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Abstract

FBW7 is one of the most well characterized F-box proteins that serve as substrate recognition 

subunits of SCF (Skp1-Cullin 1-F-box proteins) E3 ubiquitin ligase complexes. SCFFBW7 plays 

key roles in regulating cell cycle progression, differentiation, and stem cell maintenance largely 

through targeting a broad range of oncogenic substrates for proteasome-dependent degradation. 

The identification of an increasing number of FBW7 substrates for ubiquitination, and intensive in 
vitro and in vivo studies have revealed a network of signaling components controlled by FBW7 

that contributes to metabolic regulation as well as its tumor suppressor role. Here we mainly focus 

on recent findings that highlight a critical role for FBW7 in cancer and metabolism.
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1. Introduction

1.1 Ubiquitin-proteasome system (UPS)

Protein degradation is often essential for a rapid response to signal transduction and the 

recycling of amino acids as part of protein turnover. The vast majority of protein degradation 

is processed by the ubiquitin-proteasome system (UPS) [1]. Ubiquitin is an evolutionally 

conserved protein of 76 amino acids and covalently linked to target proteins in a multi-step 

process involving three key enzymes; an ubiquitin-activating enzyme (E1); an ubiquitin-

conjugating enzyme (E2) and an ubiquitin ligase (E3). The E1 enzyme activates ubiquitin in 

an ATP-dependent manner resulting in a thioester bond between the ubiquitin protein and 

the E1. Sequentially, the C-terminus of ubiquitin binds with the Cys residue in the active site 
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of an E2 enzyme, and then is covalently attached to the ε-amino group of the Lys residue on 

target molecules by the E3 ubiquitin ligase. Ubiquitin E3 ligases are classified into two 

major groups; the homologous to the E6AP carboxyl terminus (HECT) domain containing 

E3s and Really Interesting New Gene (RING) domain containing E3s. In contrast to HECT 

type E3s that form a thioester bond with ubiquitin, RING-type E3s directly conjugate 

ubiquitin from E2s to substrates. Although there are only two E1s and thirty-seven E2s, the 

human genome encodes over six hundred E3s, suggesting that E3 ligases functionally 

determine the substrate specificity for ubiquitination [2].

Ubiquitin can be added sequentially to form a polyubiquitination chain on the substrate 

protein. Since ubiquitin has seven Lys residues, Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, 

and Lys63, various types of polyubiquitination linkages are formed that can result in 

different physiological outcomes [3]. For instance, Lys48-linked polyubiquitinated proteins 

are recognized by the 26S proteasome, which is composed of a 20S core sub-complex, the 

19S regulatory sub-complex, and the 11S sub-complex. Polyubiquitin chains bind to the 19S 

core particle and are then cleaved off from substrate proteins. Subsequently, the target 

protein is unfolded and degraded by peptidase in the 20S core subunit. Recent studies began 

to reveal that polyubiquitin chains composed of apical chain linkages via the other six Lys 

residues within ubiquitin are not only involved in protein degradation, but also play 

important roles in various cellular events including DNA repair response, endocytosis, and 

signal transduction [4].

1.2 SCF (Skp1-Cullin1-F-box protein) type of E3 ligase complexes

Cullin-RING ubiquitin ligases (CRLs) are one of the RING type E3 ligases, and are 

composed of a Cullin, RING finger protein, a variable substrate-recognition subunit, and an 

adaptor subunit. All Cullins contain a conserved domain in their C-terminal regions and 

binds to either RING-box protein 1 (Rbx1) or Rbx2, which recruits the E2 enzyme to 

transfer ubiquitin molecules to the target protein. In eukaryotes, eight types of Cullin (Cullin 

1, 2, 3, 4A, 4B, 5, 7, and 9) have been identified and each Cullin forms a functionally 

distinct CRL complex. Since substrate recognition domains specifically recruit target 

molecules, they determine the substrate selectivity and are the largest contributor to the 

diversity of cellular functions of CRLs.

