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Abstract

Rationale and Objectives—The purpose of this study is to improve accuracy of near-term 

breast cancer risk prediction by applying a new mammographic image conversion method 

combining with a two-stage artificial neural network (ANN) based classification scheme.

Materials and Methods—The dataset included 168 negative mammography screening cases. 

In developing and testing our new risk model, we first converted the original grayscale value 

(GV) based mammographic images into optical density (OD) based images. For each case, 

our computer-aided scheme then computed two types of image features representing bilateral 

asymmetry and the maximum of the image features computed from GV and OD images, 

respectively. A two-stage classification scheme consisting of three ANNs was developed. The first 

stage includes two ANNs trained using features computed separately from GV and OD images of 

138 cases. The second stage includes another ANN to fuse the prediction scores produced by two 

ANNs in the first stage. The risk prediction performance was tested using the rest 30 cases.

Results—with the two-stage classification scheme, the computed area under the receiver 

operating characteristic curve was AUC=0.816±0.071, which was significantly higher than the 

AUC values of 0.669±0.099 and 0.646±0.099 achieved using two ANNs trained using GV features 

and OD features, respectively (p < 0.05).

Conclusion—This study demonstrated that applying an optical density image conversion method 

can acquire new complimentary information to those acquired from the original images. As 

a result, fusion image features computed from these two types of images enabled to yield 

significantly higher performance in near-term breast cancer risk prediction.
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I. INTRODUCTION

Due to the low cancer detection yield (i.e., < 0.5%) and high false-positive recall rates (i.e., 

≥ 10%), efficacy of current population-based mammography screening paradigm remains 

quite controversial1–4. In order to solve this clinical dilemma, developing a new optimal 

personalized breast cancer screening paradigm to detect early cancers has attracted extensive 

research interest recently5,6. The goal of developing this new screening paradigm is to 

more effectively identify a small fraction of women who have significantly higher risk of 

developing breast cancer in the near-term than the average population. As a result, each 

woman should have an adaptive screening interval. Only a small fraction of “high-risk” 

women should be screened more frequently, whereas the vast majority of “low-risk” women 

should be screened at longer intervals until their near-term cancer risk significantly increases 

in new assessment4, 8.

The success of establishing an optimal personalized breast cancer screening paradigm 

depends on a reliable risk prediction model. Although many epidemiology study-based 

breast cancer risk models, such as Gail, Claus, and Tyrer-Cuzick model1,7 have been 

developed, none of them has a discriminatory power to determine which women should 

receive screening mammography in the near-term10. Thus, establishing an optimal 

personalized breast cancer screening paradigm requires to develop and test new risk 

prediction models that have significantly higher discriminatory power in predicting the risk 

of individual women developing breast cancer in the near-term8. Based on the computed 

quantitative image features, several research groups have developed and tested a number of 

new risk stratification models to predict breast cancer risk9–13.

In our studies, we hypothesized that bilateral mammographic density or tissue based image 

feature asymmetry between the left and right breasts is an important radiographic image 

phenotype related to abnormal biologic processes that may lead to cancer development. 

Thus, increase in bilateral mammographic density asymmetry could be an important 

indicator of developing breast abnormality or cancer 4. To test this hypothesis, we have 

developed several computer-aided image processing and feature analysis schemes to detect 

bilateral mammographic density related image feature asymmetry between the left and 

right breasts, and preliminarily investigated the association between bilateral mammographic 

image feature asymmetry scores and the risk of a woman developing breast cancer in a near-

term (e.g., ≤ 3 years) after a negative screening examination14–16. Another type of features 

are maximum features, which also can be used to detect structural and textural changes 

within breast regions due to abnormalities that are starting to develop. The greater one of 

the two values of the same feature was chosen to represent the region-based maximum 

feature value of the two bilateral breasts. It is observed that abnormalities that start to 

develop in one breast can be detected sensitively by extracting the maximum features of both 

breasts8. However, how to optimally detect bilateral mammographic asymmetry features and 

maximum features and thus improve accuracy in predicting near-term breast cancer risk 

remains a difficult and unsolved issue.

In this study, we focused on investigating a new approach aiming to more accurately 

detect bilateral mammographic image features and testing whether it can help further 
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improve the performance of applying quantitative image feature analysis methods to predict 

near-term breast cancer risk. In previous studies, the features used for predicting breast 

cancer risk were only computed on the original mammographic images. In fact, the original 

mammographic images could be converted or mapped into other images, which may be 

used to compute features with higher discriminatory power4,15,17. Thus, we proposed to 

convert the original grayscale values (GV) mammograms into optical density (OD) images. 

We computed asymmetry features and maximum features on these two different types of GV 

and OD images, and then trained and tested two artificial neural networks (ANNs) using 

these two groups of image features computed from the OD images and the GV images, 

respectively. Therefore, we investigated whether applying this image conversion approach 

yield higher performance in predicting near-term breast cancer risk. Moreover, we developed 

and tested a unique two-stage classification scheme. The first stage includes the two ANNs 

trained using the GV features and the OD features separately. The outcomes of the two 

ANNs were then fused into the third ANN in the second stage to generate the final risk 

prediction score for each testing case. As a result, we also investigated whether applying this 

two-stage classification scheme further improve risk prediction performance.

