar pattern is observed in the kidney, 

but with less overall PEP content (Fig. 4c). The relative content of PEP of total PE is 19% in 

kidney tissue. The kidney also contains a detectable amount of species containing MUFAs, 

such as PEP(16:0/18:1). Liver contains a dramatically lower content of PEP, accounting for 

2% of total PE in liver tissue (Fig. 4d). As was seen in the profile of PE, only brain PEP is 

comprised of significant amounts of species containing MUFAs.

We also show an example of MS/MS spectra a PEP species with molecular weight of 701 

from the brain and kidney (Fig. 3c and d). In the brain, the peak at 436 corresponding to 

hexadecenyl glycerol and the peak at 281 corresponding to 18:1 confirm the structure as 

PEP(16:0/18:1) (Fig. 3c). The peak at 418 is the dehydrated form of the peak at 436 and the 

peak at 255 is from 281-CO2. The same peaks at 436 and 281 in the kidney show that the 

PEP(16:0/18:1) in the major species is under the MS peak at 701 (Fig. 3d). In addition, the 

peak at 438 corresponding to hexadecanyl glycerol and the peak at 279 corresponding to 

18:2 confirm the coexistent of plasmanyl PE (16:0/18:2) as a minor species of the same MS 

peak in the kidney (Fig. 3d).

Molecular composition of PC

The mass spectra of PC from heart and brain tissues are shown in Fig. 5 and the 

concentrations of major species of PC determined by MS/MS are shown in Fig. 6. 

Interestingly in the brain, the most abundant species is PC(16:0/18:1) (Fig. 6a). In addition, 

species containing saturated fatty acids or MUFAs, such as PC(16:0/16:0), PC(18:1/18:1) 

and PC(18:0/18:1), are also abundant. These four species together account for ∼ 54% of the 

total PC content in brain tissue, which is significantly higher than ∼15% of the content of 

major PUFA-containing species combined. Again, PC species containing 18:2 are also 

negligible in brain tissue (Fig. 6a).

In the heart, PC species containing 20:4, PC(16:0;20:4) and PC(18:0;20:4), are the two 

major species, while species containing 22:6 are also abundant (Fig. 6b). Kidney tissue 

includes multiple major species, such as PC(16:0/18:2), PC(16:0/20:4) and PC(18:0/20:4) as 

well as MUFA containing species (Fig. 6 c). Liver tissue also contains PC(16:0/18:2), 

PC(16:0/20:4) and PC(18:0/20:4) as a major PC species. It is notable that no considerable 

amounts of PC containing MUFAs are observed in the liver. Overall, Fig. 5 and 6 show that 

PC in the brain contains much higher amounts of MUFAs than other organs and liver PC is 

most dominated with PUFAs.

Molecular composition of PS

Mass spectra of PS are shown in Fig. 7 and the concentrations of major species of PS are 

shown in Fig. 8. In the brain, two major species of PS are the PS(18:0/22:6) and 

PS(18:0/18:1), which account for 51% and 26% of the total PS content, respectively. In the 

brain, a total of 65% PS contains PUFAs whereas over 90% of PS contains PUFAs in other 

tissues. The most abundant species of PS is PS(18:0/22:6 in the brain and heart and 

PS(18:0/20:4) in the kidney and liver. PS species containing 18:2 is not detectable in the 

brain, but readily detectable in other organs.
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Molecular composition of PI and PG

The MS spectra of PG and PI are shown in Fig. S2 and S3 and the concentrations of 

individual species of PI and PG are shown in Fig. 9. The molecular compositions of PI and 

PG are similar between tissues that PI and PG each has one dominant species, PI(18:0/20:4), 

and PG(18:0/18:1), respectively. Major species of PI only contains PUFAs, whereas PG is 

predominated with MUFAs. As was seen in other classes of phospholipid, PI and PG species 

containing 18:2 are negligible in the brain.