CRL1, which is also denoted as the Skp1-Cullin 1-F-box protein (SCF) E3 ligase complex, 

is the best-characterized member among all CRLs. The SCF complex contains the invariant 

components S-phase kinase-associated protein 1 (Skp1), Rbx1, and Cullin 1, as well as a 

variable substrate recognition subunit F-box protein (Figure 1A). So far, 69 F-box proteins 

have been identified in the human genome, and according to the substrate recognition 

domains, they are grouped into three major sub-classes; FBXW (WD40 repeat domain), 

FBXL (leucine-rich repeat domain), and FBXO (other various domains). Importantly, 

substrate recognition by F-box proteins often involves post-translational modifications of the 

target proteins such as phosphorylation or glycosylation [5]. SCF complexes often target key 

molecules involved in cell cycle progression and are thus considered one of the master 

regulators of the cell cycle machinery [5].
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1.3 The F-box protein FBW7

The F-box protein FBW7, also know as FBXW7 and Cdc4, is one of the most well-studied 

components of the SCF type of E3 ubiquitin ligases (Figure 1A). FBXW7 encodes three 

splicing variants, FBW7α, β and γ [6]. Each isoform differs in their N-terminal sequence 

but shares three conserved interaction domains; a D domain for promoting FBW7 

dimerization, an F-box domain for recruitment of the SCF complex through Skp1, and a C-

terminal WD40 repeat domain for substrate recognition. Thus, all FBW7 isoforms are 

considered to be functionally identical in principal. However, these isoforms show different 

subcellular localizations; FBW7α, β and γ localize in the nucleoplasm, cytoplasm and 

nucleolus, respectively [7]. In addition, tissue distribution also varies among these three 

isoforms. FBW7α is ubiquitously expressed in mice, whereas FBW7β is exclusively 

expressed in brain and testis, and FBW7γ is expressed in skeletal muscle and heart [8], 

which is consistent with the results of human multi-tissue Northern blot analysis [6].

FBW7 substrates typically contain a conserved Cdc4 phosphodegron (CPD) motif (L)-X-

pT/pS-P-P-X-pS/pT/E/D (X represents any amino acid) [9, 10]. FBW7 recognizes and 

ubiquitinates its substrates in response to phosphorylation of this motif. In many cases, 

GSK3 phosphorylates the CPD motif of FBW7 substrates in concert with priming kinases, 

which in turn triggers SCFFBW7-directed substrate ubiquitination [11–13].

FBW7 is a well-established tumor suppressor that promotes the degradation of various 

oncogenic proteins such as cyclin E [14–16], c-Myc [17, 18], c-Jun [11, 19], and MCL1 [20, 

21]. FBW7 is located within chromosomal region 4q32 that is frequently lost in cancers [6]. 

A comprehensive screening of over 1500 human cancers reveal that approximately 6% of all 

human cancers harbor FBW7 mutations [22]. Notably, mutations were frequently detected in 

cholangiocarcinomas (35%) and T cell acute lymphoblastic leukemia (T-ALL; 31%), and 

mutation frequencies in the range 6–9% were found in colon, endometrium, and stomach 

tumors. In human cancers, the most common missense mutations of FBW7 occurs at R465, 

R479, and R505 [22, 23], critical residues in the WD40 domain involved in substrate 

binding (Supplementary Figure 1), which strongly indicates that FBW7 dysfunction leads to 

tumorigenesis. A mammalian genetic screen for p53-dependent genes involved in 

tumorigenesis further revealed that Fbw7+/−mice were susceptible to radiation-induced 

tumorigenesis, and Fbw7+/−Tp53+/− mice have increased susceptibility, suggesting that 

FBW7 is likely a haploinsufficient tumor suppressor [24].

2. Roles of FBW7 in cancer

2.1 FBW7 downstream substrates

FBW7 targets multiple oncoproteins and oncogenic transcription factors for ubiquitination-

mediated proteolysis (Supplementary Table 1). As such, dysregulation of FBW7-dependent 

proteolysis of these oncogenic proteins contribute to development of various cancers. Given 

the crucial function of FBW7 as a tumor suppressor, the list of FBW7 substrates still 

continue to grow (Supplementary Table 1), revealing roles for FBW7 in controlling multiple 

biological processes such as metastasis, stress responses, and immune functions.
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SOX9 is a transcription factor that is involved in cell fate control and is frequently 

upregulated in various human cancers. In medulloblastoma, missense and nonsense FBW7 
mutations are frequent events, and the deficiency of functional FBW7 leads to SOX9 

stabilization, which in turn enhances metastatic potential and chemo-resistance [25]. 