II. MATERIALS AND METHODS

II.A. A dataset

Our risk model was built based only on the bilateral image features and their asymmetry 

computed from the negative screening mammograms. We retrospectively assembled a 

testing image dataset for this study, which includes two sequential mammographic screening 

examinations acquired from 168 women. Each examination includes four full-field digital 

mammography (FFDM) images representing the craniocaudal (CC) and mediolateral 

oblique (MLO) view of the left and right breasts. All the images were acquired using 

Hologic Selenia FFDM systems (Hologic Inc., Bedford, MA, USA) with 12-bit resolution. 

From the results of the latest FFDM examinations on record (or namely, the “current” 

images), 83 were positive cases (with cancer detected and verified) and 85 were negative 

cases (cancer-free). TABLE I summarizes the distribution of women’s age, breast density 

(BIRADS rating), and lesion type that were detected on the “current” examinations.

For each case, the most recent (or first “prior”) FFDM screening images were also 

retrieved. The intervals between the “prior” and “current” examinations are 410.0±51.7 

days and 400.1±45.0 days for positive cases and negative cases, respectively. All “prior” 

FFDM examinations were interpreted and rated by radiologists as “negative” or “definitely 

benign” (i.e., screening BIRADS 1 or 2). Thus, all these “prior” examinations were not 

recalled. Thus, only these “prior” negative screening images were used for computing 

mammographic image features and building our new near-term breast cancer risk prediction 

model. Although all these “prior” images were negative, they were divided into two different 

classes based on their status changes in the next sequential FFDM examinations (“current” 

images). The cases were divided into subgroups of “positive” (cancer detected in “current” 

images) and “negative” (i.e., remained cancer-free) cases.

Although a FFDM examination typically includes four images of CC and MLO view of left 

and right breasts, applying a computerized scheme to detect mammographic density or tissue 
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related image features using CC view images is often more accurate and reliable than using 

MLO view images as demonstrated in the previous studies15. Hence, due to the use of a 

limited dataset, we only selected and processed a pair of bilateral CC view FFDM images of 

left and right breasts from each of the “prior” examinations in this study.

II.B. Methods

The new near-term breast cancer risk prediction model was proposed to detect the cases 

with high possibility of having highly suspicious breast abnormalities that are detectable in 

the next sequential screening examination. Specifically, our new risk model was developed 

using four steps including (1) segmenting the whole and dense breast regions from the 

GV images, (2) creating OD images on the segmented breast regions, (3) computing two 

groups of features on the GV images and the OD images, respectively, and (4) optimizing a 

two-stage ANN based classification scheme.

II.B.1 Breast region segmentation—For each case, a pair of bilateral CC view 

FFDM images of the left and right breasts were analyzed. We first applied an automatic 

segmentation scheme on each image to extract the whole breast region as described in 

Ref 18,19. In brief, a gray level histogram of the image was plotted and an iterative 

searching method was used to detect the smoothest curvature between the breast tissue and 

background or air region. The pixels in the background were discarded and the skin region 

was removed by a morphological erosion operation.

Second, we segmented the dense breast region from each image. The dense breast region 

was defined as the region of the breast that encompasses the pixel values above the mean 

value of the whole breast region. Unlike the previous studies in which the thresholds used 

for segmenting dense regions of the left and right breast mammographic images were 

separately selected from each image, which generally have different values, we in this study 

defined a new method to segment dense regions of left and right breast mammographic 

images using a single “mutual” threshold instead of two different individual thresholds. The 

mean grayscale value of all pixels in the two whole breast regions of the left and right 

mammographic images was defined as the “mutual” threshold.

II.B.2 Optical density image generation—We generated an OD image for each GV 

image. There are a number of published methods that have been used to convert grayscale 

values into optical densities. The first one is a relative optical density (ROD). All the original 

FFDM images were acquired with 12-bit resolution. The grayness is expressed as a gray 

value (GV) on the linear scale between 0 and 4095. The GV was transformed into the ROD 

with the following equation, which is a nonlinear transformation of GV values to OD values 

without the use of a standard20–23.

ROD = log10
4095

4095 − GV , if GV equals to 4095, GV = 4094 (1)

The ROD units display the same log-reciprocal relationship to light transmittance as the 

true OD and are reported to be closely correlated with the true OD values20. In this study, 
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we used (1) to convert GV images into OD images. The purpose of these conversions 

is to account for the nonlinear relationship between the darkness of a digital image and 

the number of particles striking the photodetector from radioactive decay. Because these 

transformations are nonlinear, they have the effect of making high values in the data 

disproportionately higher, which may provide useful and complementary information to the 

original mammographic images. For example, FIG. 1 presents a positive case showing a set 

of bilateral original grayscale value images and a set of bilateral optical density images. FIG. 

2 shows a negative case. Two examples show visual difference between GV and OD images, 

which will generate different feature values.

II.B.3 Image feature computation—In the literature, various studies have been 

conducted to compute and assess many mammographic density-related image features24–27. 

In this study, we computed some mammographic image features that have been proposed in 

the literature, as well as redefined some existing features and explored some new features 

that have never been examined and used before for the task of breast cancer risk prediction. 