Composition of CL

MS spectra of CL are shown in Fig. 10. Fig. 10a shows the MS spectrum of CL from brain 

tissue. The CL composition in the brain is highly diverse and markedly differs from its 

composition in the heart, kidney, and liver (Fig. 10 b-d). The peak at 1448 corresponding to 

tetra-linoleoyl CL, noted as CL(18:2)4 is the major species in the heart, kidney, and liver as 

commonly observed [28] In the kidney and liver, the enhanced peaks at 1450 and 1472 show 

that CL(18:2)3(18:1) and CL(18:2)3(20:4) are also abundant. CL(18:2)4 accounts for 83% of 

the total CL content in the heart, 48% in the kidney, and 45% in the liver. However, the peak 

at 1448 in brain is an only minor peak (Fig. 10a). Moreover, the MS/MS spectra revealed 

that the peak 1448 is comprised of several isomeric species (Fig. S4). Considering the 

relative peak intensity of 1448 by MS and the number of isomers by MS/MS, we conclude 

that CL(18:2)4 is less than 1% of the total CL content in the brain. MS/MS analysis also 

shows that most CL MS peaks are comprised of multiple isomers. Therefore, the total 

number of CL species in the brain should be several times more than the number of the 

peaks shown in the MS spectrum (Fig. 10a). Due to this enormous number of species, 

characterization of CL in the brain is difficult to achieve.

Content of lysophospholipids and free fatty acids

Several species of lysoPC, lysoPE, and lysoPI are detected from whole tissue. Fig. S5 shows 

the relative peak area of individual species of lysophospholipids compared to the peak area 

of the corresponding class of phospholipids. The common species contain 16:0 or 18:0 as 

these are the common fatty acid at the sn-1 position of PE and PC. Consistent with the high 

abundance of 18:1 in brain tissue, lysoPE and lysoPI species containing 18:1 are readily 

detectable in brain tissue.

Fig. S6 shows the relative content of free fatty acids from 20 mg of each tissue. Since the 

contents of free fatty acids are estimated based on their peak areas, the data may not be 

appropriate to compare the levels between fatty acids, however, can be used to compare each 

fatty acid level between tissues. The data clearly show that the levels of free fatty acids in the 

brain are not higher than in other tissues. The amount of 16:0 is the most abundant in liver 

tissue compared to in other tissues. The level of 18:0 is similar in all tissues. Compared to 

the liver, similar levels of 20:4 and 22:4 are detected in the brain, but all other PUFAs, 

including 22:6, are higher in the liver. It is also notable that the brain contains a much lower 

content of 18:2 compared to other tissues, consistently with the lack of phospholipid species 

containing 18:2 in this tissue. Overall, the results from lysophospholipids and free fatty acids 

confirm that there is no significant decomposition of phospholipids from the tissues during 

sampling procedures that may interfere with phospholipid analysis.
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Discussion

Brain phospholipids are least enriched with PUFAs

Although it is commonly cited that the brain phospholipids are highly enriched with PUFAs 

[29], the evidence for this is limited. Here, we show that the brain has the lowest mole 

fraction of PUFA-containing phospholipid species (Fig. 11). The content of overall PUFA 

containing species is ∼60% of total phospholipid in the brain, whereas it is over 90% in the 

heart and kidney and ∼ 95% in the liver. Consequently, the concentrations of PUFA-

containing phospholipids per mg tissue are also lower in the brain than in the liver. One may 

argue that PUFAs are enriched in a special area of brain. In fact, fatty acid composition 

differs depending on the areas of the brain [30, 31], but the difference is not sufficient to 

make an area of the brain more enriched with PUFA than the heart, kidney, or liver. Overall, 

our results are not consistent with the common belief that the brain is highly enriched with 

PUFA.

Typical phospholipids in mammalian tissues contain PUFAs at the sn-2 position and 

saturated fatty acids at the sn-1 position. Phospholipids containing MUFAs at the sn-2 

position are also found, but to a much lesser extent. Therefore, almost every tissue is 

enriched with PUFAs, but the abundance of PUFAs has been emphasized only in the brain. 