Another independent study indicates that FBW7 is involved in DNA damage-induced SOX9 

destabilization, further suggesting that deregulation of FBW7 function leads to cancer 

therapeutic resistance [26]. Heat shock factor 1 (HSF1) regulates transcription of heat shock 

proteins [27]. Depletion of FBW7 results in HSF1 stabilization and deregulation of heat 

shock responses, leading to augmented metastatic potential through altered transcriptional 

program in melanoma cells [27]. In addition, aberrant HSF1 hyper degradation by FBW7 is 

reported to contribute to protein misfolding that causes pathological condition of Huntington 

Disease [28].

The Forkhead transcription factor FOXM1 plays important roles in cell proliferation and cell 

cycle progression. It was reported that FBW7 negatively regulates Wnt signaling through 

degrading FOXM1 that promotes Wnt-induced β-catenin transcriptional activity [29]. 

Furthermore, GATA binding protein 3 (GATA3) is a transcription factor that regulates 

differentiation of a subtype of T-lymphocytes, and FBW7-mediated GATA3 degradation 

precisely controls differentiation of T-cell lineages [30]. On the other hand, FBW7 

contributes to cilia formation by promoting degradation of NDE1, which is a negative 

regulator of ciliogenesis [31]. Notably, FBW7 depletion results in shortened cilia length 

indicating that FBW7 positively regulates cilia formation for proper reception of various 

extra-cellular stimuli. In addition, although early studies showed that tyrosine-protein 

phosphatase non-receptor type 11 (PTPN11) mediates the interaction between E3 ligase c-

Cbl and its ubiquitin substrate RIG1 to promote its degradation, recent work revealed that 

FBW7 ubiquitinates PTPN11, which enables RIG1 to escape from c-Cbl-mediated RIG1 

ubiquitination [32]. Consequently, myelomonocyte-specific Fbw7 knockout mice exhibit 

low interferon levels and therefore impaired antiviral immunity. Lastly, SCFFBW7 was 

reported to catalyze K63 linked poly-ubiquitination of XRCC4 [33]. In this experimental 

setting, DNA-damage-induced XRCC4 poly-ubiquitination by FBW7 facilitates the 

interaction of XRCC4 and Ku70/80 to repair DNA lesions.

2.2 Upstream regulation of FBW7 in cancer

FBW7 stability and activity are modulated by FBW7 dimerization, phosphorylation, 

ubiquitination, or regulatory protein interaction (Figure 1B). Dysfunction of the FBW7 

regulatory mechanisms causes oncogenic substrate accumulation, leading to cancer. 

Disruption of the Cdc4 (Fbw7 yeast homolog) D-domain that is essential for dimer 

formation results in augmented Cdc4 self-ubiquitination and degradation [34]. Notably, 

phosphorylation is a key modification for controlling FBW7 protein stability. ERK 

phosphorylates Thr205 on FBW7 to enhance self-ubiquitination in human pancreatic cancer 

[35, 36]. Mechanistically, Pin1 binds to the phosphorylated Thr205 site and catalyzes FBW7 

isomerization to disrupt FBW7 dimer formation, which in turn promotes FBW7 self-

ubiquitination and subsequent degradation [35]. Furthermore, PLK1 catalyzes FBW7 

phosphorylation at Ser58/Thr284 to promote FBW7 self-ubiquitination and degradation in 

human lung cancer [37]. As PLK1 is a direct Myc target gene, PLK1-dependent FBW7 
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downregulation creates the PLK1-Myc positive feedback loop to promote oncogenic events 

in lung cancer [37]. Likewise, PLK2-mediated phosphorylation at Ser25/176/349 promotes 

FBW7 destabilization and subsequent cyclin E accumulation, leading to centriole 

duplication in U2OS cells [38]. Conversely, SGK1-dependent Ser227 phosphorylation 

stabilizes FBW7 and enhances FBW7-mediated substrate ubiquitination in HCT116 and 

HEK293 cells [39, 40]. Besides protein stability control, phosphorylation of FBW7 affects 

its subcellular localization. To this end, ATM promotes FBW7 phosphorylation at Ser26, 

recruiting FBW7 to DNA lesions to facilitate the non-homologous end joining (NHEJ) 

complex formation in HCT116 and MIA PaCa-2 cells [33]. PKC-mediated phosphorylation 

at Ser10 that lies adjacent to the FBW7α nuclear localization signal (NLS) disrupts the 

function of the FBW7 NLS, resulting in exclusion of FBW7 from the nucleus in HeLa cells 

[41].

