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Many wildlife species shift their diets to use novel resources in urban areas.

The consequences of these shifts are not well known, and consumption

of reliable—but low quality—anthropogenic food may present important

trade-offs for wildlife health. This may be especially true for carnivorous

species such as the American white ibis (Eudocimus albus), a nomadic

wading bird which has been increasingly observed in urban parks in South

Florida, USA. We tested the effects of anthropogenic provisioning on consu-

mer nutrition (i.e. dietary protein), body condition and ectoparasite burdens

along an urban gradient using stable isotope analysis, scaled mass index

values and GPS transmitter data. Ibises that assimilated more provisioned

food were captured at more urban sites, used more urban habitat, had lower

mass–length residuals, lower ectoparasite scores, assimilated less d15N and

had smaller dietary isotopic ellipses. Our results suggest that ibises in urban

areas are heavily provisioned with anthropogenic food, which appears to

offer a trade-off by providing low-quality, but easily accessible, calories that

may not support high mass but may increase time available for anti-parasite

behaviours such as preening. Understanding such trade-offs is important for

investigating the effects of provisioning on infection risk and the conservation

of wildlife in human-modified habitats.

This article is part of the theme issue ‘Anthropogenic resource subsidies

and host–parasite dynamics in wildlife’.
1. Introduction
Urbanization has important consequences for the abundance and types of

resources available to wildlife. Urban areas typically contain novel foods, includ-

ing non-native species of flora and fauna and anthropogenic (i.e. human-sourced)

food provided intentionally or unintentionally by people as provisioned food

(e.g. bread in parks) and food waste (e.g. garbage in landfills). As a result,

many wildlife species in urban areas shift their diets to incorporate, for example,

more domestic animals [1], ornamental plants [2] and provisioned food [3,4].

These shifts in diet in part reflect the ubiquity of human feeding of wildlife; for

example, between 43% and 78% of households regularly feed urban birds [5].

The consequences of these urbanization-associated dietary shifts for wildlife

health and ecology are varied. Some studies have detected increased body

condition in urban wildlife, potentially due to higher and more reliable caloric

intake (e.g. [6,7]). Others, however, have found no difference (e.g. [8]) or that wild-

life in urban areas have lower indices of body condition relative to their wildland

counterparts (e.g. [9–11]). This may stem from the relatively poor quality of
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provisioned food (e.g. [12]) and anthropogenic food waste (e.g.

[13]), and from the relatively lower abundance of high-quality

natural food items in urban areas (e.g. [14]). For example, diets

deficient in protein can impair host immune function [15].

Further, resource provisioning in urban areas, either inten-

tional or unintentional, can reduce wildlife movement rates

[16], promote locally high animal densities which can lead to

overcrowding and increased competition [17,18], and increase

novel interspecific interactions [19]. All of these changes can

promote pathogen transmission for wildlife (reviewed in

[20–22]). Conversely, provisioning may reduce exposure to

parasites transmitted through the consumption of intermediate

hosts [23,24] or reduce the time and energy required for fora-

ging and increase time spent grooming or preening [25].

Thus, when considering the impacts of provisioned food on

wildlife health and condition, there may be important trade-

offs that depend on food quantity and quality, and on host

and pathogen life history [26].

The effects of food provisioning on wildlife condition

may be more apparent in recently urbanizing species and

are especially important for species of conservation concern.

Although many species studied in urban areas are relatively

abundant and considered urban-associated (e.g. house spar-

rows (Passer domesticus)), declining species may use zoos,

residential yards, urban parks and landfills as alternative

habitat following the loss or degradation of more ‘natural’

habitat [27]. This is especially true for species with strict habi-

tat requirements and in places where urbanization is rapid.

Such a process is currently occurring in South Florida,

where the American white ibis (Eudocimus albus) is increas-

ingly observed in urban zoos, lawns, parks and landfills [28].

The American white ibis is a wading bird that ranges

over coastal areas in the southeastern USA. White ibises are

nomadic and travel long distances to find appropriately shallow

wetlands for their main prey items—aquatic invertebrates

(i.e. crayfish (Astacoidea) and fiddler crabs (Uca spp.)), as well

as other aquatic animals [29]. Ibises will also, however, forage

for terrestrial invertebrates and at landfills [30,31]. Likely due

to extensive degradation of the Everglades ecosystem, white

ibis populations declined by 80% in South Florida over the

past century [32,33], and over the past 20 years ibis have been

increasingly observed in urban areas [28]. Urban areas may pro-

vide alternative wetland habitat for ibises at ponds and canal

edges where ibises can forage for aquatic and terrestrial invert-

ebrates. Additionally, urban ibises are also regularly fed bread

and chips by people in parks [28]. We know that some individ-

ual ibises routinely use urban parks and ibises in more urban

areas more likely shed Salmonella spp. [28]. However, it is

unclear to what extent ibises are provisioned in urban parks

and what effects these potential diet shifts have on ibis

condition and health. For example, provisioned bread, chips

and other simple carbohydrates may offer inadequate dietary

protein relative to aquatic invertebrates, but may be easier to

acquire, requiring less time and energy for foraging.