The image features were computed from both GV images and OD images. Specifically, our 

computer-aided scheme computed the same 148 features from each of the 4 pairs of different 

ROIs namely, (1) the segmented whole breast regions and (2) the segmented dense breast 

regions in the bilateral GV images, which are named as WBR-GV and DBR-GV images, 

respectively (In the following, these features will be name as Fi
GV , (i = 1, 2, …, 148×2)), 

(3) the segmented whole breast regions and (4) the segmented dense breast regions in the 

bilateral OD images, which are named as WBR-OD and DBR-OD images, respectively (In 

the following, these features will be name as Fi
OD, (i = 1, 2, …, 148×2)).

Each group of 148 features were divided into two distinct types namely: (1) 76 bilateral 

mammographic tissue asymmetry features, which were represented by the absolute 

subtraction of two matched bilateral feature values computed from the left and right images; 

(2) 72 maximum features, which were represented by the greater feature value of two 

matched bilateral feature values. In the following, the two types of image features will be 

mentioned as asymmetry features and maximum features, respectively.

Type 1: Asymmetry features: The asymmetry features can be divided into a number of 

subgroups. The first subgroup include13 image statistics based features ( Fi
GV  and Fi

OD, i 

= 1, 2, …, 13)15. The second subgroup includes 4 fractal dimension related breast tissue 

composition features ( Fi
GV  and Fi

OD, i = 14, 15, 16, 17)17. The third subgroup has 39 

texture related image features ( Fi
GV  and Fi

OD, i = 18, 19, …, 56)28, which include 8 Gray-

level co-occurrence matrix based features, 13 Gray-level run-length matrix based features, 

13 Gray-level size zone matrix based features, and 5 Neighborhood gray-tone difference 

matrix based features. The fourth subgroup includes 16 features ( Fi
GV  or Fi

OD, i = 57, 58, 

…, 72), which we modified to compute a variety of percentage of mammographic density 

(PMD) for mimicking BIRADS used in clinical practice. The last subgroup includes 4 newly 

explored features. Specific definition of the features could be seen in Appendix A.
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From each pair of matched ROIs of left and right breasts, the first 72 asymmetry features 

( F1
GV  to F72

GV  (or F1
OD to F72

OD)) were independently computed for the left and right breasts. 

Each bilateral mammographic density asymmetric feature was computed by the absolute 

difference (subtraction) of two feature values computed from the two matched bilateral 

images. The last 4 asymmetry features were computed directly from each pair of matched 

bilateral images.

Type 2: Maximum features: This type of features includes another set of 72 features ( F77
GV

to F148
GV  (or F77

OD to F148
OD)), which were similar to the features in type 1 ( F1

GV  to F72
GV  (or 

F1
OD to F72

OD)). From each of two matched ROIs of left and right breasts, each of the 72 

features was also independently computed. Then, the greater one of the two values of the 

same feature was chosen to represent the region-based maximum feature value of the two 

bilateral breasts. As reported in Ref 8, it is observed that abnormalities that start to develop 

in one breast can be detected more sensitively by extracting the maximum features of both 

breasts. The maximum features can be used to detect structural and textural changes within 

breast regions due to abnormalities that are starting to develop, but have not matured or 

developed fully yet.

II.B.4 Risk prediction and performance assessment—All above computed image 

features of 168 cases were normalized based on their mean values and standard deviations 

to the range of 0 to 1. The normalized image features were then divided into two 

groups: features of 138 training cases and features of 30 testing cases (15 positive cases 

and 15 negative cases). Because there may be some redundant features that are of low 

discriminatory power for breast cancer risk prediction, we selected two small sets of 

“optimal” image features with higher discriminatory power from the complete sets of GV 

features and OD features of the 138 training cases, respectively. The feature selection were 

performed using a publicly available WEKA data mining and machine learning software 

package30. In the WEKA Explorer window, we chose “CfsSubsetEval” as attribute evaluator 

and “BestFirst” as search method. “CfsSubsetEval” means evaluating the worth of a subset 

of attributes by considering the individual predictive ability of each feature along with the 

degree of redundancy between them). “BestFirst” means searching the space of attribute 

subsets by greedy hillclimbing augmented with a backtracking facility.

In order to investigate predictive power of the selected features, we tested 3 simple feature 

fusion methods (taking the average, maximum, and minimum value of the selected features) 
29 on the same-label(number) GV and OD features of the 30 testing cases to generate 3 

sets of new classification scores. These scores were used as potential image based markers 

for predicting near-term breast cancer risk. The prediction performance was evaluated using 

AUC. The AUCs were computed applying a publically available ROC curve fitting program 

(ROCKIT, http://www-radiology.uchicago.edu/krl/, University of Chicago).

Many computer aided schemes have been developed for disease diagnosis and prediction 

using different classifiers including linear discriminant analysis (LDA), support vector 

machines (SVMs), artificial neural networks (ANNs), Bayesian belief networks, and rule-

Yan et al. Page 6

Acad Radiol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www-radiology.uchicago.edu/krl/


based classifiers. In the literature, ANNs are the most popular classifiers that have been 

widely explored for classification 8, 16, 28, 35. In this study, the “optimal” GV and OD 

features (selected from the 138 training cases) were also used to train a “two-stage” 

classification scheme including 3 ANNs to predict near-term breast cancer risk. As shown in 

FIG. 3. The first stage has 2 ANNs that were independently trained using the GV features 

and the OD features, respectively. Specifically, the first ANN was trained using the selected 

“optimal” GV features; while the second ANN was trained using the selected “optimal” 

OD features. In the second stage, we trained the third ANN using the 2 risk prediction 

scores produced by the 2 ANNs trained in the first stage as input. In order to investigate 

performance of the “two-stage” classification scheme, we tested the trained ANNs on the 

selected small sets of GV and OD features of the 30 testing cases that have the same 

labels(numbers) with the features selected from the 138 training cases to generate 1 set 

of new classification scores. The scores were used as potential image based markers for 

predicting near-term breast cancer risk.