Moreover, FBW7 E3 ligase activity is controlled via interaction with critical modulators in 

cells (Figure 1B). To this end, identification of a deubiquitinase (DUB) that antagonizes 

FBW7 self-ubiquitination is important for understanding FBW7 regulatory mechanisms. 

Among the almost 100 DUB family members, ubiquitin specific protease 28 (USP28) 

catalyzes the removal of FBW7 poly-ubiquitin chain[42]. Specifically, USP28 interacts with 

and deubiquitinates FBW7 to suppress FBW7 self-degradation. At the same time, USP28 

deubiquitinates and stabilizes FBW7 substrates in MEF and HeLa cells [43]. This dual 

regulation induces a transient activation of oncogenic FBW7 substrates and also serves as a 

safeguard to restrain unnecessarily prolonged oncoprotein stabilization. Thus, deregulated 

USP28 expression may cause aberrant oncoprotein accumulation, increasing a progression 

of downstream tumorigenic events [43].

Proper assembly of SCF complexes is a critical determinant of SCFFBW7 catalytic activity. 

FBW7 is incorporated into the SCF core complex via binding to SKP1 that serves as an 

adaptor between FBW7 and Cullin1, the scaffolding component of SCF complex. The 

pseudophosphatase STYX suppresses SCFFBW7 function through competing with SKP1 for 

binding to the F-box motif within FBW7, resulting in up-regulation of FBW7 substrates 

including MCL1, c-Myc, and cyclin E in HeLa cells [44]. In support of these biochemical 

data, STYX and FBW7 expression levels are inversely correlated in breast cancer clinical 

samples, and high STYX level reflects lower relapse-free survival rate of the patients.

Furthermore, Rictor, a component of mTORC2, was shown to form the E3 ligase complex 

with FBW7 to direct c-Myc and cyclin E degradation in HCT116 cells, which is independent 

of mTORC2 formation and function [45]. Moreover, SCFFBW7 is reported to recruit Numb4, 

a Numb isoform that is critical for cell fate decision, to promote SCF complex assembly 

thereby enhancing its E3 ligase activity towards Notch degradation in glioblastoma stem-like 

cells [46]. On the other hand, FAM83B, a chromokinesin interacting protein, interacts with 

FBW7 to promote FBW7 destabilization and reciprocal mTOR stabilization in breast cancer 

cell lines [47].

2.3 FBW7 function in somatic and cancer stem cells

Cancer stem cells exhibit similar properties to normal stem cells, such as stem cell 

pluripotency, self-renewal capacity, and multi-lineage differentiation potential [48, 49]. 
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Multiple studies using in vitro and in vivo models reveal a broad spectrum of the 

contribution of FBW7 in stem cell maintenance [50], suggesting that FBW7 is involved in 

cancer stem cell regulation.

In embryonic stem (ES) cells, FBW7 is likely required for pluripotency, but not for self-

renewal [51]. FBW7 knockdown affects only c-Myc abundance among the well-documented 

FBW7 substrates, and FBW7 depletion promotes ES cell differentiation in a c-Myc 

dependent manner. Consistently, FBW7 depletion enhances induced pluripotent stem cells 

(iPS cells) generation [51]. These findings highlight an important role of FBW7 in 

maintaining stem cell pluripotency and reprogramming.

