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Rapid, topology-based particle 
tracking for high-resolution 
measurements of large complex 3D 
motion fields
Mohak Patel1, Susan E. Leggett1,2,3, Alexander K. Landauer1, Ian Y. Wong   1,2,3 &  
Christian Franck1,2

Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in 
biological and physical systems. However, existing tracking algorithms are most effective for relatively 
low numbers of particles that undergo displacements smaller than their typical interparticle separation 
distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex 
motion fields with large particle numbers, orders of magnitude larger than previously tractably 
resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery 
in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a 
rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique 
for its accuracy and computational efficacy using synthetically and experimentally generated 3D 
particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-
generated deformations. We augment this algorithm with additional particle information (e.g., color, 
size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. 
These applications demonstrate that this versatile technique can rapidly track unprecedented numbers 
of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial 
correlations exist.

Comprehensive tracking of tracer particle trajectories can elucidate complex behaviors in soft materials, fluid 
flows, and biological motion by resolving local inhomogeneities in space and time. For instance, the displacement 
of fiducial markers embedded within a solid or fluid medium can reveal local microrheological properties1–7, 
cell-generated deformations within a soft biomaterial8–18, or turbulent flows utilized for biological propulsion19–21. 
Moreover, directly tracking biological objects of interest such as single molecules22–24, viruses and bacteria25–29, 
and motile cells30–33 can reveal collective phenomena and heterogeneous phenotypes. However, particle tracking 
is computationally expensive and requires careful optimization of imaging conditions and thus remains highly 
challenging. The unambiguous resolution of particle motion typically requires displacements smaller than half of 
the interparticle spacing, often necessitating frequent time-lapse imaging34,35. Consequently, existing algorithms 
are inefficient when tracking large numbers of particles (tens of thousands or more) undergoing large motion 
over an extended duration or many image frames. New tracking algorithms exhibiting ultrahigh efficiency and 
accuracy based on computer vision techniques are necessary for extreme motion fields in physical and biological 
systems.

Single particle tracking (SPT) methods are typically based on a two step process: 1) particle positions are 
identified at each time frame, then 2) particle positions are linked together into trajectories over consecutive 
frames. Particles can be reliably localized with sub-pixel accuracy in both 2D and 3D images using Gaussian 
fitting methods36–38 based either on a nonlinear least squared criterion or maximum likelihood estimator, or 
the radial symmetry method39,40. Once located, the particles can be tracked using approaches including nearest 
neighbor search, relaxation methods41,42, feature vector based methods12,34, and more classical minimization of a 
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specific motion cost function43,44 using the sum of squared distances across time points. These methods accurately 
track particles subjected to small motion fields. However, tracking large particle motions presents a significant 
challenge due to the uncertainty of assigning new positions to identical particles. Moreover, they are not compu-
tationally efficient when tracking large numbers of particles undergoing large amplitude motion fields. Although 
some application-specific algorithms can capture large displacements45, these methods require inference of a 
priori knowledge of the underpinning physics behind the motion and thus are not readily adaptable to general 
motion fields of unknown character.

Complex motion fields can also be measured using correlation-based methods like digital image correlation 
(DIC) or particle image velocimetry (PIV), which do not require explicit information about particle positions. 
These correlation-based image subset matching methods are widely used46,47, but the inherent averaging nature of 
subset-matching schemes smooths out high frequency information48–50, and are computationally expensive since 
mathematical operations are applied across the entire 2D image or 3D volume51,52. Instead, SPT reconstructs a 
complex deformation field based on the spatially discretized motion of tracer particles. To resolve high spatial 
frequency information, high particle seeding densities are necessary. According to the Nyquist criterion, SPT 
methods have a theoretical spatial frequency recovery limit with the smallest resolvable wavelength twice the 
interparticle separation distance11. Increasing the overall particle seeding density reduces the interparticle sepa-
ration, which then limits the relative displacements that can be accurately and efficiently resolved using existing 
algorithms. This establishes a tradeoff whereby higher particle densities permit high spatial resolution but lower 
particle densities are needed to resolve large displacements. These issues are expected to worsen as camera sensors 
increase in size, allowing greater numbers of particles within a given field of view.

Here, we present a new particle tracking scheme called Topology-based Particle Tracking (T-PT) to address 
the challenges of current SPT methods in reconstructing complex, large motion fields with high computational 
efficiency and spatial resolution. Our approach utilizes feature vectors that encode nearest neighbor positions, a 
rigorous outlier removal scheme, and an iterative deformation warping scheme51. T-PT is designed to perform 
optimally for motion fields that exhibit some spatial correlations, although it can also be employed to track purely 
random motions. We demonstrate that our general purpose method accurately tracks a large number of parti-
cles undergoing large and high spatial gradient displacements with high computational efficiency. By including 
descriptive, multi-attribute information about the particles, e.g. particle color, size or shape, in addition to their 
geometric position, we show that the displacement resolution of our technique can be significantly enhanced for 
more accurate detection of large motion fields. Furthermore, we characterize the performance and versatility of 
our algorithm using a combination of simulated and experimental images, including non-affine deformations of 
soft materials, complex fluid flows, and cell-generated substrate deformations.

Results
Particle Tracking Using Feature Vectors with Relative Neighbor Positions.  Topology-based 
Particle Tracking (T-PT) utilizes feature vectors in a three-step algorithm (Fig. 1). First, particles centers are 
localized. Second, particles are linked between consecutive image frames using a new particle descriptor (feature 
vector), which encodes the spatial positions of their nearest neighbor particles for each time frame. Third, parti-
cles in consecutive time frames are compared using an iterative warping scheme to track large particle motions 
in time51. These three steps will be described in greater detail using a conceptual example of particles displaced 
by a 3D motion field.

The first step in most tracking schemes is the detection and localization of particle centers within each image 
(Fig. 1). We utilize image thresholding based on a user-specified cutoff to segment particle voxels from back-
ground voxels in the images. The particle centroids are then rapidly localized with sub-voxel accuracy using the 
radial symmetry method39,40.