The effects of urban habitat use and consumption of

provisioned food on wildlife health can be elucidated by

measuring the habitat use, diet and health of individual

animals along a gradient of urban development. Health is the

outcome of many components and here we will focus on host

condition, which we define as body condition and ectoparasite

infestation; two factors likely to be affected by provisioning. We

measured ibis diets using stable isotope analysis, a technique

used to estimate the assimilated diets of individual animals
by quantifying d13C (ratio of 13C : 12C) and d15N (15N : 14N) in

consumer tissues. These isotopes reveal underlying carbon

sources because the relative amount of 13C differs for marine

and terrestrial communities and C4 versus C3 plants [34],

and consumer trophic level, because 14N is preferentially

excreted by consumers [35]. Stable isotope analysis is especially

useful in studies of anthropogenic provisioning and infection

risk because 13C is enriched in C4 plants such as corn, which

is prevalent in processed foods [36].

In this study, we tested the hypothesis that white ibises

consume provisioned anthropogenic food in urban parks

and this dietary shift impacts host condition by altering

host nutrition (i.e. dietary protein), body condition and risk

of ectoparasite infestation as measures of health. We pre-

dicted that ibises using areas with more urban development

would have diets higher in provisioned anthropogenic food

and lower in protein. We further predicted that ibises in

urban areas would have larger dietary niches and higher

body condition scores if provisioned food supplements natu-

ral diets. Alternatively, we predicted that ibises would have

smaller dietary niches and poorer body condition if they pri-

marily consume provisioned food. Lastly, we hypothesized

that ibises with diets higher in provisioned food would

have higher ectoparasite scores because of detrimental effects

of low-protein diets on immune function but may, alter-

natively, have lower ectoparasite burdens because they have

more time and energy for parasite defense.
2. Material and methods
(a) Study area
We captured American white ibises in Palm Beach and Martin

Counties in South Florida between October 2015 and July 2016.

To address changes in foraging behaviour and condition based

on urbanization, we captured ibises at 12 capture sites at which

foraging ibises had been observed or reported. These sites were

located along a gradient of urban land use (see Land Cover

Analysis section 2c below) and included five urban parks, a

zoo, a landfill, three restored or constructed wetlands and two

natural wetlands (figure 1 and table 1). South Florida has a

tropical climate that is delineated into a rainy season (May–

October) and dry season (November–April). These fluctuations

in precipitation create hydrological changes throughout the

area and drive the nomadic movements of white ibises as they

search for shallow and ephemeral wetlands with high prey den-

sities [32]. We designed seasonal capture periods to collect

samples during the pre-breeding (February and March), breeding

(June and July) and post-breeding (October and November) sea-

sons [37] to capture and control for any variability in ibis

behaviour or physiology linked to hydrology.

(b) Ibis capture
We captured ibises using a combination of nylon slip-knot leg

lassos [28], modified manually operated flip traps [38] and mist

nets with decoys [39]. Once ibises were restrained, we assessed

ibis age (adults �3 years had all white feathers, subadults less

than 3 years had some brown plumage [40]) and collected stan-

dard morphometric measurements (culmen length, wing chord

length, tarsus length and width). We then assessed ectopara-

site loads of lice (Phthiraptera: Ardeicola spp., Colpocephalum spp.,

Ibidoecus spp. and Plegadiphilus spp.) on head and neck, and mite

(Acari) eggs on flight feathers. Ectoparasite burdens were scored

on an ordinal scale: 1 (no parasites observed), 2 (less than 50

mite eggs or less than 5 lice), 3 (between 50 and 100 mite eggs
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Figure 1. (a) Map of ibis capture sites in Palm Beach and Martin Counties, Florida. Raster layer shows land cover categories reclassified from the Cooperative Land
Cover (CLC) layer. Circles show capture locations ordered from most to least urban land cover within a 650 m radius (black circles in panels (b) and (c)). Our capture
sites ranged from 91% urban land cover (b) to 0% urban land cover (c).