Tissue-specific knockout mouse models have uncovered pivotal roles for Fbw7 in somatic 

stem cell regulation. To this end, intestine-specific heterozygous Fbw7 knockout mice reveal 

enhanced stem cell self-renewal, predisposing these mice to colorectal cancer [52, 53]. Fbw7 
genetic ablation in the brain induces self-renewal of neuronal stem cells (NSC) due to Notch 

and c-Jun accumulation, resulting in abnormal brain development [54, 55]. The Notch 

downstream target Hes5 directly binds the FBW7β promoter to suppress its transcription, 

suggesting a model that a Notch-Hes5-Fbw7 positive feedback circuit is involved in 

maintaining proper NSC population [52]. On the other hand, Spermatogonia-specific FBW7 
genetic ablation leads to increased self-renewal of spermatogonial stem cells (SSCs) [56] 

where Fbw7 plays a key role in suppressing self-renewal through c-Myc degradation [56].

Multiple mouse models also reveal that Fbw7 is essential for maintenance of hematopoietic 

stem cell (HSC). In HSC-specific Fbw7 conditional knockout mice, the HSC population 

aberrantly decreases due to exit of HSCs from quiescence [57–59]. These results suggest 

that a considerable portion (~30%) of the Fbw7 ablated mice display a phenotype of 

leukopenia in part due to aberrant HCS activation and subsequent HCS depletion, and 

eventually the remaining mice without leukopenia develop T-ALL during the late latency 

period. Notably, the observed leukopenia in the Fbw7 knockout mice is largely caused by c-

Myc accumulation and consequent widespread p53-induced apoptosis [58]. Therefore, this 

finding indicates that Fbw7 and p53 serve as a fail-safe mechanism to prevent aberrant HSC 

activation and leukemogenesis. Interestingly, knock-in mice heterozygous for a cancer-

derived missense R468C-Fbw7 mutation that is frequently found in the Fbw7 substrate 

recognition domain display normal bone marrow reconstitution. However, these mice 

develop T-ALL when crossed with mice carrying an oncogenic Notch1 truncation mutant 

[60]. These data suggest that the heterozygous hot spot missense mutation of Fbw7 requires 

additional oncogenic events or mutations to develop leukemia.

2.4 Therapeutic implications of FBW7 signaling

Given the crucial role for FBW7 in regulating tumorigenesis, targeting the FBW7 signaling 

pathway has attracted significant interest for developing potential effective therapeutics 

approaches for various types of human cancers.

FBW7 E3 ligase activity is regulated by post-translational modifications, suggesting that 

aberrant oncogenic upstream signaling might lead to inhibition of FBW7 tumor suppressive 

function. This also suggests that blockade of the upstream FBW7 negative regulators is a 

Shimizu et al. Page 6

Cell Signal. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



promising therapeutic approach to restore FBW7 tumore suppressive function. For instance, 

selective PLK1 inhibitors have significant effects on suppressing tumor growth through 

stabilizing FBW7 thereby downregulating N-Myc [37] (Figure 1B). Alternatively, targeting 

elevated FBW7 substrates, most of which are oncoproteins, could also be an effective 

therapeutic strategy in various tumors that associate with FBW7 inactivating mutations. For 

example, high MCL1 levels are frequently observed in FBW7 mutated tumors, and promote 

drug resistance [20, 21, 61]. Thus, developing specific MCL1 inhibitors [62] is a vital 

approach to restore drug sensitivity in FBW7 deficient cancers [62, 63].

3. Roles of FBW7 in metabolism

Downstream substrates of FBW7 such as c-Myc [17, 18] and sterol regulatory element-

binding protein (SREBP) [64] play key roles in metabolic pathways, indicating that FBW7 

regulates metabolism in both normal and disease conditions. Moreover, a recent study 

revealed that FBW7 is involved in circadian rhythm that is critical for hepatic metabolic 

function via targeting the clock protein REV-ERBα for degradation [65].

3.1 FBW7 function in regulating metabolism

3.1.1 c-Myc: the impact of FBW7 on glucose metabolism—The oncoprotein c-Myc 

is a well-known transcription factor regulating gene expression essential for cell cycle 

progression. Aside from this, c-Myc contributes to cancer growth by reprogramming cellular 

metabolism [66]. In particular, c-Myc enhances glucose uptake and glycolysis largely by 

inducing the expression of glucose transporters (GLUT1, GLUT2 and GLUT4), and a series 

of glycolytic enzymes such as hexokinase (HK2), phosphofructokinase (PFKM), enolase 1 

(ENO1) and pyruvate kinase (PKM2) [67–69]. c-Myc also induces lactate dehydrogenase A 

(LDH-A) and the lactate transporter MCT1, thereby allowing efflux of glucose-derived 

carbon as lactate, which is an important process of glycolysis and tumor cell growth [70–

72].