The second step associates the particle positions in the reference (t = to) and deformed volumes (t = to + 1) 
with a “particle descriptor” or feature vector, based on the relative spatial positions of their nearest-neighbor 
particles (Fig. 1). This step defines a unique local particle signature based on the topological arrangement of 
randomly located neighbors, which aids in linking consecutive particle positions in time. For each particle, the 
positions of n nearest neighbor particles are stored. A spherical shell with a radius equal to the distance of the 
farthest particle from the particle of interest is then created around each particle. This spherical shell is further 
divided into k concentric shells of equal volume. Each of the concentric shells is further split into eight octants 
using the basis vectors in the reference volume, dividing the space around the particle of interest into 8k bins. The 
relative positions of the n neighboring particles is encoded into the particle descriptor by binning these particles 
into the 8k bins. The design of this feature descriptor is advantageous since it encodes the relative spatial positions 
of neighboring particles. This allows these particles sufficient freedom to rearrange during deformation while 
retaining a similar feature descriptor, since particles tend to remain within the same bin.

Particle positions are linked together in time by partitioning the reference (t = to) and the deformed (t = to + 1) 
volumes into subsets. The particles are linked one-to-one from the reference image subset to the corresponding 
deformed image subset such that a chosen particle pair has the minimum L2 particle descriptor distance. The 
algorithm enforces one-to-one particle linking conditions by discarding any particle links which are not bijective. 
An outlier removal procedure on particle links then eliminates potential false links. We utilize the neighborhood 
similarity test, which evaluates whether a particle linkage is plausible based on whether at least p of q neighbors 
are conserved between the reference and deformed volumes, in addition to the universal median test53, which 
removes potential outliers by eliminating particle displacements above a user-defined value based on the nor-
malized residual of the median neighbor particle displacement. The links verified by these two tests are stored as 
successful particle matches.

The third step in our algorithm uses an iterative deformation warping (IDM) scheme to accurately and effi-
ciently track large and complex particle displacements51. IDM resolves any general nonlinear deformation by 



www.nature.com/scientificreports/

3SCiEntifiC REPOrTS | (2018) 8:5581 | DOI:10.1038/s41598-018-23488-y

iteratively warping the reference and deformed images using a linearized displacement field until they converge to 
the same final configuration. The technique is adapted to deform particle positions in the reference and deformed 
images until the particle positions coincide. In addition to improving the large particle displacement recovery 
process, IDM also improves the similarity of particle descriptors in the reference and deformed volumes, further 
enhancing the accuracy of particle linking. The whole process of the particle matching and deformation warping 
is iteratively performed on decreasing subset sizes from 256 to 16 voxels to reduce the overall search region until 
the convergence criteria is fulfilled. The detailed description of various steps in the algorithm can be found in the 
Methods section and Supplementary Note 7.

Tracking Accuracy and Efficiency in Resolving Complex Motion Fields.  The performance of 
our T-PT algorithm was evaluated by synthetically generating a 3D volume of 512 × 512 × 192 voxels, with a 
signal-to-noise ratio (SNr) of 25, that contained 50,000 randomly distributed, identically-sized spherical particles 
with a particle density of 9.94 × 10−4 particles/voxel3 (Supplementary Figure 1). These voxel intensities were fur-
ther sampled from a Poisson distribution in order to simulate shot noise during experimental image acquisition.

To generate the deformed volume, the particles were then displaced by a sinusoidal field of linearly decreasing 
amplitude and spatial wavelength from 200 to 10 voxels (Fig. 2a). The complexity of the displacement field arises 
because it has both a region of large displacement and high spatial frequency motion. To quantify the displace-
ment magnitude between an image pair, the displacement parameter d is defined as the ratio of maximum dis-
placement magnitude |umax| to mean interparticle separation distance ro, i.e., = | |d u

r
max

o
. For the particle seeding 

density shown in the images, the particle separation distance is ro = 6.217 voxels. For “small” displacements of 
d < 0.5, a nearest neighbor search will be sufficient to track all particles, assuming a uniform volumetric particle 
distribution. However, accurate particle tracking becomes challenging for d > 0.5, as the true particle link is not 
necessarily the nearest neighboring particle in the local neighbor search. Thus, we evaluated the performance of 
this algorithm and other current SPT techniques as a function of increasing d for the prescribed displacement 
field (Fig. 2a). In particular, we considered three available methods, Legant et al.’s feature-vector based tracking 
method12,15, Jaqaman et al.’s linear assignment problem (LAP)-based algorithm24 implemented in TrackMate54, 
and a feature-vector-based relaxation method (FVRM)34.

The algorithm performance was evaluated using positive and false positive linkages as the displacement 
parameter (d) was systematically varied. The recovery ratio ηr is defined as the ratio of the total number of detected 
particle links found by the algorithm to the total number of existing particle links in between an image pair 
(Fig. 2b). For d < 1.5, T-PT, FVRM, and TrackMate exhibit very high recovery ratios ηr ~ 1. As d increases further, 
the recovery ratio remains nearly unity for T-PT and Trackmate out to d ~ 2.7, while FVRM decreases to ηr ~ 0.9. 
Legant et al.’s method has the lowest ηr, which also decreases with increasing d. The mismatch ratio ηm is the 
ratio of false particle links found by the algorithm to the total number of particle links detected by the algorithm. 

Figure 1.  Schematic of the T-PT algorithm. Step 1: Particles in the images are detected and their centers 
localized with subpixel accuracy using the radial symmetry method39,40. Step 2: T-PT is a feature-vector-based 
particle method. Particles are linked via a unique “particle descriptor” or feature-vector, which is created by 
spatially binning the neighboring particles. The particles are linked one-to-one between consecutive image 
frames by minimizing the particle descriptor L2 norm distance. These particle links are temporary and are 
subjected to outlier removal schemes53 to eliminate potential false particle links. The links verified by the outlier 
removal scheme are converted to actual particle matches. Step 3: Iterative deformation warping51 is used to 
resolve large particle displacements. Here, the positions of particles in the reference and deformed frames are 
iteratively warped by a linearized displacement field computed from matched particles, until the positions 
of the particles in the two consecutive frames coincide. The whole process of particle matching and iterative 
deformation warping is performed iteratively until a set of convergence criteria is met.
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T-PT does not find any false-positive links ηm ~ 0 for d < 1.5, but increases to a maximum of ηm ~ 6 × 10−3  
for d = 2.7. For FVRM, ηm ~ 9 × 10−3 for d = 0.3, which increases roughly exponentially up to ηm ~10−1 for 
d = 2.7. Finally, Legant et al.’s method remains roughly constant at ηm ~ 10−2 over this range of d, while TrackMate 
increases from ηm ~ 10−2 at d = 0.3 to ηm ~ 0.6 at d = 2.7. Overall, these metrics indicate that T-PT enables accurate 
tracking at high particle densities even for motion fields with very large displacement information.