All ANN based training and testing experiments were performed using WEKA. In the 

WEKA Explorer window, we chose Gaussian Radial Basis Function Network (RBFN) as 

the classifier. RBFN is a forward-feed 3-layer ANN which uses radial basis functions 

as activation functions32, which has been used in numerous applications for the pattern 

identification tasks. It has drawn much attention due to its good generalization ability and 

simple network structure33. Thus, an optimally trained RBFN enables to accelerate learning 

process and minimize the risk of trapping inside the local minimum. Past research of 

universal approximation theorems on RBFN has shown that any nonlinear function over a 

compact set with arbitrary accuracy can be approximated by RBFN34, which makes it a 

powerful tool for hazard risk assessment35.

AUC of the ROC curve was also used to assess the discriminatory power or classification 

performance of the prediction scores generated by the two-stage scheme, as well as that 

generated by the one-stage scheme based on GV features, OD features, and both GV 

and OD features. In addition, since in breast cancer screening practice, the healthcare 

professional or the women who participate in mammography screening need to make a 

binary decision (“Yes” or “No”) on whether an individual women need to take another 

annual mammography screening following a recent negative screening result in question, we 

also assessed and compared the overall prediction accuracies on all 30 testing cases, as well 

as on 15 “positive” cases and 15 “negative” cases by applying an operation threshold of 0.5 

on the prediction scheme or model-generated risk prediction scores, which range from 0 to 

1, to divide the 30 testing cases into two prediction case groups (with and without image 

detectable cancer in the next sequential annual screening). The computed accuracy results 

are tabulated and compared.

III. RESULTS

TABLE II lists two small sets of individual OD and GV features that were selected based on 

the 138 training cases. One set (on the right) of 9 features were selected from the pool of 

GV features. Among the 9 features, 5 ones are asymmetry features and 4 ones are maximum 

features; 4 were computed from the dense breast regions and 5 were computed from the 
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whole breast regions. Another set (on the left of TABLE II) of 10 features were selected 

from the pool of OD features. Among the 10 features, 7 ones are asymmetry features and 

3 ones are maximum features; 5 were computed from the dense breast regions and 5 were 

computed from the whole breast regions.

TABLE III compares AUC values of different schemes. In the middle column and the left 

column, AUC values of 4 different schemes are presented. Based on the GV features (middle 

column), AUC values ranged from 0.550±0.105 to 0.669±0.099. Based on the OD features 

(left column), AUC values ranged from 0.605±0.107 to 0.646±0.099. For each of the two 

sets of AUCs, the one yielded by the ANN based one-stage classification scheme is higher 

than those yielded by the simple fusion methods, but the differences are not statistically 

significant. As a whole, there is not a significant difference between the two sets of AUC 

values. The one-stage classification scheme based on both GV and OD features yielded an 

AUC value of 0.697±0.098 (presented in the right column). The two-stage classification 

scheme yielded an AUC value of 0.816±0.071 (presented in the right column), which is 

significantly higher than the AUC values yielded by either of two one-stage classification 

schemes using GV features and OD features each (P<0.05). The AUC value of the two-stage 

classification scheme is also much higher than that of the GV-and-OD-feature based one-

stage classification scheme, but the difference is not statistically significant (P>0.05).

FIG. 4 shows and compares 2 sets of ROC curves generated using the classification scores 

yielded by 4 classification schemes corresponding to the AUC data shown in TABLE III. 

FIG. 5 shows and compares four ROC curves. One of the ROC curves was generated using 

the classification scores yielded by the two-stage classification scheme, while other three 

were generated using the classification scores yielded by the one-stage classifiers trained 

using GV features, OD features, both GV and OD features, respectively.

TABLE IV summarizes the overall prediction accuracy on the complete 30 testing cases, 

as well as the prediction accuracy for the 15 positive cases and 15 negative cases, which 

were yielded by the GV feature based one-stage classifier, the OD feature based one-stage 

classifier, the OD and GV feature based one-stage classifier, and the two-stage classification 

scheme, respectively. The results in TABLE IV show that the group of prediction accuracy 

values yielded by the OD feature based one-stage classifier are the same with those yielded 

by the GV feature based one-stage classifier. For both of the two one-stage classifiers, the 

prediction accuracy for the positive cases are relatively low (lower than 60%). By using 

the two-stage classification scheme, the prediction accuracy was significantly increased (p 

< 0.01). The results in TABLE IV also show that, by using the two-stage classification 

scheme, the overall prediction accuracy, the prediction accuracy for the positive cases, and 

the prediction accuracy for the negative cases are quite comparable (80%, 80%, and 80%).

FIG. 6 shows and compares four groups of prediction accuracy values generated using the 

classification scores yielded by the OD feature based one-stage classifier, the GV feature 

based one-stage classifier, the OD and GV feature based one-stage classifier, and the two-

stage classification scheme, respectively.