A recent study found that pancreatic cancer patients with decreased expression of FBW7 

showed increased glucose metabolic activity in the tumor lesion [73]. FBW7 negatively 

regulates glucose turnover with decreased expression of key enzymes of the glycolysis 

cascade such as GLUT1, GLUT4, HK2, LDH-A, and LDH-B, in xenograft tumors as well as 

in pancreatic cancer cell lines. Gene expression profiling data and promoter analysis 

demonstrate that thioredoxin-binding protein (TXNIP), a suppressor of metabolic 

transformation, is upregulated by FBW7 ectopic expression and c-Myc degradation [73]. 

Mechanistically, TXNIP expression is negatively regulated by c-Myc, thereby FBW7 

inhibits glucose metabolism by targeting the c-Myc/TXNIP axis in pancreatic cancer.

3.1.2 SREBPs: the impact of FBW7 on lipid metabolism—SREBP family of 

transcription factors plays a critical role in lipid metabolism by regulating the expression of 

a range of enzymes required for lipid synthesis. The SREBP family consists of three 

isoforms: SREBP1a, SREBP1c, and SREBP2 [74]. SREBP1a and 1c are preferentially 

involved in fatty acid biosynthesis, while SREBP2 primarily regulates genes in the 

cholesterol biosynthetic pathway [75]. The animal model and pharmacological studies have 
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indicated that upregulation of SREBPs, especially SREBP1c, has a central role in the 

pathogenesis of the metabolic syndrome [76].

Transcriptionally active nuclear fragments of SREBPs (nSREBPs) are unstable and degraded 

by the ubiquitin-proteasome pathway [77]. Mechanistically, FBW7 promotes the 

degradation of nSREBPs in a GSK3 phosphorylation-dependent manner, thereby 

functioning as a negative regulator of lipid synthesis and metabolism [64, 78, 79]. Although 

it has been shown that GSK3-mediated phosphorylation of nSREBPs accelerates its turnover 

by creating a recognition site for FBW7, an additional layer of phosphorylation may 

antagonize this process during mitosis [80]. Specifically, the mitotic kinases Cdk1 and Plk1 

sequentially phosphorylate multiple sites including a residue in close proximity of the CPD 

motif in SREBP1, which in turn disrupts the interaction of SREBP1 with FBW7 and 

attenuates FBW7-dependent nSREBP1 degradation during cell division [80]. The expression 

of SREBP target genes such as fatty acid synthase (FAS) is induced during mitosis, and 

inactivation of SREBP1 results in mitotic defects, suggesting FBW7-mediated SREBP1 

degradation modulates cell division.

3.1.3 Other cell metabolism relevant ubiquitin substrates of FBW7—HIF-1α, a 

critical regulator of cellular response to hypoxia, exerts two major effects on metabolism. 

First, HIF-1α enhances glycolytic energy production by transactivating genes involved in 

extracellular glucose import (e.g. GLUT1) and glycolytic enzymes such as 

phosphofructokinase 1 (PFK1) and aldolase [81]. Second, HIF-1α downregulates the 

mitochondrial oxidative phosphorylation by transactivating genes including pyruvate 

dehydrogenase kinase 1 (PDK1) and MAX interactor 1 (MXI1) [81–84]. These two effects 

allow tumor cells to adapt hypoxic conditions by reducing O2 demand while still supplying 

sufficient energy to the cell. Thus, HIF-1α drives major metabolic changes within the tumor 

that are known as the Warburg effect [81, 85]. Two independent groups have reported that 

FBW7 can target HIF-1α for proteasomal degradation in a GSK3 phosphorylation-

dependent manner, thereby modulating cell growth, migration, and angiogenesis as a 

negative regulator of HIF-1α [86, 87]. However, further studies are warranted to define the 

implications of FBW7/HIF-1α pathway in metabolic regulation.