Consequently, it is believed that the PUFA content in brain phospholipids is higher than in 

other tissues [4, 5]. Furthermore, the high content of PUFAs, such as 20:4 and 22:6, is 

hypothesized to be a major factor responsible for the vulnerability of the brain to ischemia/

reperfusion injury [6-8, 10, 32].

Our result that brain phospholipids are least enriched with PUFAs of the four organs does 

not support this hypothesis. However, the finding does not rule out potential roles that 

PUFAs play in ischemic brain damage. Along with other alterations, such as glutamatergic 

dysregulation [33], PUFAs may be an important mediator in brain damage. It may be not the 

amount of PUFAs but the cellular conditions of the brain that facilitate PUFA-mediated 

pathways that may be a contributing factor to the vulnerability of the brain. In this light, 

lowering the PUFA content in membrane phospholipids may be the self-regulation of the 

brain to protect itself from ischemia. Consistent with this, the brain phospholipid is less 

responsive to the PUFA content in diets than other tissues [34, 35].

HPLC-MS analysis of phospholipid

Due to the existence of numerous isobaric and isomeric species, quantitation of 

phospholipids is challenging. Various methods have been applied to quantify phospholipids, 

however, the results differ depending on the methods used [20, 36-39]. Since the 

development of electrospray ionization, mass spectrometry is the most common method 

used to analyze phospholipids [40-42]. Differential ion mobility spectrometry has also 

become available and is a promising technique for the differentiation of isomers with or 

without silver ion adduction; however, it is limited to only a few number of MS methods 

[43].

We used normal-phase HPLC-MS for this study. Normal phase-HPLC separates 

phospholipids by class based on their retention times [23].This class separation provides a 
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full mass spectrum for each class of phospholipid (Fig. 1, 5, 7, and 10). Identification of a 

species by MS and MS/MS compared with the mass of the species in these full spectra 

reduces chances for false assignments and omission of significant species. In addition, the 

concentration of each phospholipid species calculated using automated methods can be 

cross-validated by comparing the calculated values with the intensities of the corresponding 

peaks in this full spectrum. For example, the concentrations of PE(16:0/20:4) and 

PE(16:0/20:4) presented in Fig. 2d can be matched with the peaks at 766.8 and 738.8 in Fig. 

1d, respectively. With fully validated sampling and quantitation procedures [23], the normal 

phase HPLC-MS method is shown to be advantageous for comparing phospholipid profiles 

between multiple tissues.

The lack of 18:2 in brain phospholipids including CL

The absence of species containing 18:2 in brain phospholipids has been reported previously 

[22]. It is interesting, however, that the brain limits the usage of 18:2 even for the synthesis 

of CL. In mitochondria, the final structure of CL is determined by the remodeling step, 

which preferentially incorporates 18:2 into CL [44, 45]. Consequently, CL(18:2)4 is often 

found to be the dominant species in most mammalian tissues [46]. It seems that the relative 

abundance of fatty acids is also an important factor in the selection of fatty acids for CL 

remodeling. Limiting the usage of 18:2 for the synthesis of CL may have caused the 

incorporation of more freely available fatty acids into CL, resulting in the highly diverse CL 

composition observed in the brain. This argument is supported by the fact that CL 

composition is readily affected by the fat contents in the diet [47-49]. This unique CL 

composition suggests that at least for brain mitochondria, neither the symmetry of CL nor 

preserving CL(18:2)4 is important. This explains why brain function is not affected in Barth 

syndrome patients, who have a defective metabolism for the use of 18:2 for CL.