Yan et al. Page 8

Acad Radiol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IV. DISCUSSION

This study is a part of our continuing effort to develop and optimize new quantitative 

image analysis methods to more accurately predict near-term breast cancer risk, which is 

an important prerequisite to help develop and establish a new optimal personalized breast 

cancer screening paradigm. Comparing to the previous studies, the unique contribution 

of this study is that we successfully tested and demonstrated that converting the original 

grayscale value mammographic images into optical density images and analyzing image 

features computed from the optical density images could play a surprisingly important role 

to significantly improve performance of near-term breast cancer risk prediction. To the best 

our knowledge, no similar approach or study has been previously reported in the literature.

The motivation of testing this new approach came from our previous observation and 

experience in developing mammographic image feature analysis based breast cancer risk 

prediction methods. We observed that in the some studies related to image-based breast 

cancer risk prediction in the literature4,15,17, the original mammographic images were 

converted into other types of images and the image features computed from the converted 

images provided importantly supplementary information to yield higher discriminatory 

power to those computed from the original mammographic images. However, how to 

optimally convert the original mammographic images is important, which determines the 

discriminatory power of the features computed from the converted images. In this study, 

we tested a new method to convert the original grayscale value mammographic images into 

optical density based images, compute features from the optical density images, and then 

fuse these features with other features computed from the original mammographic images 

using a two-stage ANN based classification scheme for breast cancer risk prediction. The 

purpose of doing these is to account for the nonlinear relationship between the darkness of 

the digital images and the number of particles striking the photodetector from radioactive 

decay. Because the transformation is nonlinear, it enables to generate low correlated image 

features computed from the original and converted images, which may have potential to 

acquire useful and complementary information computed from the original mammographic 

images.

From our study results, we can make the following new and interesting observations. 

First, we observed that the classifier trained using the GV features generated comparable 

discriminatory power scores with that trained using the OD features. However, since two 

groups of image features contain different but complementary information, comparing 

to train and optimize a one-stage ANN based classifier using only GV features or OD 

features, developing a two-stage ANN based classifier that fuses the prediction outcomes of 

2 ANNs, which were separately trained with GV features and OD features, enabled to yield 

significantly higher cancer risk prediction performance.

Second, we also observed that by using the proposed two-stage classification scheme, the 

prediction accuracy for the “negative” cases could be increased to some extent (73.3% 

to 80%). This indicates that by using the proposed scheme, the prediction result is 

more accurate by a narrow margin in identifying the women with low risk of having 

mammography detectable breast cancers in the next sequential FFDM screening. This 
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is a potentially advantage of applying this risk prediction model in the real screening 

environment due to the low cancer prevalence rate (i.e., < 0.5%) in the screening 

environment.

Despite the promising results and new observations, this is a laboratory based retrospective 

data analysis study with a number of limitations. First, the dataset used in this study is 

small and could not adequately cover the diversity of cases in screening environment. In 

our future study, we will continue to cooperate with doctors and collect new cases to 

expand the size of our dataset. Particularly, we will increase the number of negative cases 

to better represent the cancer prevalence ratio in a mammographic screening environment. 

Second, the FFDM images used were all acquired with Hologic Selenia FFDM systems. 

In order to use the proposed schemes to images acquired with other FFDM units, we need 

to study preprocessing methods to process different images. Third, our model was only 

applied to predict the risk of having mammography-detectable cancer in the next sequential 

mammography screening following a negative screening of interest. Whether the similar 

model can be developed and applied to predict risk in a relatively longer time period (i.e., 

2–5 years) has not been tested.

V. CONCLUSIONS

In summary, in this study we tested and demonstrated a new image conversion and 

feature analysis approach to compute and search for relevant image features with higher 

discriminatory power from two different types of images, and to improve performance in 

predicting near-term breast cancer risk. The initial testing results are promising. However, 

the robustness of this new approach and risk prediction model (or classifier) needs to be 

further evaluated before it can be clinically acceptable to help establish a new optimal and 

personalized breast cancer screening paradigm in the future.
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APPENDIX A

In this study, we computed some mammographic image features that have been proposed in 

the literature, as well as redefined some existing features and explored some new features 

that have never been examined and used before for the task of breast cancer risk prediction. 

The image features were computed from both GV images and OD images. Specifically, our 

computer-aided scheme computed the same 148 features from each of the 4 pairs of different 

ROIs namely, (1) the segmented whole breast regions and (2) the segmented dense breast 

regions in the bilateral GV images, which are named as WBR-GV and DBR-GV images, 

respectively (In the following, these features will be name as Fi
GV , (i = 1, 2, …, 148×2)), 

(3) the segmented whole breast regions and (4) the segmented dense breast regions in the 

bilateral OD images, which are named as WBR-OD and DBR-OD images, respectively (In 

the following, these features will be name as Fi
OD, (i = 1, 2, …, 148×2)).

Each group of 148 features were divided into two distinct types namely: (1) 76 bilateral 

mammographic tissue asymmetry features, which were represented by the absolute 

subtraction of two matched bilateral feature values computed from the left and right images; 

(2) 72 maximum features, which were represented by the greater feature value of two 

matched bilateral feature values. In the following, the two types of image features will be 

mentioned as asymmetry features and maximum features, respectively.