PGC-1α is a key transcriptional coactivator that coordinates energy metabolism. A central 

feature of PGC-1α is its ability to promote mitochondrial biogenesis and oxidative 

metabolism [88]. Notably, dysfunction of PGC-1α has been implicated in the pathogenesis 

of metabolic diseases including diabetes and obesity [89–91]. Indeed, the reduced levels of 

PGC-1α are observed in pre-diabetic individuals, and considered to result in decreased 

mitochondrial function and the development of insulin resistance [92, 93]. PGC-1α level is 

regulated at multiple layers including protein stability. Olson et al. found that PGC-1α 
contains two CPD motifs, which are phosphorylated by GSK3 and p38 MAPK, respectively, 

leading to FBW7-dependent ubiquitination and proteasomal degradation of PGC-1α. FBW7 

negatively regulates the PGC-1α-dependent transcriptional response to oxidative stress [94]. 

However, further studies are required to define the physiological relevance of FBW7/

PGC-1α axis in metabolism, presumably with engineered mouse models.
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mTOR has also been shown to be targeted for proteasomal degradation through a GSK3/

FBW7-dependent mechanism, and this pathway contributes to the induction of autophagy 

[95]. Although a direct role of FBW7-mediated mTOR degradation in metabolism is poorly 

understood, one might speculate an important role of FBW7 in these metabolic processes 

given the impact of mTORC1 signaling on various metabolic pathways [96] through 

regulating FBW7 substrates such as SREBP [64], HIF-1α [86, 87], and PGC-1α [94]. 

Specifically, mTORC1 signaling can activate SREBP independently through both an S6K1-

dependent mechanism [97] and phosphorylation of Lipin1, which inhibits SREBP-

dependent transcription [98, 99]. Furthermore, mTORC1 increases the translation of HIF-1α 
[97], and enhances the transcriptional activity of YY1/PGC-1α complex by directly altering 

their physical interaction [100]. Thus, FBW7 may negatively regulate a number of metabolic 

pathways through mTOR degradation.

Furthermore, Ngn3 is a key transcription factor that regulates endocrine cell differentiation. 

Ngn3 also behaves as a canonical substrate that is degraded by GSK3/FBW7, and loss of 

FBW7 reprograms adult pancreatic ductal cells into insulin-secreting β cells through Ngn3 

accumulation [101]. This evidence suggests that FBW7 can be involved in glycemic control 

through differentiation program for β cell neogenesis in the pancreas.

3.2 FBW7 function in hepatic metabolism

Liver-specific Fbw7 knockout mice (Fbw7-LKO mice) displayed hepatic steatosis 

phenotype with increased lipid deposits, suggesting a role for FBW7 in regulating liver 

metabolism [65, 102]. Mechanistically, hepatic knockout of Fbw7 results in accumulation of 

nuclear SREBP1, which is accompanied by expression changes of other lipogenic genes 

such as carbohydrate response element-binding protein (ChREBP), peroxisome proliferator-

activated receptor gamma (Pparγ) as well as their downstream targets including fatty acid 

synthase (Fas), stearoyl CoA desaturase-1 (Scd1), LDL receptor (Ldlr), and HMG-CoA 

synthase (Hmgcs1), through a negative feedback loop [102]. Another line of in vivo 
evidence also indicates that FBW7 negatively regulates hepatic lipogenesis by degrading 

KLF5, an upstream transcription factor of PPARγ2 expression [103]. Given that the KLF5/

PPAR axis is a key pathway of adipocyte differentiation and fatty acid oxidation in muscle, 

FBW7 may have important roles in metabolic pathways in those tissues [104–106].

REV-ERBα is a transcriptional suppressor that forms transcriptional complex integrating 

circadian rhythm and metabolic pathways [107]. Zhao et al. demonstrated that FBW7α 
promote the ubiquitination and subsequent degradation of REV-ERBα in a CDK1 

phosphorylation-dependent manner, and this pathway contributes to controlling circadian 

amplitude critical for liver metabolism and whole-body energy homeostasis [65]. They 

further indicate that Fbw7-LKO mice show lower blood glucose levels and improved 

glucose tolerance despite a marked increase in hepatic steatosis [65]. This apparent 

discrepancy is likely attributed to the compromised hepatic gluconeogenesis in Fbw7-LKO 

mice that display disrupted circadian oscillation of both PEPCK and G6Pase [65]. In 

addition, FBW7-dependent control of REV-ERBα stability might be another layer of 

regulation for hepatic metabolism, since hepatic ablation of Fbw7 attenuated the amplitude 

of diurnal expression of many core clock genes including REV-ERBα targets such as Bmal1 
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and Clock, and altered expression of a large number of genes controlling liver metabolic 

pathways [65]. Intriguingly, the amplitude of diurnal expression of Insig2, a key component 

of the SREBP pathway [108] and also a direct REV-ERBα target gene [107], is reduced in 