In addition to tracking large deformations, the number of particles that can be efficiently tracked must be 
considered. Tracking a significant number of particles (~104) undergoing large deformations, i.e., d > 0.5 can 
be prohibitively expensive, particularly for large numbers of time-lapse images. The computational efficiency 
as a function of the total number of tracked particles was evaluated using the same displacement field as before 
(Fig. 2a, d = 2.1). For all algorithms, the execution time is small for low particle densities and increases signifi-
cantly with the number of particles (Fig. 2d). For high seeding densities, our T-PT has the fastest execution time, 
tracking 105 particles in 215.3 seconds. This is approximately 10 times faster than Legant et al.’s method, which is 

Figure 2.  Performance characterization of the T-PT technique. (a) Analytically prescribed displacement field 
used for assessing the performance of our T-PT technique. The prescribed displacement field is composed of 
a sinusoidal field of linearly decreasing spatial wavelength from 200 to 10 pixels. The displacement parameter 
(d) governs the |umax| of the displacement field. (b) Plot of the recovery ratio of various algorithms versus 
increasing displacement parameter, d. (c) Plot showing the mismatch ratio of different algorithms against 
increasing displacement parameter, d. The mismatch ratio for T-PT for d = 0.3 and 0.9 is zero. Since a value of 
zero is not defined in a log plot, it is indicated by blue stars in the plot. (d) Plot illustrating the execution time 
of each algorithm against synthetic images seeded with various numbers of particles. The execution time for 
FVRM and TrackMate for 100,000 particles is not shown in the plot, as the algorithm execution was terminated 
when its execution time exceeded 105 seconds. (b,c,d) ‘T-PT’ indicates the topology-based particle tracking 
method introduced here; ‘Legant et al.’ indicates the feature-vector based particle tracking method by Legant 
et al.;12,15 ‘FVRM’ indicates the feature-vector based relaxation method;34 ‘LAP’ indicates Jaqaman et al.’s LAP-
based algorithm24 implemented in TrackMate54. (e) Plot comparing the ability of T-PT and FIDVC51 to recover 
high spatial frequency motion content. The shaded region indicates the standard deviation of the recovered 
displacement magnitude. (f) Number of particles required in 2D and 3D images (192 z-slices) to resolve the 
imposed displacement field at the spatial Nyquist resolution versus camera detector resolution in megapixels.
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the second fastest method. As shown in Fig. 2d, for the given motion field our T-PT’s execution time approxi-
mately scales as O(n1.08), where n is the number of particles in the images.

At present and to the best of our knowledge, the only motion tracking techniques that perform similarly for 
large particle numbers are correlation-based methods. However, correlation-based methods tend to underresolve 
high spatial frequency motion content due to the intrinsic averaging nature of their subset-based image matching 
routines. To show this effect, we considered a sinusoidal displacement field with a magnitude of 0.1 voxels with a 
linearly decreasing spatial frequency from 100 to 10 voxels. This displacement field is prescribed to an image of 
size 512 × 512 × 192 voxels embedded with 50,000 particles and a SNr of 25. We compare the prescribed displace-
ment field against the high spatial frequency displacement content recovered by T-PT and fast iterative digital 
volume correlation (FIDVC)51, a correlation based method (Fig. 2e). FIDVC progressively underpredicts the 
true displacement magnitude with increasing spatial frequency and fails to recover the highest spatial frequency 
displacement content. In comparison, T-PT recovers the high spatial frequency motion but has a larger standard 
deviation in its resolved motion field than FIDVC, since T-PT does not any employ intrinsic spatial averaging 
or noise suppression calculations. T-PT also showed a significant speed improvement over the correlation based 
FIDVC method, as T-PT and FIDVC measured the displacements in 45.2 seconds and 391.3 seconds, respectively.

Recent advancements in camera sensor technology have enabled larger fields of view, allowing more particles 
to be imaged per field of view. For instance, EMCCD cameras typically have sensor sizes of 512 × 512 pixels (0.26 
MPx) or better. The first-order estimate for the Nyquist spatial resolution of the recovered motion field is twice the 
mean interparticle spacing. To resolve a motion field at Nyquist spatial resolution of 16 pixels, corresponding to a 
resolution of a single particle by four pixels in each dimension, approximately ~103 particles must be tracked for 
a single 512 × 512 pixel 2D image, but ~2 × 104 particles must be tracked in a 512 × 512 × 192 voxel 3D volume 
(Fig. 2f; details in Supplementary Note 2). Existing particle tracking algorithms exhibit adequate performance for 
104 particles (Fig. 2d). Yet recent developments in sCMOS camera technology with sensor sizes of 2048 × 2048 
pixels (4.2 MPx), corresponding to tracking 3 × 105 particles per 3D volume (2048 × 2048 × 192 voxels), which 
becomes impractical for existing algorithms (Fig. 2f). Future research may use even greater camera resolution, 
requiring larger numbers of particles to be tracked, perhaps 106 or more. The efficient performance of this algo-
rithm for large displacements and high particle numbers is thus highly promising for emerging imaging technol-
ogies. Moreover, it should be noted that this algorithm is parallelized and parallel computing could be utilized to 
further reduce execution time, if needed.