In conclusion, unlike the common belief that brain is highly enriched with PUFAs, we have 

demonstrated that brain phospholipids contain lower contents of PUFAs than phospholipids 

in the heart, kidney and liver. The mole fraction of phospholipids containing PUFAs in the 

brain is ∼60%, which is significantly lower than over 90% found in other organs. This low 

PUFA content is due to high content of 18:1, particularly in PC, PEP, and PS. Overall, it is a 

unique feature that brain phospholipids contain significant amounts of MUFAs, making 

brain phospholipid least enriched with PUFAs of the four major organs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
MS spectra of PE from brain (A), heart (B), kidney (C), and liver (D) tissues. Major species 

of diacyl and plasmenyl PE in heart, kidney, and liver tissues contains PUFA at the sn-2 

position (A) whereas PE species containing MUFA (labeled in boxes) are highly enriched in 

brain tissues.
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Fig. 2. 
Relative contents of major species of phosphatidylethanolamine in the brain (A), heart (B), 

kidney (C), and liver (D). (data are presented as mean ± standard deviation, n=6). Closed bar 

=MUFA, open bar =PUFA.
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Fig. 3. 
MS/MS spectra of PE species with m/z 742.8 from the brain (A) and the heart (B), and PEP 

species with m/z 701.9 from the brain (C) and the kidney (D). The peak at 478 

corresponding to octadecenoyl glycerol and the peaks at 281 corresponding to 18:1 confirm 

the structure as PE(18:1/18:1) (A). The peak at 480 corresponding to octadecanoyl glycerol 

and the peaks at 279 and 283 corresponding to 18:0 and 18:2 confirms the structure as 

PC(18:0/18:2) (B). The peak at 436 corresponding to hexadecenyl glycerol and the peak at 

281 corresponding to 18:1 confirm the structure as PEP(16:0/18:1). The peak at 418 is 

dehydrated form of 436 and the peak at 255 is from 281-CO2. (C). The peaks at 436 and 281 

confirms the structure of the major species as PEP(16:0/18:1), and the peak at 438 

corresponding to hexadecanyl glycerol and the peak 279 corresponding to18:2 confirms the 

structure of the minor species as plasmanyl PE(16:0/18:2) (D).
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Fig. 4. 
Relative contents of plasmenyl phosphatidylethanolamine in the brain (A), heart (B), kidney 

(C), and liver (D) (data are presented as mean ± standard deviation, n=6). Closed bar 

=MUFA, open bar =PUFA.
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Fig. 5. 
MS spectra of PC from brain (A), heart (B), kidney (C), and liver (D) tissues. Three most 

abundant PC species in brain tissue contain saturated fatty acid or mono unsaturated fatty 

acids (labeled in boxes, 779, PC(16:0/16:0); 805, PC(16:0/18:1); and 833, PC(18:0/18:1) 

(A). Major PC species in liver tissue contain PUFA (D).
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Fig. 6. 
Relative contents of major species of PC from the brain (A), heart (B), kidney (C), and liver 

(D) (data are presented as mean ± standard deviation, n=6). Closed bar =Saturated or 

MUFA, open bar =PUFA.
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Fig. 7. 
MS spectra of PS from brain (A), heart (B), kidney (C), and liver (D) tissues. PS species 

containing MUFA (788.7, PS(18:0/18:1) is significantly higher in the brain than other 

tissues.
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Fig. 8. 
Relative contents of major species of PS from the brain (A), heart (B), kidney (C), and liver 

(D) (data are presented as mean ± standard deviation, n=6). Closed bar =MUFA, open bar 

=PUFA.
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Fig. 9. 
Relative contents of major species of PI and PG from the brain, heart, kidney, and liver (data 

are presented as mean ± standard deviation, n=6).
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Fig. 10. 
Mass spectra of CL from brain (A), heart (B), kidney (C), and liver (D) tissues. CL(18:2)4 is 

the major species in the heart, kidney, and liver but only a minor species in the brain.
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Fig. 11. 
Heatmap representation of phospholipid profiles in the brain, heart, kidney, and liver 

generated by Metaboanalyst software v.3.0. Sample intensities were scaled using Pareto 

scaling (high [red] and low [blue]). Heatmap trends show that the contents of phospholipid 

containing MUFA are higher in the brain than in other tissues.
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Table 2
Molecular composition of major phospholipids characterized by MS/MS

