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Diffusion-localization transition 
caused by nonlinear transport on 
complex networks
Koutarou Tamura1, Hideki Takayasu2 & Misako Takayasu1

We analyzed nonlinear transport as defined for directed complex networks, where the flux from one 
node to a neighboring node is given preferentially according to the scalar quantities at the neighbor 
nodes. This is known as the generalized gravity interaction. In our research, we discovered a novel 
phase transition type. In the diffusion phase, the scalar quantity is scattered over the whole system, 
whereas in the localization phase, the flow tends to form localized confluence patterns owing to 
nonlinearity, resulting in the appearance of special nodes that irreversibly attract huge amounts of flow. 
We analytically considered the transition for selected network configurations, demonstrating that the 
transition point depends on the network topology. We also demonstrated that the diffusion phase of 
this transport model fits well with data from business firms, implying that the whole network structure 
can be used to model money flow in the real world.

Physicists have recently become interested in various social phenomena resulting from human activity that can 
be described in terms of transport systems, such as migration and traffic1–7, international and interfirm trade8–13, 
and telecommunication14. These transport systems in a social system universally exhibit a nonlinear interaction 
between actors that is called the gravity interaction. Transport phenomena caused by human activity are generally 
expected to be described as nonlinear interaction in a complex network. Unlike material transport, which is usu-
ally defined in three-dimensional Euclidean space, these social phenomena are often analyzed in the framework 
of complex networks as a first-step approximation of strongly heterogeneous interactions.

Transport phenomena on a given network structure are also important research topics from a physical view-
point. The most basic transport process in complex networks is a simple random walk to a node chosen randomly 
among linked neighbor nodes with equal probability, which becomes equivalent to thermal diffusion when a 
small probability of spontaneous jumping to any node is added to avoid walkers becoming stuck15–22. Thermal 
diffusion in Euclidean space results in a uniform steady state; however, in complex networks, the steady-state 
distribution depends on the network structure. This idea has been applied to the basic technology of Google’s 
PageRank algorithm, in which a node is a homepage, and a link represents a connection by a click15.

The thermal diffusion model has been generalized to biased random walk models while the linearity of the 
process has been maintained; for example, the transport probability is given in proportion to a fractional power 
of the link number of the destination node16,20,22. In a biased random walk model that assumes a biased transport 
probability as a function of the network distance from the origin, a localization transition occurs; that is, a ran-
dom walker never visits the origin in some parameter range22.

These types of diffusion-type generalized linear transport are being analyzed intensively for various complex 
networks16–20,23 and used for an elementary process in a social transport model20, although the gravity interaction 
is commonly observed and reported in many fields. On the basis of the bias of the flow, the authors proposed a 
method to extract the mainstream and basin structure of complex network flow and demonstrated a money flow 
case in a business transaction network24.

In this paper, we propose a nonlinear transport model based on a gravity interaction broadly observed in 
social phenomena. In the next section, we introduce a transport model of a scalar quantity based on the so-called 
gravity interaction in which the flow intensity on a link is proportional to the products of the scalar quantities at 
both nodes. In Sec. 3, we analyze this nonlinear-type transport on a two-dimensional (2D) lattice and find a phase 
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transition of the diffusiveness. In Sec. 4, we show that the system exhibits a transition between the diffusion phase 
and the localization phase, where the transition point is determined by both the key control parameter, which is 
the ratio of the fractional powers of the exponents, and the underlying network structure. In Sec. 5, we apply our 
model to a real interfirm trading network to evaluate the transition point of the network. Finally, we summarize 
our discussion.

Modeling nonlinear flow on social networks
The structure of a network is fully described by the adjacency matrix element Aij, which is equal to 1 if there is a 
directed link from the i-th node to the j-th node and equal to 0 otherwise. We consider transport of a conservative 
scalar quantity such as charge or current on this network. The charge on the i-th node at time t is denoted as Si(t), 
and we assume that the current from the i-th node to the j-th node, fij(t), is proportional to the product of the 
fractional powers of the scalar quantities, fij ∝ AijSi(t)αSj(t)β, as shown schematically in Fig. 1(a), where α and β 
are nonnegative constants.

When β = 0, the magnitude of the current does not depend on the charge of the destination, and the trans-
port corresponds to a simple random walk or ordinary thermal diffusion. When β > 0, the current from a node 
depends on the charge of the destination, so if there are more than two destinations, the node with the highest 
charge receives more current than nodes with lower charge.