We have also compared the performance of T-PT to resolve random particle motion against other SPT algo-
rithms (Supplementary Note 5). TrackMate, followed by T-PT, had the most accurate tracking performance. The 
execution time of T-PT was at least an order of magnitude faster than the second fastest method, and T-PT and 
TrackMate had similar particle tracking accuracy for small random particle motion (d < 0.25). Thus, T-PT is 
preferable for applications involving a high number of particles undergoing small random motion. In addition, 
we evaluated the performance of T-PT for time-lapse data where particles randomly appeared and disappeared 
between image frames, which simulates experiments where particles merge and split (Supplementary Note 6). 
T-PT achieved a ηr ~ 0.98 and ηm ~ 7 × 10−5 between image frame 0 and image frame 5 for 10% of particles 
randomly seeded and removed in each image frame. T-PT showed that it could accurately track particles over 
time-lapse images even when a large fraction of particles appeared and disappeared between image frames.

Large Deformation Tracking in Non-Affine Soft Materials and Fluid Flows.  To highlight the ver-
satility of our T-PT algorithm, we chose two examples of potential interest to the biological and physical sciences 
communities. The first example examines the reconstruction capability of our technique to accurately capture 
both affine and non-affine motion fields in an idealized soft material undergoing a nominally applied homo-
geneous shear deformation (Fig. 3a–d). The second example investigates the resolution capability of T-PT to 
recover a complex, interacting fluid flow field across a stack of periodically-spaced cylinders at Reynolds number 
Re = 10,000 (Fig. 4a–f). These examples are simulated using synthetically produced images from analytically 
(example 1) and computationally (example 2) derived motion fields.

Particle tracking microrheology in soft materials enables resolution of non-affine deformations due to inho-
mogeneities in network architecture or enthalpic deformations of structural components (i.e. semiflexible or 
rigid polymers), which cannot be elucidated using bulk rheology55. We synthetically generate a 3D image set of 
512 × 512 × 192 voxels seeded with 50,000 particles undergoing a nominal shear (γ) deformation of 10%. Onto 
this homogeneous deformation, we superimpose random displacement vectors to create a non-affine displace-
ment field as might occur in fibrous materials such as collagen or fibrin (Fig. 3a). The regularly spaced bands in 
displacement contours measured by T-PT (Fig. 3b) indicate that it recovered the affine, finite (γ = 0.1) homo-
geneous shear displacement field accurately. The uneven and jagged border between the bands arises from the 
non-affinity in particle displacements. The 3D image pair was generated with a SNr of 25 and T-PT reconstructed 
the displacement field with a mean absolute displacement error of 0.145 ± 0.825 voxels. Concurrently, T-PT 
resolved most of the non-affine displacement components of the prescribed displacement field, as seen in the 
histogram of the superimposed non-affine displacement in Fig. 3c. Similarly, Fig. 3d visualizes the randomness in 
the prescribed non-affine displacement field in a subset of the 3D images, showing that T-PT resolves most of the 
non-affine displacement components. T-PT tracked the particles in the images with a recovery ratio of 0.922 and 
a mismatch ratio of 0.0184, indicating high accuracy in resolving the prescribed non-affine shear motion field. 
T-PT maintained similar accuracy across various applied shear deformations as the extent of non-affinity was 
varied (Supplementary Note 4).

Experimental fluid dynamics is another research area that commonly employs various SPT techniques to 
reconstruct complex velocity fields by tracking fiducial particles within the fluid flow. Examples include measuring 
fluid flow fields around bats19, jellyfish20, or bacteria29. The motion fields are usually recovered either by particle 
image velocimetry (PIV) or particle tracking velocimetry (PTV) methods. As a correlation based technique, PIV 



www.nature.com/scientificreports/

6SCiEntifiC REPOrTS | (2018) 8:5581 | DOI:10.1038/s41598-018-23488-y

has limited capability in capturing high spatial gradient flow fields56 (Fig. 2e). PTV can improve the spatial reso-
lution of the measured flow field56,57, but two-frame PTV techniques are limited to small particle displacements42.  
PTV techniques usually require multi-frame information to resolve large particle displacements57, which imposes 
experimental challenges.

To show T-PT’s ability to recover large and high spatial gradient displacement data encountered in an 
unsteady, complex flow field between two image frames, we simulate a 2D flow around a stack of periodically 
spaced cylinders in COMSOL (Fig. 4a). The numerical simulation details are described in the Methods section. 
The flow passing between the cylinders creates a complex motion field of varying spatial frequencies, with large 
displacements (peak value of 1.42 times the mean particle-spacing) as well as steep gradients (peak value of 2.9) 
(Fig. 4b). At a particular time, the displacement field is extracted from the simulation and prescribed to a syn-
thetic 2D particle image pair. The displacement field is then reconstructed from the particle motion using T-PT 
and FIDIC51 (Fig. 4c,e) and compared with the original displacement field (Fig. 4d,f). The errors for T-PT are 
mostly localized around the cylinder borders mainly because of scattered data interpolation scheme limitations. 
The error contribution in the recovered displacement field from the particle mismatch is relatively small as the 
mismatch ratio was 1.33 × 10−4. T-PT and FIDIC resolve the displacement field with a mean absolute error of 
0.0325 ± 0.147 pixels and 0.0387 ± 0.133 pixels, respectively. The particles were tracked with a recovery ratio of 
0.965, showing T-PT’s ability to accurately resolve the complex displacement field imposed. The computational 
times for T-PT and FIDIC to resolve the displacements were 76.1 seconds and 81.6 seconds, respectively.