Type 1: Asymmetry features

The asymmetry features can be divided into a number of subgroups. The first subgroup 

include13 image statistics based features ( Fi
GV  and Fi

OD, i = 1, 2, …, 13) 15, which 

are average local value fluctuation of gray level histogram, mean of gray level histogram 

values, standard deviation of gray level histogram values, statistics based features computed 
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from the pixel value distributions of the ROI (region of interest) including mean value, 

variance, standard deviation, skewness, kurtosis, energy, and entropy, statistics based 

features computed from the local pixel value fluctuation map of the ROI including mean 

value, standard deviation, and skewness. The second subgroup includes 4 fractal dimension 

related breast tissue composition features ( Fi
GV  and Fi

OD, i = 14, 15, 16, 17)17, which are 

estimated with variation method, mathematical morphology, two slopes of fitting lines using 

textural edgeness and Gaussian subtraction.

The third subgroup has 39 texture related image features ( Fi
GV  and Fi

OD, i = 18, 19, …, 

56) 28, which include 8 Gray-level co-occurrence matrix based features namely, Energy, 

Contrast, Correlation, Homogeneity, Variance, Sum Average, Entropy, Dissimilarity, 13 

Gray-level run-length matrix based features namely, Short Run Emphasis (SRE), Long Run 

Emphasis (LRE), Gray-Level Non-uniformity (GLN), Run-Length Non-uniformity (RLN), 

Run Percentage (RP), Low Gray-Level Run Emphasis (LGRE), High Gray-Level Run 

Emphasis (HGRE), Short Run Low Gray-Level Emphasis (SRLGE), Short Run High Gray-

Level Emphasis (SRHGE), Long Run Low Gray-Level Emphasis (LRLGE), Long Run High 

Gray-Level Emphasis (LRHGE), Gray-Level Variance (GLV), and Run-Length Variance 

(RLV), 13 Gray-level size zone matrix based features namely, Small Zone Emphasis 

(SZE), Large Zone Emphasis (LZE), Gray-Level Non-uniformity (GLN), Zone-Size Non-

uniformity (ZSN), Zone Percentage (ZP), Low Gray-Level Zone Emphasis (LGZE), High 

Gray-Level Zone Emphasis (HGZE), Small Zone Low Gray-Level Emphasis (SZLGE), 

Small Zone High Gray-Level Emphasis (SZHGE), Large Zone Low Gray-Level Emphasis 

(LZLGE), Large Zone High Gray-Level Emphasis (LZHGE), Gray-Level Variance (GLV), 

and Zone-Size Variance (ZSV), as well as, 5 Neighborhood gray-tone difference matrix 

based features namely, Coarseness, Contrast, Busyness, Complexity, and Strength.

The fourth subgroup includes 16 features ( Fi
GV  or Fi

OD, i = 57, 58, …, 72), which 

we modified to compute a variety of percentage of mammographic density (PMD) for 

mimicking BIRADS used in clinical practice. These features are defined and computed as 

following:

F57
GV (or F57

OD) = NHA/NU (1)

F58
GV (or F58

OD) = NHM /NU (2)

F59
GV (or F59

OD) = NHA/NB (3)

F60
GV (or F60

OD) = NHM /NB (4)

Where, NU is the total number of pixels in the ROI of left or right breast; NB is the total 

number of pixels in the ROIs of both left and right breasts; NHA is the number of pixels in 

the ROI of left or right breast with gray value larger than the average value of all pixels in 
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the ROIs of both left and right breasts; NHM is the number of pixels in the ROI of left or 

right breast with gray value larger than the median value of all pixels in the ROIs of both left 

and right breasts. These 4 features are redefined from a feature used in Ref 15.

Next, to mimic BIRADS of mammographic density, we computed 3 features.

Fi
GV (or Fi

OD) = IK /IS, i = 61, 62, 63 (5)

Specifically, IS is the average gray value of all breast tissue pixels in one image and IK are 

the average gray values of the pixels whose gray values are under the threshold of K = 25%, 

50%, 75% of the maximum breast tissue pixel value in the image, respectively. In addition, 

we also computed other 3 features.

Fi
GV (or Fi

OD) = NK /NS, i = 64, 65, 66 (6)

Where NS is the total number of breast tissue pixels in a single image and NK are numbers 

of pixels whose gray values are under the threshold of K = 25%, 50%, 75% of the maximum 

pixel value in the image, respectively. Similarly, we computed another set of 6 features 

combining all pixels in two bilateral images.

Fi
GV (or Fi

OD) = IK /IB, i = 67, 68, 69 (7)

Fi
GV (or Fi

OD) = NK /NB, i = 70, 71, 72 (8)

Where IB is the average pixel value of total breast tissue pixels (NB) of both left and right 

mammograms.