Table 1. Summary of sites at which white ibises were captured in South Florida. Land cover data were calculated as a proportion of a 650 m buffer around
capture sites (n ¼ 12) using the CLC dataset for the state of Florida. N refers to sample size of captured ibises.

site N

proportion surrounding land cover

urban wetland agriculture coast other water other terrestrial

Indian Creek Park 23 0.91 0.00 0.00 0.00 0.09 0.00

Dreher Park 22 0.90 0.00 0.00 0.00 0.10 0.00

Gaines Park 21 0.84 0.00 0.00 0.00 0.16 0.00

Wakodahatchee Wetlands 19 0.65 0.27 0.01 0.00 0.07 0.00

Juno Beach Park 17 0.61 0.04 0.00 0.03 0.23 0.08

Dubois Park 11 0.53 0.00 0.00 0.06 0.39 0.02

Solid Waste Authority Landfill 18 0.49 0.11 0.00 0.00 0.07 0.32

Lion Country Safari Zoo 15 0.47 0.09 0.00 0.00 0.03 0.41

Kitching Creek 15 0.25 0.15 0.25 0.00 0.19 0.16

Loxahatchee Wildlife Refuge Roost 17 0.20 0.45 0.22 0.00 0.12 0.00

Loxahatchee Wildlife Refuge 9 0.04 0.74 0.18 0.00 0.02 0.02

TetraTech Constructed Wetland 10 0.00 0.92 0.00 0.00 0.08 0.00
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and/or less than 10 lice), 4 (between 100 and 150 mite eggs and/or

less than 20 lice) and 5 (greater than 150 mite eggs and/or greater

than 20 lice). We measured ibis body condition in three ways.

Firstly, at capture, on an ordinal scale from 1 to 5 based on the

palpation of the thickness of the pectoral muscle and presence

of subcutaneous fat on and around the sternum. Ibises with little

muscle over the sternum received a score of 1 or 2, ibises

with noticeable pectoral muscle around the sternum received a 3,

and ibises with a broad U-shaped chest wherein the muscle and
subcutaneous fat either extends to or past the sternum received a

4 or 5 [41]. We also measured ibis mass at capture, which has

been successfully used as a measure of condition in birds [42].

Lastly, we quantified body condition using the scaled mass

index, which is a measure of relative size using mass–length

data and can be corrected for differences in the relationship

between mass and length for different demographics [43]. We cal-

culated the scaled mass index separately for males and females

because males are typically larger than females and we confirmed
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Figure 2. Stable isotope signatures of 193 white ibises captured in South
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ibis sex using standard molecular techniques [44]. To calculate the

scaled mass index, we used tarsus length because it was the length

measure most strongly correlated with mass in this and other ibis

studies [45]. The ordinal body condition scores and scaled mass

index values were correlated (R2 ¼ 0.14, F1,192 ¼ 26.3, p , 0.0001)

and so we used the scaled mass index values as the condition

measure because it was less subjective.

We collected �1% of the bird’s body weight of blood from

the jugular or metatarsal vein for stable isotope analysis. We

then chilled and centrifuged blood samples in the field within

5 h of collection to separate plasma from whole blood cells. We

extracted the plasma and froze the red blood cells at �2808C
until analysis. We fitted a subset of ibises with EcoTone Kite

GPS-GSM trackers (http://www.ecotone-telemetry.com; North

Star Science and Technology, Oakton, VA, USA) if the combined

mass of the transmitter and Teflon harness attachment was �3%

of the bird’s body mass [46]. These solar-powered transmitters

collected locations every two hours between sunrise and sunset

(i.e. when the bird was not roosting) and remotely delivered

locations over the GSM cellular networks.

While capturing ibises, we scored the level of habituation of

the overall ibis flock to human presence on an ordinal scale from

1 to 5. Ibises that actively approached humans and begged for

food were scored a 5; birds that tolerated humans within 3 m

and begged for food were scored a 4; ibises that tolerated

humans between 3 and 10 m were scored a 3; ibises that tolerated

humans within 10 m but did not consume anthropogenic food

were scored a 2; ibises intolerant of human presence that flushed

at 10 m were scored a 1.

(c) Land cover analysis
To quantify ibis use of urban habitats, we assessed urban land

cover with the 2016 Cooperative Land Cover (CLC) map for

the state of Florida (CLC v. 3.2, Florida Fish and Wildlife Conser-

vation Commission, 2016) in ArcGIS. We used the 10 m raster

geospatial layer with 234 land cover classes which we reclassified

into urban, wetland, agriculture, coastal, open water and all

other terrestrial land cover types (land cover classifications

listed in electronic supplementary material, table S1). A small

number (0.58%) of ibis locations fell outside of Florida state

boundaries and for these locations we used the C-CAP coastal

land cover dataset from NOAA (NOAA Office for Coastal

Management, 2010).