Improved Tracking Accuracy Using Multi-Attribute Particles.  Accurate reconstruction of complex, 
high spatial frequency displacement content requires high particle seeding densities to reduce the Nyquist limit. 
However, increasing particle seeding density reduces the interparticle separation distance, and thus challenges 
the ability of state-of-the-art tracking algorithms, including our own, to resolve very large deformations. Thus, a 
tradeoff exists between resolving large deformations and recovering high spatial frequency displacement infor-
mation. While T-PT can accurately track large displacements, its recovery ratio, as with other SPT techniques, 
decreases dramatically as the imposed displacements become too large. To improve the tracking performance 
of our T-PT algorithm for these larger displacements, we enhanced T-PT by taking advantage of any additional 
particle information available beyond spatial positioning. For example, such multi-attribute information can 
include the particle fluorescent emission wavelength (color), size or shape, et cetera. To benchmark the per-
formance increase of utilizing multi-attribute particle information we synthetically generated a volumetric 
image pair of size 512 × 512 × 192 voxels seeded with 60,000 identical particles. Next, we augment the mono-
dispersed solution of particles by prescribing one additional distinguishing attribute to a 10,000 particles subset 

Figure 3.  Application of T-PT in resolving non-affine shear deformations in the rheology of soft materials. 
(a) Schematic of the analytically prescribed affine and non-affine displacement fields as seen in many soft 
materials55. (b) Contour plot of the displacement magnitude recovered by T-PT from the synthetic images.  
(c) Histogram of the applied and recovered non-affine displacement component of the prescribed motion 
field in a. (d) Example comparison of the non-affine displacement component recovered by T-PT against the 
prescribed non-affine displacement applied to the particles in the synthetic images. The arrows in the figure 
indicate the direction and relative magnitude of the 3D displacement projected on the x-y plane.
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and another attribute to the remaining 50,000 particles, creating two particle groups with low and high seeding 
densities (Fig. 5a). Experimentally, as we show later, particles of different colors or different sizes are used. The 
dual-attribute synthetic particle images are prescribed the original displacement field from Fig. 2a. The particles 
at low seeding density have larger interparticle spacing, and thus will provide higher accuracy in resolving large 
displacements at low spatial frequency, whereas the high seeding density particles with small interparticle spac-
ing provide the best estimate in the high spatial frequency content recovery process. We first track the particles 
at low seeding densities to resolve large deformations with low spatial frequency content in the applied motion 
field. Then, we use the iterative deformation warping scheme51 to deform the positions of all particles, including 
the ones at the high seeding densities according to this field. Finally, particles at the high densities are accurately 
tracked to recover the high spatial frequency and displacement gradient content. Multi-color particles have been 
previously used to increase the spatial resolution of the motion field measurement11. Now, our approach uses 
multi-attribute particles to resolve large displacement content at high spatial resolution, and thus provides a more 
general methodology for including any distinguishing particle characteristics in addition to color and position.

The inclusion of a single additional attribute improves the tracking capability of the T-PT algorithm sig-
nificantly, with the most improvement seen in the recovery ratio, ηr (Fig. 5b). For d < 2, ηr is comparable for 
identical and dual-attribute particle tracking. Nevertheless, for d > 3, the demonstrated dual-attribute particle 
tracking permits higher recovery ratios, reaching ηr = 0.75 at d = 4.5, roughly 50% better than monodispersed 
particles. The mismatch ratio ηm is roughly consistent for dual-attribute and identical particle tracking with var-
ying d (Fig. 5c). The details of the outlier removal scheme explains this trend. This step removes false particle 
matches, hence controlling the mismatch ratio. Since the outlier removal scheme is unmodified between identical 
particle and dual-attribute cases, both have similar mismatch ratios. This conceptual example uses color as a 
multi-attribute property, but the feature descriptor can straightforwardly be used with any other particle property.

Improved Resolution of Cell-Generated Substrate Deformations.  Finally, we analyze experimental 
images of cell-generated deformations using our T-PT algorithm. Adherent mammalian cells use focal adhesions 
to apply highly localized forces to soft biomaterial substrates, causing displacements with large magnitudes and 
steep gradients16,58,59. To reconstruct this complex motion field accurately, particle tracking algorithms capable of 
high spatial resolution are required60. Our experimental system consists of a fluorescently-labeled breast cancer 

Figure 4.  Application of T-PT in resolving a complex fluid flow across a stack of cylinders. (a) Schematic of 
a 2D Computational Fluid Dynamics (CFD) flow simulation around the periodically spaced cylinders. This 
displacement field is prescribed to a synthetically generated particle image pair. Inset shows a zoomed-in 
particle image subset to highlight the high particle seeding density in the images. (b) Contour plot of the 
magnitude of the 2D displacement field extracted from the CFD simulation. (c,e) Contour plot of the 
displacement vector magnitude recovered by T-PT and FIDIC, respectively from the synthetic images. (d,f) 
Contour plot of the displacement error from the recovered displacement field via T-PT and FIDIC, respectively.
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cell (MDA-MB-231, metastatic breast adenocarcinoma stably transfected with a green fluorescent protein) adher-
ent to a collagen-I conjugated soft polyacrylamide (PA) gel (stiffness ≈1.5 kPa) (Fig. 6a). Two sets of polystyrene 
microspheres with distinct size and fluorescent label are embedded within the PA gel. 2 μm blue tracer particles 
are injected at a low seeding density of 1.01 × 10−5 particles/voxel (Fig. 6b) and 1 μm red particles are injected at 
a high seeding density of 6.38 × 10−4 particles/voxel (Fig. 6c). The dual-attribute particles, as described earlier, 

Figure 5.  (a) Schematic overview of tracking multi-attribute particles. To resolve a complex displacement 
field, the images are seeded with two different types of particles, differentiated either by color, shape or size as 
an example. The use of multi-attribute particles allows a particle tracking algorithm to more accurately resolve 
a complex motion field composed of both large displacements and high spatial frequency motion content. (b) 
Plot comparing the recovery ratio of our T-PT results using single (i.e., identical) attribute vs. dual-attribute 
particles over a range of displacement parameters. (c) Mismatch ratio of T-PT results using single-attribute vs. 
dual-attribute particles over a range of displacement parameters.
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help T-PT to recover both the large and high gradient displacement content. A 3D volumetric image pair of size 
512 × 512 × 101 voxels was recorded via a standard confocal microscope (see Methods), and our 3D T-PT algo-
rithm tracked the particles in the images to recover the displacement within the PA substrate.