There are many empirical studies on estimation of the values of α and β. For example, both α and β are 
approximately 1.0 for human flow between two cities, where the populations are regarded as the charges3–7. 
Further, similar exponent values are estimated for money flow; in international trade, the charges represent the 
GDPs of each country8,11,13,14. In some cases, the exponents are asymmetric, for example, (α, β) = (0.46, 0.64)4 
and (α, β) = (0.30, 0.64)5 in human flow, and it was concluded that the exponent of the destination is larger if the 
distance between the locations is less than a certain length. The authors have previously analyzed business firm 
transaction data compiled by Teikoku Databank, Ltd., and showed that the annual transaction volume from the 
i-th firm to the j-th firm is approximated by the generalized gravity interaction with the exponents α = 0.8~0.9, 
β = 0.3~0.59.

Assuming generalized gravity interaction transport on each link of the directed network, as given in Fig. 1(b), 
and adding the effects of dissipation and injection for each node, we introduce the following set of dynamic 
equations.
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Here SM denotes the charge of the M-th node, N is the total number of nodes, and νM and FM are the dissipation 
coefficient and injection, respectively, for the M-th node. In the left hand side of Eq. (1) we assumed a velocity 
term of state M for deriving a steady-state solution with a virtual parameter t which is not corresponding to the 
real time. When β = 0, the currents emitted from a node are equal for all neighbors, a phenomenon known 
as equipartition; on the other hand, when β = ∞, the largest neighbor receives the entire current, causing a 
monopoly.

We pay particular attention to the steady state of this system when νM and FM are nonnegative constants that 
are independent of M. In this model the dissipation and injection effect cannot be determined directly by our 
data, which does not contain any information of the dissipation and injection of each firm. However, supposed 
that inflow and outflow of each firm are determined as a gravitational flow, the dissipation term and the injection 
coefficients are derived by asymptotic behavior comparing the balance between the total inflow and the total 
outflow of each firm because the currents between nodes are conserved in this transport.

To simplify the theoretical analysis, we can reduce the number of parameters in Eq. (1) by introducing the 
variable = αQ S F/i i  and by setting the scale factor to 1.
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Here γ = β/α is the key parameter that controls the nonlinearity of the transport; namely, the parameters α and 
β contribute to the power exponent of the distribution of the steady-state solution, while the parameters ν and F 
determine the total amount of the flow: ∑MQM = NF/ν. For any given network structure, we consider the steady 
states of Eq. (2).

Figure 1.  Schematic diagrams of nonlinear transport. (a) Interaction strength between a pair. (b) Share ratio.
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Diffusiveness of nonlinear flow.  To clarify the role of nonlinear transport, we first consider Eq. (2) on a 
regular 2D periodic lattice. Figure 2(a)–(c) show examples of the steady states of Eq. (2) with ν = 0.01 for three 
typical values of γ, 0.3, 0.7, and 0.9, for an omnidirectionally connected node. Starting with a randomly assigned 
initial condition, as in the case where γ = 0.3, all nodes have the same charge in the steady state, implying that the 
steady solution is uniquely independent of the initial condition. However, if γ = 0.7 or 0.9, the steady state charges 
are nonuniform and localized, as shown in Fig. 2(b) and (c). We can confirm that the steady states depend on the 
initial condition, so there are multiple steady solutions.

We also consider a bidirectionally connected node at which the flow is limited to the upward and rightward 
directions. When γ = 0.3 [Fig. 2(d)], the steady-state solution is uniform, which is similar to the result for omni-
directional flow [Fig. 2(a)]. When γ = 0.7 or 0.9, as shown in Fig. 2(e) and (f), respectively, the steady-state charge 
patterns are represented by nonuniform stripes, and we can confirm that the pattern details depend on the initial 
condition.

To see the differences between Fig. 2(d)–(f) more clearly, we trace the flow of charges emitted from two points 
and observe how the charges diffuse. In Fig. 2(d′), we find that the charges diffuse widely into the downstream 
region. In Fig. 2(e′), the charges do not diffuse much, but they flow within a certain width. In Fig. 2(f′), not only 
are the charges nondiffusing, but the flows tend to aggregate, creating a single flow.

In Euclidian space, the steady-state solution changes dramatically at γC = 0.5. The changes are deeply related 
to the diffusiveness of the transport and can be explained as follows. Assuming the lattice spacing dx and time 
scale dt, we can discretize the master equation of the transport.