For ibises fitted with GPS transmitters we calculated their

habitat use by measuring the proportion of each land cover

class within a 650 m radius around each GPS location. This

window size was determined using a first passage time analysis

[47] of ibis 2-h locations. First passage time is the time it takes an

animal to leave a circle of a fixed radius and can thus indicate the

spatial scale at which different types of movements occur. We

chose the median smallest optimal radius size to correspond

with the scale at which ibises exhibited localized movements of

area-restricted search (i.e. foraging). We selected the median

value due to right-skewed distribution of individual first passage

time radii. In addition to identifying the scale at which ibises

may select foraging areas, this approach enabled us to account

for uncertainty in ibis locations from the high mobility of the

birds in a 2-h window, the use of edges between multiple land

cover types, and GPS error. For ibises that were not fitted with

GPS transmitters, we used the surrounding land cover at their

capture location as a proxy for habitat use. To do so, we calcu-

lated the proportion of the aforementioned land cover classes

within a 650 m radius around each capture site (table 1).

(d) Stable isotope analysis
We quantified ibis diet using d13C and d13N stable isotope analysis

of red blood cells. We chose red blood cells because they have a
relatively slow turnover rate relative to plasma and store assimi-

lated diet information for approximately the past 60 days [48].

We also analysed the isotopic composition of food items known

to be important in white ibis diet based on previous studies [30].

We compiled these food items into five categories based

on ecological or isotopic similarity: freshwater and terrestrial

invertebrates (crayfish (Family: Astacoidea), American cockroach

(Periplaneta americana)), marine invertebrates (fiddler crabs (Uca
spp.)), provisioned anthropogenic food which we observed

being provided to ibises by park visitors during capture sessions

(bread and corn chips), refuse (food regurgitated by a captured

ibis at a landfill, chicken) and values for small fish from the Ever-

glades (flagfish (Jordanella floridae), eastern mosquitofish (Gambusia
holbrooki), golden topminnow (Fundulus chrysotus)) [49] (figure 2).

Prior to analysis, we lyophilized red blood cell samples for at

least 48 h and weighed approximately 1.2 mg of material into tin

cups. The carbon and nitrogen isotopic ratios in samples were

then determined with a continuous-flow isotope mass spectrometer

(Thermo Finnigan Delta V, Bremen, Germany) coupled to a CHN

analyzer (Carlo Erba NA1500, Milan, Italy) with a Thermo Finnigan

Conflo III interface (Bremen, Germany). Control samples were pro-

cessed every 10 samples to control for isotopic drift during analysis

and isotopic ratios were calculated in reference to PeeDee Belemnite

for 13C and atmospheric air for 15N. All analyses were completed at

the UGA Stable Isotope Ecology Laboratory (Center for Applied

Isotope Studies, University of Georgia, Athens, Georgia).

(e) Statistical analysis
We quantified ibis consumption of provisioned food, refuse, fish,

freshwater and terrestrial invertebrates, and marine invertebrates

by calculating five-source mixing models for individual ibises

using the R package SIAR [50]. SIAR relates the stable isotope

signatures of consumers with diet sources and uses a Bayesian

approach to calculate posterior probabilities for the proportion

of consumer diet composed of each diet source (i.e. the prob-

ability that diet source X makes up Y% of consumer diet). We

accounted for enrichment from diet items to consumer blood

cells using experimentally derived trophic enrichment factors

for piscivorous gulls from the literature (DCdiet – blood ¼ 20.3+
0.8‰, DNdiet – blood ¼ 3.1+ 0.2‰; [51]) because these values

have not yet been calculated for ibis whole blood nor other

wading bird species. For each individual ibis, we calculated the

average proportion of each diet source across the 500 000

Markov chain Monte Carlo (MCMC) iterations run by SIAR

(burn in ¼ 5000).

We used generalized linear mixed models (GLMMs) with cap-

ture site as a random effect to quantify the relationship between the

assimilation of provisioned food (response variable) and urban

http://www.ecotone-telemetry.com
http://www.ecotone-telemetry.com
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land cover, age, season, scaled mass index values as a measure

of body condition, ectoparasite score, flock habituation and all

two-way interactions as covariates. We generated models for all

possible combinations of these covariates using all-subsets

modelling [52] and quantified the importance of each covariate

by model averaging their parameter estimates in the top set of

models (Akaike information criterion: AICc less than 4 from the

top model). We also ran separate all-subsets models for ibis

body condition (GLMM) and ectoparasite score (Poisson GLMM)

as response variables and the assimilation of provisioned food,

season, urban land cover, habituation, age and all two-way inter-

actions as covariates. Prior to running models, we calculated

covariance matrices and variables that were highly correlated

(r2 . 0.5) were not included together.