The breast cancer cell exhibited an elongated, spindle-like morphology representative of a mesenchymal mor-
phology in sparsely plated culture conditions61. In particular, near the trailing edge (Fig. 6d, left), the adhesive 
contact is associated with a relatively sharp spatial gradient deformation ( ξ|∂ ∂ | = .u / 0 15p , where ξ is the distance 
to the pseudopod tip) (Fig. 6e,f). These localized large deformations are typically observed near adhesive and 
focal contacts in various adherent cell types16,58,59. The T-PT surface displacement field along the cell body can be 
compared with the feature-vector based relaxation method (FVRM)34, another state-of-the-art SPT technique 
used to measure cell-generated deformations18. In general, both methods yield similar displacement field esti-
mates. However, in comparison to T-PT, FVRM under-predicted the peak displacement magnitude by 15% 
(Fig. 6g). Behind the trailing edge along the cell body axis (ξ ~ 40), both T-PT and FVRM yield comparable dis-
placement magnitudes of ~1 μm at a displacement gradient magnitude of 0.09. Near the pseudopod, at ξ = 0, 
FVRM underestimates the magnitude of the displacement field by ~1 μm relative to T-PT. Moreover, ahead of the 
trailing edge at ξ < 0, T-PT resolved a higher gradient magnitude of 0.15 compared to 0.12 using FVRM. These 
results indicate that T-PT better recovers large deformations and high gradient displacements. T-PT recovered the 
displacement field with an SNr of 48. We calculated the displacement SNr as the ratio of peak particle displace-
ment magnitude (3.7) to the noise floor of the particle displacement (0.077). Furthermore, T-PT tracked 11,247 
beads inside the image pair in 27.67 seconds, which is approximately 15 times faster than FVRM (Fig. 6h). The 
accuracy and efficiency of tracking particles with T-PT is promising for traction force microscopy applications, 
among others. The accuracy and computational efficiency advancement of our T-PT method will become more 
pronounced with higher native image resolution and higher particle seeding densities for resolving motion fields 
at very high Nyquist spatial resolution (Fig. 1e,g).

Discussion
T-PT is a new feature-vector-based particle tracking algorithm for large displacements and particle numbers 
that uses feature descriptors that encode the relative spatial positions of neighboring particles. This approach 
improves on existing tracking algorithms by incorporating this newly developed feature descriptor, rigorous out-
lier removal schemes, and an iterative deformation warping method51. This algorithm was evaluated computa-
tionally using a frequency-varying sinusoidal displacement field, a model soft material with affine and non-affine 
deformations, and a spatially heterogeneous fluid flow through a periodic array of cylinders. This algorithm was 
applied to reconstruct 3D cell-generated substrate deformations of a mesenchymal cancer cell. We show that this 
algorithm exhibits greatly improved performance relative to existing algorithms, with high recovery ratios for 
large displacement information, mismatch ratios that are over an order of magnitude smaller, and computational 
efficiency at least an order of magnitude faster. This performance can be further augmented for large displace-
ments through multi-attribute particles, which encode additional information about each particle. We show a 
50% improvement in recovery ratio utilizing two types of particles with different colors, at low and high seeding 
densities. In principle, this algorithm could also be improved using orthogonal features such as additional colors, 
particle sizes, shapes, etc.

We envision that T-PT can be generalized more broadly to other physical and biological systems of inter-
est. First, we have demonstrated T-PT for three-dimensional volumes, but it can be utilized similarly for 
two-dimensional images. Second, T-PT has been used to track particle motion based on two consecutive time 
steps, but an extension to multi-time point tracking is straightforward. With time-lapse data, multi-frame par-
ticle trajectories can increase accuracy by predicting particle positions in successive frames. This information, 
in conjunction with the iterative deformation warping, reduces the particle search region enhancing the overall 
tracking performance. Third, our particle tracking scheme can be extended to track any feature or object, if it can 
be detected and localized within the images. This is also an inherent, and important, limitation of T-PT: it requires 
particles or other detectable features to be localized within each image for subsequent tracking. In that regard, 
correlation-based methods are advantageous, as they only need random intensity speckle patterns within the 
input images. T-PT also makes use of the randomness of the relative particle positions to track the particles and 
therefore is not optimized for regularly arranged particles or particle lattices. Finally, T-PT is optimized for large 
numbers of particles, so tracking performance is similar to current SPT techniques for small numbers of particles. 
It should be noted that T-PT leverages spatial correlations in particle motion to efficiently resolve large displace-
ments. Thus, T-PT enables large performance improvements for directed motion and affine displacements, but 
can also resolve random and non-affine dynamics.

Single particle tracking algorithms are widely used in biological and physical research and have seen many 
advances over the past recent years62. Nevertheless, existing particle tracking algorithms are challenged by large 
and complex motion fields with high particle seeding densities. We address this technology gap using feature vec-
tors and an iterative deformation warping scheme, which enable high accuracy in recovering large displacement 
content, high computational efficacy and the use of multi-attribute particle characteristics. Future microscopy 
applications may use increasingly large particle numbers. For instance, superresolution microscopy techniques 
circumvent the diffraction-limited point-spread function, which limited both the spatial resolution of the motion 
field and the particle seeding density58. New structured illumination techniques could conceivably resolve 
extremely high particle seeding densities with separations below the spatial resolution limit. Simultaneously, 
increases in camera sensor size could result in unprecedented numbers of particles in the field of view, necessitat-
ing high computational efficiency to track the motion field at very high Nyquist spatial frequency. The algorithm 
demonstrated here is highly promising to meet these emerging technical challenges for ultrahigh resolution light 
microscopy. Overall, we envision that T-PT will provide the community with a robust, fast and flexible means of 
tracking complex, two and three dimensional motion fields.
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Methods
Simulated 3D particle images.  The performance of our T-PT algorithm is characterized using a pair of 
synthetically generated volumetric images of size 512 × 512 × 192 voxels (Supplementary Figure 1). In each ref-
erence volume (t = to), unless otherwise stated, 50,000 spherical beads are randomly seeded using a 3D Gaussian 