Fbw7-LKO mice [65]. Thus, FBW7 is able to control hepatic SREBP function through 

regulation of REV-ERBα stability as well as direct control of SREBP protein levels by 

degradation. This evidence strengthens the physiological role of the FBW7/REV-ERBα 
pathway in regulating hepatic metabolism associated with whole-body energy homeostasis.

4. Conclusions

Targeting aberrant FBW7 signaling is a promising therapeutic strategy for various types of 

cancers. Recent studies reveal a broad spectrum of the tissue-specific and context-dependent 

FBW7 regulatory mechanisms and substrate selectivity regulating tumorigenesis. Thus, 

comprehensive understanding of FBW7 signaling is required to design effective therapeutic 

approaches targeting FBW7 deficiency-mediated tumorigenesis. Although a number of 

studies have focused on identifying targets of FBW7, emerging evidence for upstream 

regulators of FBW7 may provide new therapeutic options to restore or reactivate FBW7 

tumor suppressor function (Figure 1B).

The role of FBW7 in metabolism is receiving increased attention. FBW7 may be capable of 

governing a broad range of metabolic pathways through targeting many key substrates 

including c-Myc, HIF-1α, SREBP, PGC-1α, mTOR, and REV-ERBα (Figure 2). Notably, 

many of these substrates are known to exert potent oncogenic roles through evoking aberrant 

metabolism. Metabolic alterations are indeed common features of cancer cells and have an 

important role in the maintenance of malignancies. For example, it has been well 

documented that the ability of cells to grow during hypoxia is regulated, in part, by 

metabolic outcomes of crosstalk between c-Myc and HIFs [72]. Thus, loss of FBW7 may 

contribute to metabolic preferences that benefit tumor growth through deregulation of c-Myc 

and HIF-1α. It is noteworthy that the discovery of REV-ERBα as a novel downstream 

substrate of FBW7 revealed a novel role for FBW7 in the regulation of circadian rhythm 

underlying normal metabolism. Given that changes in metabolism in cancer could be a 

consequence of a disrupted circadian rhythm, understanding the role of the FBW7/REV-

ERBα axis in disease conditions such as cancer as well as metabolic disorders will be of 

importance for evaluating new therapeutic strategies targeting circadian clocks.

In conclusion, recent studies have highlighted the physiological role of FBW7 in cellular 

maintenance through regulating differentiation, stemness, and metabolism. An ever-growing 

list of FBW7 substrates and upstream regulators will not only reveal the mechanisms of 

FBW7-asociated disease, but also offer many novel therapeutic targets to benefit cancer 

patients in the long run.
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Highlights

• Physiological role of FBW7 in cellular maintenance through regulating 

differentiation, stemness, and metabolism.

• Targeting aberrant FBW7 signaling is a promising anti-cancer therapeutic 

strategy

• FBW7 is involved in the regulation of circadian rhythm underlying hepatic 

metabolism associated with whole-body energy homeostasis.
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Figure 1. 
(A) A schematic illustration of SCFFBW7 E3 ubiquitin ligase complex. (B) Upstream FBW7 

signaling that modulates FBW7 function, stability, and subcellular localization. FBW7 E3 

ligase activity is coordinately controlled by phosphorylation, ubiquitination, and interaction 

with key regulatory proteins.
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Figure 2. 
FBW7 ubiquitin substrates and their critical roles in cellular metabolism. FBW7 is capable 

of governing various metabolic pathways through promoting the degradation of key 

substrates such as c-Myc, HIF-1α, SREBP, PGC-1α, mTOR, and REV-ERBα, respectively.
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