Figure 2.  Steady-state patterns on a 2D periodic regular lattice (red: large, yellow: intermediate, gray: small, 
normalized in each figure). In (a)–(c), the currents between neighbors can flow in both directions. In (d)–(f), 
current can flow only upward and to the right. In (d′)–(f′), the flow of charges emitted from the black source 
points is traced. The numerical calculation was performed with ν = 0.01.
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where Q(x, t) is the density of the charges at time t and position x. The first and second terms denote the amount 
of current from the neighbors, x − dx and x + dx, respectively. The third and fourth terms denote the amount of 
dissipation and injection within the duration dt. For sufficiently small dt and dx, the ring network is equivalent to 
one-dimensional (1D) space. Assuming a uniform solution Q(x, t) = 1/ν, we can approximate the perturbation 
Q x t( , ) ignoring the terms of order greater than two on the right-hand side of Eq. (3). The following diffusion 
equation is derived.
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where D(γ) is the diffusion coefficient. The explicit form of Q(x, t) is given analytically as follows for D(γ) > 0.
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It is straightforward to understand the sign of the diffusion coefficient, which is positive for γ < 1/2 and 
negative for γ > 1/2, implying that the diffusion–localization transition occurs at γ = 1/2. In the phase of the 
negative coefficient, currents appear to localize, and the steady-state configuration is localized depending on the 
initial conditions. The dimension of the Euclidian space generally does not change the diffusion coefficient. This 
is consistent with the numerical observation for the 2D Euclidian space in Fig. 2.

Diffusion-localization transition on a typical network
These dramatic changes in the steady-state solution of Eq. (2) can be understood by considering the simplest case 
of 1D transport. In a lattice system, the nonlinear gravity flow is reduced to the normal diffusion equation by the 
continuum approximation. The order parameter, the diffusion coefficient, is explicitly evaluated; however, it is not 
available in a general network.

Focusing on the initial condition dependency for γ > γC, we can examine the steady states of Eq. (2) and the 
stability of the solution.

Suppose that the transport equation, Eq. (2), has a steady-state solution ⁎QM, and we consider a small pertur-
bation Q t( )M  to this solution. Thus, the equation is linearized around the steady-state solution. The i-th node’s 
perturbation Q t( )i  to a neighboring j-th node Q t( )j  is described by a Jacobian matrix J as follows.
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where = ∑γ γ⁎ ⁎B A Q A Q/ij ij j k ik k . The value of γC at which the maximum eigenvalue of this Jacobian is zero deter-
mines the bifurcation point, which we call the transition point.

When the steady solution ⁎QM is derived theoretically, we can calculate the eigenvalue using Eq. (7) easily. The 
examples refer to the complete network, the star network, the ring network with bilateral links, and the branch 
network comprising one root node and two leaf nodes controlled by injection parameters Froot and Fleaf, respec-
tively. For example, in the case of the complete network and the ring network, due to the symmetry of the topol-
ogy, the stable steady-state solution is trivial, that is namely uniform, ν=⁎Q F/M . Also, the star network has only 
two values of the steady state solution: one from the hub node, the other from the perimeters, 

ν ν ν= + +⁎Q N F( ) / (1 )hub  and ν= +⁎Q F/(1 )peri , respectively. Equation (7) assigned with these steady solutions 
⁎QM easily derives the Jacobian matrix which is categorized into the circulant matrix and the eigen values. The 

branch network has more control parameters Froot and Fleaf. The value of the root node converged to 
ν= +⁎Q F /(1 )root root  and the leaf node to ν ν ν= + + +⁎Q F F(2(1 ) )/(2 (1 ))leaf leaf root . This stability system is 

described by 3 × 3 Jacobian matrix as well. We list the transition points for typical network structures in Table 1. 
As shown in Table 1, the infimum values of the transition points γC take different values depending on the net-
work structure in the limit ν = 0 and N = ∞.

Real transport on a real network
It is very interesting to estimate the transition point of γ for any given network structure. For this purpose, we 
introduce a numerical method based on observation of the relaxation times, as we can expect that a numerical 
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solution will take a long time to converge to the steady solution if the control parameter is close to the transition 
point. Starting with a randomly assigned initial state, we numerically calculate the time evolution using Eq. (2), 
and at each time step we observe the change in each node, |Qi(t + 1) − Qi(t)|. If the quantity of nodes is greater 
than 10−12, we proceed with the time evolution; if it is less, we stop the iteration, and the relaxation time is defined 
by this time step. In Fig. 3(a), the relaxation time is plotted. Red and blue lines in the inset in Fig. 3(a) show the 
two typical cases that are analytically solvable, and we find that the relaxation time tends to diverge at a point that 
is very close to the theoretical transition point, as expected, in both cases.

Now, we investigate the properties of the generalized gravity interaction model when it is applied to an 
interfirm business relation network structure in the real world, as defined by the direction of money flow, for a 
network consisting of 627, 262 nodes and 3, 844, 684 directed links. The business relationship network is charac-
terized by a power-law link-number distribution, which categorizes the network as a typical scale-free network 
with the power exponent 1.3~1.49,25. It is also reported that the distribution of the sales, the charge distribution, 
obeys a power-law distribution with the exponent 1.0 as well9,25. Google’s PageRank system is known to follow a 
power-law distribution with an exponent that is almost identical to that for link numbers16,18,26.

We can estimate the transition point γC for this network by observing the relaxation time. The relaxation time 
is plotted as a function of γ in Fig. 3(a) and tends to diverge at γC = 0.9. It is also confirmed that for γ > γC, there 
are multiple steady-state solutions, whereas for γ < γC, the steady-state solution seems to be unique.