Figure 6.  Three-dimensional application of T-PT for measuring cell-induced substrate deformations. (a) 
Schematic of the experimental setup to measure substrate deformations applied by a breast cancer cell adherent 
to a soft polyacrylamide (PA) gel substrate functionalized with collagen I. The cell is fluorescently labeled with 
cytoplasmic green-fluorescent protein, and the PA gel is embedded with two different sized and fluorescently labeled 
microspheres. (b) Volumetric confocal image of 2 μm blue microspheres seeded at a low particle density in the PA 
gel, with the cell shown in green. (c) Volumetric confocal image of 1 μm red microspheres seeded at a high particle 
seeding density in the PA gel, with the cell shown in green. (d) 3D displacement magnitude of the extracellular 
matrix deformations recovered by T-PT by tracking the dual-attribute particles. (e) Inset outlined in d magnified to 
show the x-y displacement component. (f) Magnified cross-sectional view of the inset outlined in d to show the x-z 
displacement component. (g) Displacement component magnitude measured by T-PT and FVRM algorithms along 
the pseudopod axis highlighted by the white line in e. (h) Comparison of the computation time for T-PT and FVRM 
for recovering the 3D displacement information in the volumetric image pair of size 512 × 512 × 101 voxels.
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intensity profile as an approximation for the optical system’s actual point spread function (PSF). The PSF with 
amplitude A and standard deviation σ is expressed as
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The PSF with a standard deviation σ = 1 approximates a spherical particle in the image, with a diameter equal 
to about 5 voxels (Supplementary Figure 2). To avoid particle overlap in the images, a Poisson disc sampling algo-
rithm is used to seed particles in the images with a minimum separation distance between particles equal to the 
particle diameter. The particle position in the deformed image is calculated via the imposed displacement field, 
and the spherical particles are similarly seeded at these positions in the deformed image. To generate the simu-
lated images for each signal-to-noise ratio (SNr), we scale the image intensity such that the peak image intensity 
is equal to the SNr squared. Then each voxel intensity is replaced by a random number drawn from a Poisson’s 
distribution with its mean equal to the original intensity.

T-PT algorithm.  Particle Detection and Center Localization.  The first step in our T-PT algorithm focuses 
on proper particle detection and center localization using the previously published subpixel-accurate radial sym-
metry method39,40. First, the image is converted into a binary image using a user-defined threshold value, such 
that only the central region of the particle is segmented as several bright voxels, and the adjacent particle voxels 
are separated by at least one dark voxel. In the binary image, the simply-connected regions of bright pixels, corre-
sponding to the particle, are computed. Based on the expected particle size, a minimum and maximum number 
of voxels dependent on the particle size are used to identify connected components of the particles in the image 
and eliminate noise or multiply-connected particles. This step essentially serves as a user-defined exclusion rule.

Next, an estimate of the particle’s center is constructed from a basic centroid calculation of each of the selected 
connected components. Then the radial symmetry method is employed using a greyscale image subset around 
the voxel-level estimate of the particle’s center to compute the actual center position with subpixel accuracy. The 
particle detection scheme is fully user-configurable to accommodate most commonly used geometric shapes, not 
just spherical and circular ones.

Particle Linking.  T-PT is a feature-vector based particle tracking method, which utilizes the randomness of 
the particle locations to create a particle-descriptor based on the spatial positions of neighboring particles. The 
particles are linked between two image frames such that each particle pair has the smallest L2 particle descriptor 
distance. The particle descriptor and particle linking process is described in the Results section. To remove false 
particle links produced during the particle matching step, T-PT utilizes the similarity of neighborhood test and 
a displacement outlier removal scheme. The similarity of neighborhood test uses the idea that when a particle 
moves between image frames, it should be surrounded by some of the same neighboring particles. To assure 
neighborhood similarity, the condition that at least p out of q nearest neighboring particles are the same from the 
reference and deformed frames needs to be satisfied. The image dimensionality, displacement field, and particle 
seeding density dictate appropriate values for p and q. In our studies, p = 2 and q = 5 perform well for a variety of 
displacement fields and particle seeding densities in our 3D images. Additionally, displacements computed from 
each particle link are analyzed using the universal median test53 to remove potential outliers. The links verified by 
these two tests are converted to successful particle matches.

Iterative Deformation Warping.  T-PT uses the iterative deformation warping scheme51 to track large motion 
fields as shown in Fig. 1. Let the particle positions in the reference and deformed images in the kth iteration of 
deformation warping be xi

k and yi
k, respectively. From matched particle pairs, the displacement field at matched 

particle positions in the reference image is calculated as = −u y xi
m

i
m

i
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polated to all particle positions xi and yi as ui
k for the kth iteration of deformation warping. The particle positions 
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The particle matching and iterative deformation warping scheme are then iteratively used to track particles on 
decreasing image subset sizes until the convergence criteria are achieved.

As a final step, the displacements from the tracked particles are interpolated to predict the positions of 
untracked particles in the reference frame within a user-defined search radius. If a single particle is found within 
the search radius, and is verified by the earlier outlier removal schemes, the particle pair is added to the list of 
successful particle matches. This final step improves the recovery ratio of the T-PT algorithm.

Implementation.  A parallelized version of our T-PT algorithm is implemented in Matlab 2017a, and this algo-
rithm is freely available on our Github page (https://github.com/FranckLab/).

Hardware.  All computations for execution time estimates for the various algorithms were performed on a PC 
with an Intel i7 6700 K clocked at 4.0 GHz and 32 GB of memory.

https://github.com/FranckLab/


www.nature.com/scientificreports/

1 2SCiEntifiC REPOrTS | (2018) 8:5581 | DOI:10.1038/s41598-018-23488-y

Simulation of non-affine shear deformation.  The non-affine shear deformation is generated by apply-
ing a homogeneous simple shear deformation of 10% nominal shearing strain along the x-y direction of a volu-
metric image of size 512 × 512 × 192 voxels as shown in Fig. 4c. Superimposed on the affine displacement field, 
is a non-affine displacement field of a normal distribution with a mean of zero and a standard deviation of 0.75 
voxels along the x, y and z directions. The displacement field was prescribed to the 50,000 particles randomly 
seeded into synthetically generated images.