The last subgroup includes 4 newly explored features, which are defined and computed as 

following:

F73
GV (and F73

OD) = abs(PV max
L − PV max

R ) (9)

F74
GV (and F74

OD) = abs(PV max
L − PV max

R )/GV ℎ (10)

Where PV max
L  and PV max

R  are the maximum breast tissue pixel values in the left and right 

images, respectively; GVh is the number of gray levels in the ROI of left or right breast, in 

which the maximum pixel value is higher. Specifically, if PV max
L > PV max

R , GVh refers to the 

number of gray levels in the ROI of the left breast; otherwise GVh refers to the number of 

gray levels in the ROI of the right breast.
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F75
GV (and F75

OD) = Ng (11)

F76
GV (and F76

OD) = Ng/Nℎ (12)

Where, Ng is the number of pixels in the ROI of higher maximum pixel value with gray 

values higher than the maximum pixel value of another ROI; Nh is the total number of pixels 

in the ROI of higher maximum pixel value. Specifically, if PV max
L > PV max

R , Ng refers to the 

number of pixels in the ROI of the left breast with gray values higher than PV max
R  and Nh 

refers to the number of pixels in the ROI of the left breast; otherwise Ng refers to the number 

of pixels in the ROI of the right breast with gray values higher than PV max
L  and Nh refers to 

the number of pixels in the ROI of the right breast.

From each pair of matched ROIs of left and right breasts, the first 72 asymmetry features 

( F1
GV  to F72

GV  (or F1
OD to F72

OD)) were independently computed for the left and right breasts. 

Each bilateral mammographic density asymmetric feature was computed by the absolute 

difference (subtraction) of two feature values computed from the two matched bilateral 

images. The last 4 asymmetry features were computed directly from each pair of matched 

bilateral images. The 76 asymmetry features which will be computed from the segmented 

whole breast regions (WBR-GV) are listed in table I.

Feature group Feature 
number

Description

Image statistics 
based features

1–13 Average local value fluctuation of gray level histogram, Mean of gray level 
histogram values, Standard deviation of gray level histogram values; Statistics 
based features computed from the pixel value distributions of the ROI (region of 
interest) including Mean value, Variance, Standard deviation, Skewness, Kurtosis, 
Energy, Entropy; Statistics based features computed from the local pixel value 
fluctuation map of the ROI including mean value, Standard deviation, Skewness

Breast tissue 
composition 
features

14–17 Fractal dimension estimated with variation method, Fractal dimension estimated 
with mathematical morphology, Slope estimated by fitting lines using textural 
edgeness, and Slope estimated by fitting lines using Gaussian subtraction

Texture related 
image features

18–56

Gray-level co-
occurence matrix 
based features

18–25 Energy, Contrast, Correlation, Homogeneity, Variance, Sum Average, Entropy, and 
Dissimilarity

Gray-level run-
length matrix 
based features

26–38 Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-Level Non-
uniformity (GLN), Run-Length Non-uniformity (RLN), Run Percentage (RP), Low 
Gray-Level Run Emphasis (LGRE), High Gray-Level Run Emphasis (HGRE), 
Short Run Low Gray-Level Emphasis (SRLGE), Short Run High Gray-Level 
Emphasis (SRHGE), Long Run Low Gray-Level Emphasis (LRLGE), Long 
Run High Gray-Level Emphasis (LRHGE), Gray-Level Variance (GLV), and Run-
Length Variance (RLV)

Gray-level size 
zone matrix based 
features

39–51 Small Zone Emphasis (SZE), Large Zone Emphasis (LZE), Gray-Level Non-
uniformity (GLN), Zone-Size Non-uniformity (ZSN), Zone Percentage (ZP), Low 
Gray-Level Zone Emphasis (LGZE), High Gray-Level Zone Emphasis (HGZE), 
Small Zone Low Gray-Level Emphasis (SZLGE), Small Zone High Gray-Level 
Emphasis (SZHGE), Large Zone Low Gray-Level Emphasis (LZLGE), Large Zone 
High Gray-Level Emphasis (LZHGE), Gray-Level Variance (GLV), and Zone-Size 
Variance (ZSV)
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Feature group Feature 
number

Description

Neighbourhood 
gray-tone 
difference matrix 
based features

52–56 Coarseness, Contrast, Busyness, Complexity, and Strength

Features for 
mimicking 
BIRADS

57–72 Ratio between the number of pixels in the ROI with gray value larger than the 
average value of all pixels and the total number of pixels in the ROI, Ratio between 
the number of pixels in the ROI with gray value larger than the average value 
of all pixels and the total number of pixels in the ROIs of both left and right 
breasts, Ratio between the number of pixels in the ROI with gray value larger than 
the median value of all pixels and the total number of pixels in the ROI, Ratio 
between the number of pixels in the ROI with gray value larger than the median 
value of all pixels and the total number of pixels in the ROIs of both left and right 
breasts; Ratio between the average value of pixels under threshold of 25% of the 
maximum pixel value and the average pixel value of the whole ROI, Ratio between 
the average value of pixels under threshold of 50% of the maximum pixel value 
and the average pixel value of the whole ROI, Ratio between the average value of 
pixels under threshold of 75% of the maximum pixel value and the average pixel 
value of the whole ROI, Ratio between the number of pixels under 25% threshold 
and the total number of pixels of the whole ROI, Ratio between the number of 
pixels under 50% threshold and the total number of pixels of the whole ROI, Ratio 
between the number of pixels under 75% threshold, and the total number of pixels 
of the whole ROI; Ratio between the average gray value of the pixels in the ROI 
whose gray value is under the threshold of 25% of the maximum pixel value and 
the average gray value of all pixels in the ROIs of both left and right breasts, Ratio 
between the average gray value of the pixels in the ROI whose gray value is under 
the threshold of 50% of the maximum pixel value and the average gray value of 
all pixels in the ROIs of both left and right breasts, Ratio between the average gray 
value of the pixels in the ROI whose gray value is under the threshold of 75% 
of the maximum pixel value and the average gray value of all pixels in the ROIs 
of both left and right breasts, Ratio between the number of the pixels in the ROI 
with gray values under the threshold of 25% of the maximum pixel value and the 
total number of pixels in the ROIs of both left and right breasts, Ratio between the 
number of the pixels in the ROI with gray values under the threshold of 50% of the 
maximum pixel value and the total number of pixels in the ROIs of both left and 
right breasts, Ratio between the number of the pixels in the ROI with gray values 
under the threshold of 75% of the maximum pixel value and the total number of 
pixels in the ROIs of both left and right breasts