The value of γ for real business firms is estimated by the microscopic fitting of annual data on money flows 
between firms, using the model of the generalized gravity interaction with γreal = β/α = 0.3/0.9~0.339.

Figure 3(b) shows that if γ is zero, the transport is equivalent to normal diffusion on the network as we model 
it. Further, for γ < γC, the power exponent of the distribution gradually changes. On the other hand, for transport 
with γ > γC = 0.9, which is in the localization state, the value of γ does not seem to affect the power exponent, and 
an extremely large node attracting current from the entire network emerges, as well as broad tails. In the real case, 
fitting the real sales value by the relation to the model, α= −Q S Flog log logM M , we obtain the remaining two 
coefficients defined in our model: F = 95 and α = 0.89. The distribution of steady-state solutions ⁎Qi  with these 
parameters are plotted in Fig. 3(b). The distribution of the real sales is transformed to Qi by = α⁎ ⁎S FQ( )i i

1/  with 
fitted values of F = 95 and α = 0.89, which obey a power law similar to that for our case with γ = 0.33. The model 
with the parameters obtained by microscopic fitting agreed well with a real sales distribution, whereas the degree 
distribution’s exponent, 1.4, and the sales distribution’s exponent, 1.0, are nontrivially related. It is suggested that 
the original form of the gravity law helps explain real money transport from the network structure.

Network topology γC(N, ν) γC(∞, 0)

Complete ν+ −−
− ( )( )1 1N

N N
1
2

1 1

Star ν ν
ν

− + + +
− + +

N
N

( 1)(1 )2 (1 )
( 1) (1 )

1

Ring (N → ∞) ν ν+ + + −(1 (1 ) 1 )1
2

2 1/2

Branch 1 + 2(1 + ν)Fleaf/Froot 1

Table 1.  The transition points for typical networks.

Figure 3.  Basic properties of the gravity model for real interfirm trading network with approximately 0.6 
million nodes. (a) Relaxation time as a function of γ for real interfirm trading network. The result of 500 
samples with a randomly assigned initial state is plotted as the median, 25%, and 75% in each range. In the 
inset, the same plots for the complete network, (N, ν) = (10, 0.15), and the star network, (N, ν) = (50, 0.1), are 
displayed in red and blue, respectively; they agree with the theoretical values shown in Table 1. (b) Cumulative 
distributions of the steady-state solutions of Eq. (2) with ν = 0.1 normalized to 1 at Q = 5 for γ = 0 (blue), γ = 
0.33 (green), γ = 0.6 (orange), γ = 1.0 (yellow), and γ = 1.1 (red). The dotted line denotes the sales distribution. 
The slope of the line is −1.4.



www.nature.com/scientificreports/

6Scientific REPOrts |  (2018) 8:5517  | DOI:10.1038/s41598-018-23675-x

Discussion
In this paper, we investigated the general nonlinear transport of a scalar quantity in a complex network, which 
includes thermal transport in the special case where γ = 0. We found that there are two phases. The first is the dif-
fusion phase for γ < γC, in which charges diffuse over the entire system, as in thermal diffusion, and there is only 
one steady-state solution in the presence of dissipation and injection. The second phase is the localization phase 
with stronger nonlinearity, γ > γC, in which charges flow preferentially to nodes with higher charge, resulting in 
irreversible river-like confluence patterns. In the latter phase, there are a small number of exceptional nodes that 
appear naturally and have very large charges that attract a huge amount of flow from the entire network. This may 
correspond to an oligopoly in the case of money flow. We can extract a basin structure that nearly fits the loopless 
tree-like structure from any given flow network by considering the limit of γ → ∞; for money flow among firms, the 
tree-like structure roughly represents the hierarchical relations of the production process of final goods from raw 
materials. The idea is almost equivalent to the basin structure of the flow network that we proposed previously24.

Finally, we also found that the network topology affects the transition point. It is numerically confirmed that 
the transition point, which can be estimated from the divergence of the relaxation time, of a real interfirm net-
work is approximately 0.9, whereas the observed γ value is 0.33. According to our calculation, our gravity model 
is expected to be an empirical model for real money transport, and we can conclude that real money flow is in the 
diffusion phase state.

Important objectives of future work include clarifying the relationship between the transition point γC and the 
network structures in more detail, as well as investigating why γC differs from that in typical cases. Because trans-
port is one of the most important aspects of network growth, criticality evaluating general transport based on the 
generalized gravity model is a promising area of research. There are many practical applications of the gravity 
interaction model as a model for money transport among firms; we can quantitatively estimate changes in money 
flow by changing the network structure. We expect that our model can provide the basic tools for simulation in 
economic risk evaluation.
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