We tested whether ibises captured in more urban areas had

larger or smaller dietary niches using the R package SIBER [53].

To do so, we calculated the standard ellipse area for each capture

site, which contains the central 40% of the data for ibises at each

capture site. Large ellipse areas indicate that a group of consumers

assimilates diet sources with more varied isotope values and thus a

broader diet and larger dietary niche. We then regressed the land

cover values surrounding each capture site with the ellipse area of

ibises at that site.

We further tested whether differences in diet observed across

capture sites related to urban habitat use with the data from

ibises fitted with GPS transmitters. We used linear regression

to quantify the association between the proportion of GPS

locations in urban and wetland habitat types for individual

birds and their estimated assimilation of provisioned food or

freshwater invertebrates from the SIAR mixing models.
niche breadth. Error bars show standard deviation. Urban land cover was cal-
culated as a proportion of the 650 m buffer around capture sites (n ¼ 12)
using the Cooperative Land Cover (v. 3.2) dataset for the state of Florida.
3. Results

We captured 193 white ibises at 12 sites (average number of

ibises per site ¼ 16; range ¼ 9–23; table 1) and fitted 36

ibises with GPS transmitters. Most birds (69%) were adults

at least three years of age and we captured more juveniles

in wetlands than in urban parks, landfills and zoos ( juven-

iles: urban: 33/127, wetland: 32/66). Our sample size was

highest in the pre-breeding season (n ¼ 91) relative to the

breeding (n ¼ 45) and post-breeding (n ¼ 57) seasons. Only

one ibis was recaptured and we only included its initial

sample in the analysis.

Based on the first passage time analysis, the smallest opti-

mal radius (i.e. the area within which small-scale movements

occurred) was 650 m. Based on this radius, the amount of

urban land cover surrounding a capture site ranged from 0

to 91% (mean ¼ 49+31%; table 1). The proportion of

urban land cover surrounding a site was negatively corre-

lated with the proportion of wetland (marginal R2 ¼ 0.70,

F1,11 ¼ 23.7, p , 0.001) and agriculture (marginal R2 ¼ 0.35,

F1,11 ¼ 5.46, p ¼ 0.04) and so we only included urban land

cover in the models. Ibises fitted with GPS transmitters that

were captured at sites surrounded by more urban land

cover also used more urban habitat (R2 ¼ 0.73, F1,35 ¼ 99.3,

p , 0.0001). Greater flock habituation to humans was

associated with more urban land cover (marginal R2 ¼ 0.53,

F1,11 ¼ 11.1, p ¼ 0.008) and was thus not included in models

with urban land cover.

Using individual five-source mixing models, we estimated

that provisioned anthropogenic food comprised between 4%

and 70% of ibis diet (figure 2 and figure 3). In order of impor-

tance, ibises that consumed a higher proportion of provisioned

food were captured at sites with greater urban land cover, had

lower body condition as measured by scaled mass index
values, were captured during the post-breeding season, had

lower ectoparasite scores, and were slightly more likely to be

sub-adults (table 2).

Ibises captured at sites surrounded by more urban land

cover assimilated more provisioned food (conditional R2 ¼

0.19, F1,11¼ 22.5, p , 0.001; figure 3a) and had smaller standard

area ellipses (conditional R2 ¼ 0.46, F1,11¼ 8.4, p ¼ 0.02;

figure 3b). Ibises captured at sites surrounded by more urban

land cover also assimilated less d15N (proxy for dietary protein;

b ¼ 0.1, s.e. ¼ 0.04, p , 0.0001). Ibises fitted with GPS transmit-

ters that spent more time in urban areas had diets higher in

provisioned food, though this relationship was logarithmic

rather than linear (loglinear regression: marginal R2 ¼ 0.48,

F1,35¼ 27.2, p , 0.001; linear regression: marginal R2 ¼ 0.28,

F1,35¼ 14.9, p , 0.001).

Ibises with diets higher in provisioned food were lower in

mass (conditional R2 ¼ 0.15, F1,11¼ 18.8, p , 0.0001) and

had lower scaled mass index values (conditional R2 ¼ 0.29,

F1,11¼ 5.3, p ¼ 0.03; figure 4a and table 3). Diets higher in

provisioned food were also associated with lower ectopara-

site scores (conditional R2 ¼ 0.12, F1,11 ¼ 26.2, p , 0.0001;

figure 4b and table 3).