CFD simulation of fluid flow around cylinders.  A 2D fluid flow around a stack of periodically-spaced 
cylinders is simulated using COMSOL Multiphysics 5.2 (Burlington, MA, USA) (Fig. 4f). The computations 
were performed using the single-phase, time-dependent (unsteady) laminar flow physics module. We use a 
smoothed step function to ramp up the inlet velocity to 1 m.s−1. The fluid is modeled as incompressible with a 
density of 1 kg.m−3 and dynamic viscosity of 1 × 10−4 kg.m−1.s−1. The Eulerian mesh is produced using Comsol’s 
physics-controlled mesh sequence type with element size set to extremely fine, resulting in a final mesh of 80,638 
domain elements and 1078 boundary elements. The fluid displacement field from Comsol model is prescribed to 
45,000 particles randomly embedded in a synthetically generated image pair of size 2048 × 2048 pixels.

Experimental Method.  Preparation of Polyacrylamide Substrates.  Soft polyacrylamide (PA) gels were pre-
pared as previously described by Toyjanova et al.17. in 24-well glass bottom plates (Cellvis, P24-1.5H-N). Each 
well was activated via treatment with 0.5% (v/v) of (3-aminopropyl)triethoxysilane (Sigma Aldrich) in etha-
nol, followed by 0.5% glutaraldehyde (Polysciences, Inc) in deionized water. Hydrophobic cover glass (12 mm 
diameter, Fisher Scientific) was also prepared by dipping in a solution of 97% (v/v) hexanes (Fisher Scientific), 
2.5% (v/v) (tridecafluoro-1,1,2,2-tetrahydrooctyl)-triethoxysilane (Gelest), and 0.5% (v/v) glacial acetic acid 
(Sigma Aldrich), which was allowed to dry at room temperature. Next, a PA gel solution was prepared using 3% 
acrylamide (40% w/v, BioRad) and 0.2% N,N-methylene-bisacrylamide (2% w/v, BioRad) to yield a gel with final 
stiffness of ~1.5 kPa17. Two different color fluorescent beads were also incorporated into the PA gel solution to 
improve tracking by using multi-attribute particles for T-PT. Carboxylate modified microspheres (FluoSpheres) 
were added at a final concentration of 14% and 2%, for 1.0 μm diameter red fluorescent (580/605 nm) and 2.0 
μm diameter blue-green fluorescent (430/465 nm) beads, respectively. We used beads of different sizes due to the 
lack of availability of both color beads at 1.0 μm diameter. In experiments, we utilized only the color to differ-
entiate between the beads. Next, 12 μL of PA gel solution was pipetted into the activated glass well and flattened 
with the hydrophobic round cover glass to yield a PA gel of ~70 μm in thickness. The PA solution was allowed to 
completely gel (30 minutes) before removal of the hydrophobic coverslip. Gels were kept hydrated in phosphate 
buffered saline (1X PBS) prior to functionalization for cell studies.

Functionalization of Polyacrylamide Substrates for Cell Adhesion.  To facilitate cell adhesion to PA gels, the 
bifunctional crosslinker sulfo-SANPAH was deposited onto the gel surface, enabling subsequent collagen I 
conjugation. PBS was removed from the PA gels in 24-well plates and a solution of 1 mg.mL−1 sulfo-SANPAH 
(ThermoFisher Scientific) in deionized water was added on top of each gel to yield 25 μg.cm−2 sulfo-SANPAH. 
Next, the plate was exposed to UV light for 15 minutes for photoactivation of the crosslinker, the darkened 
sulfo-SANPAH solution was removed, and the process was repeated for a second coating of sulfo-SANPAH. 
After the second deposition, sulfo-SANPAH was removed and the wells were washed several times in 1X PBS to 
remove unreacted sulfo-SANPAH. PA gels were then incubated with a dilute solution of rat tail collagen I (Fisher 
Scientific) in 0.02 N acetic acid overnight at 4°C, to yield a final protein coating of 5 μg.cm−2. The next day, PA gels 
were washed twice with 1X PBS to remove residual collagen I and acetic acid.

3D Traction Force Microscopy with Breast Cancer Cells.  Human metastatic breast adenocarcinoma cells 
(MDA-MB-231) were used for TFM studies. MDA-MB-231 cells with cytoplasmic green-fluorescent pro-
tein (GFP) expression were a generous gift from S. Javaid and D. Haber from the Massachusetts General 
Hospital. Cells were cultured in growth media containing Dulbecco’s Modified Eagle’s medium (DMEM) with 
L-glutamine, 4.5 g.L−1 glucose, sodium pyruvate (Fisher Scientific, MT-10-013-CV) and supplemented with 
10% fetal bovine serum and 1% penicillin/streptomycin (Fisher Scientific). Cells were maintained at 37°C and 
5% CO2 in a humidified incubator. The 24-well plates with collagen I coated soft PA gels were equilibrated 
with 500 μL MDA-MB-231 growth medium for 30 minutes at 37 °C. Media was aspirated from the wells and 
MDA-MB-231 GFP-cytoplasm cells were seeded onto PA gels at a density of 3,125 cells cm−2 in a total vol-
ume of 1 mL of media per well. Cells were allowed to settle and adhere overnight prior to time-lapse fluo-
rescence microscopy. Cells and PA gels were imaged using a Nikon AR-1 confocal system mounted on a 
Ti-Eclipse inverted optical microscope controlled by NIS-Elements Nikon Software with a S Plan Fluor ELWD 
20 × Ph1 ADM objective (NA = 0.45; Nikon). The blue beads, cells and red beads were excited using lasers 
of wavelength 405 nm, 488 nm and 561 nm, respectively. A confocal image stack of 512 × 512 × 101 voxels 
(321.9 × 321.9 × 60.0 μm3) with a z-step of 0.60 μm was recorded every 30 minutes for 2 hours, and cells were 
maintained at 37°C throughout the experiment via an incubated microscope chamber and thermocouple. 
After the final time-point of live imaging, media was aspirated, 1X PBS was added to wash the wells, and 0.05% 
Trypsin (Fisher Scientific) was added to dissociate cell-matrix attachments. Once cells were fully detached from 
the PA gels, a final z-stack was acquired as a stress-free reference image for comparison to cell-based PA gel 
deformation and extraction of TFM measurements.
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