brain heart kidney liver

PE

715 16:1/18:1 16:0/18:2 16:0/18:2 16:0/18:2

717 16:0/18:1 16:0/18:1 16:0/18:1

739 16:0/20:4 16:0/20:4
18:2/18:2

16:0/20:4 16:0/20:4

743 18:1/18:1 18:0/18:2 18:0/18:2 18:0/18:2

745 18:0/18:1 18:0/18:1

763 16:0/22:6 16:0/22:6 18:2/20:4
16:0/22:6

16:0/22:6
18:2/20:4

765 18:1/20:4
16:0/22:5

18:1/20:4
16:0/22:5

18:1/20:4 18:1/20:4
16:0/22:5

767 18:0/20:4 18:0/20:4 18:1/20:4 18:1/20:4

773 18:0/ 20:1

789 18:1/22:6 18:1/22:6

791 18:0/22:6 18:0/22:6 18:0/22:6 18:0/22:6

795 18:0/22:4

PEP

701 16:0/18:1 16:0/18:1

m16:0/18:21

723 16:0/20:4 16:0/20:4 16:0/20:4

727 18:1/18:1 18:0/18:2 18:0/18:2

729 18:0/18:1
16:0/20:1

m18:0/18:2
18:0:18:1

m18:0/18:2

737 16:1/20:4
16:0/20:5

16:1/20:4
16:0/20:5

747 16:0/22:6 16:0/22:6 16:0/22:6

749 18:1/20:4 18:1/20:4
16:0/22:5

18:1/20:4

751 18:0/20:4
16:0/22:4

18:0/20:4 18:0/20:4 18:0/20:4

753 m18:0/20:4

757 18:0/20:1

773 18:1/22:6 18:1/22:6

775 18:0/22:6 18:0/22:6 18:0/22:6 18:0/22:6

779 18:0/22:4

PC

779 16:0/16:0 16:0/16:0 16:0/16:0

803 16:0/18:2 16:0/18:2

805 16:0/18:1 16:0/18:1 16:0/18:1 16:0/18:1

827 16:0/20:4 16:0/20:4 16:0/20:4 16:0/20:4

831 18:1/18:1 18:0/18:2 18:0/18:2 18:0/18:2

833 18:0/18:1
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brain heart kidney liver

851 16:0/22:6 16:0/22:6 16:0/22:6 16:0/22:6
18:2/20:4

853 18:1/20:4
16:0/22:5

855 18:0/20:4 18:0/20:4 18:0/20:4
16:0/22:4

18:0/20:4

879 18:0/22:6 18:0/22:6 18:0/22:6 18:0/22:6
18:1/22:5

PS

783 16:0/20:4

787 18:1/18:1 18:0/18:2 18:0/18:2

789 18:0/18:1 18:0/18:1 18:0/18:1

809 18:0/20:5
18:1/20:4

18:0/20:5

811 18:0/20:4 18:0/20:4 18:0/20:4 18:0/20:4

817 18:0/20:1

835 18:0/22:6 18:0/22:6 18:0/22:6

839 18:0/22:4

PI

834 16:0/18:2

836 16:0/18:1

858 16:0/20:4 16:0/20:4 16:0/20:4 16:0/20:4

862 18:0/18:2

882 16:0/22:6 16:0/22:6

884 18:1/20:4 18:1/20:4 18:1/20:4
16:0/22:5

886 18:0/20:4 18:0/20:4 18:0/20:4 18:0/20:4

910 18:0/22:6 18:0/22:6 18:0/22:6

912 18:0/22:5

PG

722 16:0/16:0 16:0/16:0 16:0/16:0

746 16:0/18:2 16:0/18:2 16:0/18:2

748 16:0/18:1 16:0/18:1 16:0/18:1 16:0/18:1

770 16:0/20:4 16:0/20:4

774 18:0/18:2 16:0/20:2
18:0/18:2

1
m, plasmanyl PE
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