Individual mixing models estimated that freshwater

and terrestrial invertebrates composed between 1% and

67% of ibis diet. Assimilation of freshwater and terrestrial

invertebrates was especially high in the pre-breeding season

and was associated with greater wetland cover surrounding

capture sites and increased scaled mass index values

(table 2). Other land cover types, however, were not signi-

ficantly associated with diet. Ibises fitted with GPS



Table 2. Model-averaged parameter estimates in the top model set (less than four AICc) for generalized linear mixed models with proportion of diet comprised
of provisioned food or freshwater invertebrates as response variables with capture site as a random effect. Importance refers to the sum of all model Akaike
weights in which the explanatory variable appears.

response variable covariate b s.e. importance

proportion diet provisioned food intercept 20.51 0.45

urban land cover 1.85 0.62 0.98

body condition 20.45 0.18 0.89

season ( pre-breeding) 20.52 0.36 0.72

season (breeding) 20.18 0.41 0.72

ectoparasite score 20.18 0.07 0.71

season � body condition ( pre-breeding) 0.42 0.15 0.42

urban cover � season ( pre-breeding) 0.42 0.63 0.34

age (subadult) 0.07 0.14 0.12

proportion diet invertebrates intercept 0.350 0.016

body condition 0.019 0.0029 0.93

wetland land cover 0.252 0.057 0.89

season: pre-breeding 20.014 0.021 0.75

season: breeding 0.0013 0.0255 0.75

wetland cover � pre-breeding 0.376 0.067 0.62

wetland cover � breeding 0.0042 0.168 0.62
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transmitters that spent more time in wetland areas assimi-

lated more freshwater and terrestrial invertebrates (marginal

R2 ¼ 0.13, F1,35 ¼ 5.1, p ¼ 0.03).

4. Discussion
In this study, we tested to what extent a recently urbanized

wading bird consumed provisioned anthropogenic food

across an urban gradient and the consequences of these diet

shifts for several aspects of host condition including nutrition,

body condition and ectoparasite burdens. We found that

greater urban habitat use, inferred from land cover surrounding

either capture sites or GPS transmitter locations, was associated

with increased assimilation of provisioned food (bread, chips)

and diets lower in protein. Similarly, greater use of wetlands

was associated with increased assimilation of aquatic and

terrestrial invertebrates. These shifts in diet with habitat use

appear to have both positive and negative consequences for

ibis condition. Ibises with diets higher in provisioned food

had poorer body condition (i.e. lower mass than expected

based on size) but had lower ectoparasite burdens.

The increase we observed in the assimilation of provisio-

ned food by ibises in urban areas indicates that ibises are

likely routinely fed bread and chips by people in parks. This is

consistent with our observations during ibis captures of park

visitors feeding large flocks of ibises with bread and chips

(MH Murray 2016, personal observation). The changes in diet

we observed are likely chronic in nature as we analysed the iso-

topic composition of red blood cells with a relatively long

turnover (i.e. approximately 2 months, [48]). Thus, these birds

may be habitually foraging for anthropogenic food at parks

and other urban areas over the span of several months.

Indeed, several of the ibises tracked in this study spent over

80% of their foraging hours in urban parks. The related
Australian white ibis (Threskiornis molucca) also consistently

uses urban habitats over the span of months to years, and

some individuals have become reliant on provisioned food

and garbage [54].

Provisioned food appeared to be most important during

the post-breeding season in the autumn relative to pre-breed-

ing (spring) and breeding (summer) seasons. Seasonal

changes in the consumption of provisioned food might

arise from seasonal changes in energy demands. For example,

the skin on the face and legs of white ibises changes from

pink to red prior to the breeding season to attract a mate,

which is likely energetically costly and dependent on b-caro-

tene. Similarly, long-distance movements for nest building

and mate attraction may drive the observed relative increase

of aquatic protein-rich prey [31]. This seasonal fluctuation in

diet also suggests that urban habitat use is not consistent in

all seasons. Similar to other species (e.g. European white

storks, Ciconia ciconia [55]), ibises may make more use of

anthropogenic food when appropriate foraging conditions

for natural prey are less available [30]. Similarly, flying

foxes can exhibit longer residence times in urban habitat

patches when natural food resources are less available [56].

Little is known about urban habitat use by nomadic species,

including seasonal shifts therein. One notable example is the

recent establishment of resident year-round populations of

Australian white ibises in urban areas [57].