Newly defined 
features

73–76 Absolute difference of the maximum pixel values in the ROI of the left breast and 
that of the right breast, Ratio between the absolute difference of the maximum 
pixel values in the ROI of the left breast and that of the right breast and the number 
of gray levels in the ROI of left or right breast whose maximum pixel value is 
higher, The number of the pixels in the ROI of higher maximum pixel value with 
gray values higher than the maximum pixel value of another ROI, Ratio between 
the number of the pixels in the ROI of higher maximum pixel value with gray 
values higher than the maximum pixel value of another ROI and the total number 
of pixels in the ROI of higher maximum pixel value.

Type 2: Maximum features

This type of features includes another set of 72 features ( F77
GV  to F148

GV  (or F77
OD to F148

OD)), 

which were similar to the features in type 1 ( F1
GV  to F72

GV  (or F1
OD to F72

OD)). From each of 

two matched ROIs of left and right breasts, each of the 72 features was also independently 

computed. Then, the greater one of the two values of the same feature was chosen to 

represent the region-based maximum feature value of the two bilateral breasts.
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FIG. 1. 
An example of a positive case showing (a) bilateral original grayscale value images and (b) 

optical density images in CC view.
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FIG. 2. 
An example of a negative case showing (a) bilateral original grayscale value images and (b) 

optical density images in CC view.
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FIG. 3. 
A two-stage “scoring fusion” RBFN-based ANN classification scheme, whereby the final 

classification score is derived by optimally fusing the prediction scores produced by 2 ANNs 

trained using GV features and OD features, respectively.
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FIG. 4. 
Comparison of receiver operating characteristic (ROC) curves generated by 4 breast cancer 

risk prediction schemes in which (a) and (b) corresponding to the ROC curves generated 

using OD features and GV features, respectively.

Yan et al. Page 20

Acad Radiol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 5. 
Comparison of ROC curves generated by the proposed two-stage classification scheme and 

the one-stage classification scheme using GV features an OD features, respectively.
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FIG. 6. 
Comparison of the overall prediction accuracy, prediction accuracy for the case groups with 

and without breast cancer of 4 different prediction schemes.
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TABLE I

Distribution of women’s age, breast density (BIRADS rating), and lesion type that were detected on the 

“current” examinations.

Risk factor Positive cases Negative cases

Woman’s age (years old)

 A≤40 4 (4.8%) 8 (9.4%)

 40<A≤50 25 (30.1%) 38 (44.7%)

 50<A≤60 22 (26.5%) 21 (24.7%)

 60<A≤70 19 (22.9%) 10 (11.8%)

 70<A≤80 11 (13.3%) 7 (8.2%)

 A>80 2 (2.4%) 1 (1.2%)

Density BIRADS rating

 Almost all fatty tissue (1) 3 (3.6%) 1 (1.2%)

 Scattered fibroglandular densities (2) 22 (26.5%) 20 (23.5%)

 Heterogeneously dense (3) 56 (67.5%) 57 (67.1%)

 Extremely dense (4) 2 (2.4%) 7 (8.2%)

Type of Lesion

 No lesion (0) 2 (2.4%) 71 (83.5%)

 Mass/Assymetry (1) 30 (36.1%) 7 (8.2%)

 Calcifications (2) 26 (31.3%) 5 (5.9%)

 Architectural Distortion (3) 1 (1.2%) 0 (%)

 Calcifications + mass/assym (4) 24 (28.9) 2 (2.4%)
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TABLE III

Comparison of AUC values and corresponding standard deviations of 5 different prediction schemes by using 

GV features and OD features.

Feature fusion method Based on OD features Based on GV features Based on GV and OD features

Scheme 1 (Taking maximum value) \ 0.550±0.105 \

Scheme 2 (Taking minimum value) \ 0.660±0.104 \

Scheme 3 (Taking mean value) 0.605±0.107 0.621±0.105 \

Scheme 4 (One-stage classification scheme) 0.646±0.099 0.669±0.099 0.697±0.098

Scheme 5 (Two-stage classification scheme) \ \ 0.816±0.071

Note: “\” means no corresponding AUC values or AUC≤0.5
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TABLE IV

Comparison of the overall prediction accuracy, prediction accuracy for the case groups with and without breast 

cancer of 4 different prediction schemes.

Feature fusion method Overall prediction 
accuracy

prediction accuracy for 
cases with cancer

prediction accuracy for 
cases without cancer

One-stage classifier trained using OD features 63.3% 53.3% 73.3%

One-stage classifier trained using GV features 63.3% 53.3% 73.3%

One-stage classifier trained using GV and OD features 56.7% 53.3% 60%

Two-stage classification scheme 80% 80% 80%
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