Many other species have more diverse diets in urban areas

by supplementing their natural diets with anthropogenic food

and by exhibiting more individual variation in diet (e.g. coy-

otes [3,58]). Unlike these species, we found that the use of

provisioned food by ibises homogenized their diets as they

had smaller dietary niches. This implies that urban ibises

may be transitioning from foraging primarily on the most

abundant aquatic organisms available during different



1 2 3 4 5
ectoparasite score

proportion provisioned food

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1000

600
0.1 0.60.50.40.30.2

700

800

900

(a)

(b)

pr
op

or
tio

n 
di

et
 p

ro
vi

si
on

ed
 f

oo
d

sc
al

ed
 m

as
s 

in
de

x 

Figure 4. Association between ibis condition and assimilation of provisioned
food. (a) Proportion of ibis diet composed of provisioned food as estimated
using a five-source Bayesian mixing model and average ibis body condition at
each capture site, measured using the scaled mass index. Error bars indicate
standard error. (b) Proportion of ibis diet composed of provisioned food and
ectoparasite score of individual ibises, assessed on an ordinal scale ranging
from 1 (no lice and mites observed) to 5 (heavy burdens of lice and
mites on head, neck, and flight feathers).
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hydrological periods [30], to foraging predominantly on isoto-

pically similar novel foods in urban areas. The effects of

urbanization on diet diversity may be species-specific and

more studies are needed to better understand the relationships

between diet diversity and urbanization more generally.

In urban parks, we observed that the public routinely pro-

vides bread and other carbohydrate-rich foods to ibises and

waterfowl. This increased consumption of anthropogenic

food will likely negatively impact ibis health as bread and

chips are notoriously poor in protein or key micronutrients

relative to invertebrate prey. As part of a concurrent study on

ibis diet and immune function, nutritional analyses revealed

that a diet containing white bread in the proportions we

observed would offer 48% less protein, 59% less calcium and

48% less phosphorous (L Hoopes 2017, personal communi-

cation). This relatively protein-poor diet may explain why

urban ibises had lower mass than expected based on their

body size, and perhaps more deposition of fat over muscle

mass [59]. Among provisioned wildlife, a shift toward

protein-poor foods is common [60–62]. For example, suburban

American crow (Corvus brachyrhynchos) nestlings were smaller

and had lower serum protein levels than rural crows, and
supplementation with a high-protein diet increased urban

nestling size, indicating they were protein-limited [9]. The

reduced protein content of provisioned bread and chips

relative to invertebrates may also impair immune function

and increase ibis susceptibility to pathogen infection [15].

Although provisioned food can be of lower nutritional

quality and compromise body condition, its availability and

reliability may reduce the time and energy required for

foraging. This shift may allow for the redistribution of energy

for immune defense against pathogens and parasites, preening

and resting, all of which can improve host condition. For

example, provisioned rhesus macaques (Macaca mulatta) in

urban Dhaka, Bangladesh spent less time foraging and more

time resting and grooming than rural macaques [25]. Preening,

wherein birds pull their feathers between their mandibles, has

been shown to decrease ectoparasite load in many bird species

[63,64]. This may explain why ibis that assimilated more provi-

sioned food also exhibited lower ectoparasite loads. While

capturing ibis, we routinely observed ibises resting and preen-

ing for extended periods of time in urban parks, but we

typically observed ibises either foraging or flying in wetlands

rather than resting or preening (MH Murray 2016, personal

observation). The differences we observed in ectoparasite

loads with urbanization and provisioning may also be due to

changes in contact rates as avian lice are primarily transmitted

through direct contact [65]. Chewing feather mites (Phthirap-

tera: Ischnocera) are mainly transmitted vertically in nests

and are thus unlikely to represent adult exposure but rather

resistance [65]. While the burdens of feather mites we observed

would likely have little overall effect on host functioning, the

high burdens of head lice (greater than 50 of Ibidoecus bimacu-
latus) we observed on some ibis could result in considerable

losses in energy reserves (MJ Yabsley 2017, personal communi-

cation) and chewing lice infestations have been shown to

decrease the long-term survival of avian hosts [66]. The oppos-

ing impacts of provisioning on ibis body condition and

ectoparasite loads emphasize the trade-offs involved in provi-

sioning for many other species; for example, the coupling of

higher overwinter survival and higher pathogen prevalence

in ungulates [20,67]. To evaluate the net effects of provisioning

for wildlife health, more information is needed on the physio-

logical costs of parasite burdens, pathogenicity of infections

and impacts of body condition on immune function and

survival.

The potential for urban areas to act as alternative wildlife

habitat may depend on human behaviour change if provi-

sioned food negatively affects consumer nutrition or body

condition. Unlike many other urban birds, American white

ibises are not yet known to breed in urban areas consistently

and will travel to mixed-species rookeries in freshwater

wetlands [32]. This may buffer ibis nestling development

somewhat against the effects of anthropogenic food; how-

ever, white ibises are known to travel to landfills and

provide chicken and other protein-rich foods to nestlings

during resource-poor periods [30]. Other species, such as

Australian magpies (Gymnorhina tibicen), consume anthropo-

genic foods as adults but do not provide it to their nestlings

[68]. If the American white ibis begins to breed regularly in

urban parks or becomes dependent on anthropogenic food

for offspring provisioning, it may be especially damaging to

nestlings who are most susceptible to pathogens known to

be carried by ibis (e.g. Salmonella), especially in urban areas

[28] or acquired from landfills (e.g. Clostridium botulinum)



Table 3. Model-averaged parameter estimates in the top model set (less than four AICc) for generalized linear mixed models with ibis body condition (scaled
mass index) or ectoparasite intensity (ordinal score) as response variables with capture site as a random effect. Importance refers to the sum of all model
Akaike weights in which the explanatory variable appears.

response variable covariate b s.e. importance

body condition intercept 0.96 0.32

provisioned food 21.02 0.43 1.00

age 20.06 0.38 1.00

season ( pre-breeding) 0.63 0.59 1.00

season (breeding) 21.33 0.96 1.00

provisioned food � season ( pre-breeding) 0.72 1.4 0.91

provisioned food � season (breeding) 3.07 1.92 0.91

age � season ( pre-breeding) 20.79 0.51 0.82

age � season (breeding) 20.45 0.29 0.82

mass intercept 0.84 0.48

provisioned food 21.81 0.86 0.95

age 20.15 0.19 0.23

season ( pre-breeding) 20.72 0.64 0.21

season (breeding) 21.24 0.92 0.21

provisioned food � season ( pre-breeding) 1.70 1.23 0.18

provisioned food � season (breeding) 2.80 1.86 0.18

age (subadult) � season ( pre-breeding) 20.54 0.36 0.01

age (subadult) � season (breeding) 20.55 0.40 0.01

ectoparasite intensity intercept 3.13 0.38

provisioned food 22.2 0.72 1.00

season ( pre-breeding) 20.15 0.76 0.77

season (breeding) 0.22 0.54 0.77

provisioned food � season ( pre-breeding) 20.15 0.78 0.47

provisioned food � season (breeding) 20.19 1.20 0.47

age (subadult) 20.01 0.09 0.18
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and may also promote the spread of zoonotic pathogens for

which ibis are reservoirs [69].

While we detected significant relationships between urban

habitat use, the assimilation of provisioned food and ibis con-

dition, we cannot ascertain the direction of causality. Increased

consumption of provisioned bread may cause decreased body

condition and ectoparasite burdens via the mechanisms

described above. Provisioning sites in urban areas may, how-

ever, instead be preferentially attractive to birds in poor

condition as provisioned food is reliable and easily accessible.

These relationships may also be confounded because white

ibises show strong conspecific attraction [70] and may be

attracted to flocks in urban parks prior to being attracted to

provisioned food. Further, the long-term changes in diet we

measured may obscure individual differences in the use of pro-

visioned food. For example, some individuals may intensely

use provisioned food during times of very high or very low

water levels unsuitable for ibis foraging while others consume

small amounts daily. Combining both short- and long-term

measures of diet and habitat selection from GPS locations

could elucidate these differences. Further, due to the logistical

constraints, we captured ibises by baiting them with food to

lassos and flip nets in urban parks and using mist nets in
wetlands. By baiting ibises with food in urban areas, we may

have underrepresented ibises that were unwilling to approach

humans or were less interested in provisioned food. However,

we are confident our estimates are representative of birds

caught using other methods because we captured ibises

using mist nets at one wetland site surrounded by an urban

neighbourhood (Wakodahatchee) consuming diets high in

anthropogenic foods.

In this study, we show that increased urban habitat use by a

recently urbanized wading bird is associated with higher

assimilation of anthropogenic provisioned food, lower dietary

protein, reduced body condition and lower ectoparasite bur-

dens. Provisioned food may thus offer trade-offs for host

condition. The net effects of provisioning on wildlife health

and condition may determine whether urban areas serve as

refugia or population sinks as pristine habitat patches decline

for the white ibis and many other species. Further studies are

needed to assess the consequences of these changes for disease

susceptibility and pathogen transmission in urban areas.
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8. Bókony V, Seress G, Nagy S, Lendvai ÁZ, Liker A.
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