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Land-use change interacts with climate to
determine elevational species redistribution
Fengyi Guo 1, Jonathan Lenoir 2 & Timothy C. Bonebrake 1

Climate change is driving global species redistribution with profound social and economic

impacts. However, species movement is largely constrained by habitat availability and con-

nectivity, of which the interaction effects with climate change remain largely unknown. Here

we examine published data on 1464 elevational range shifts from 43 study sites to assess the

confounding effect of land-use change on climate-driven species redistribution. We show

that baseline forest cover and recent forest cover change are critical predictors in determining

the magnitude of elevational range shifts. Forest loss positively interacts with baseline

temperature conditions, such that forest loss in warmer regions tends to accelerate species’

upslope movement. Consequently, not only climate but also habitat loss stressors and,

importantly, their synergistic effects matter in forecasting species elevational redistribution,

especially in the tropics where both stressors will increase the risk of net lowland biotic

attrition.
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Human activities during the Anthropocene have trans-
formed most of the planet, of which global forest loss and
climate change are considered among the greatest threats

to global biodiversity1–5. In response to these ongoing global
changes, species are shifting their distributions to track suitable
ecological niches along several geographic dimensions including
latitude, longitude, and elevation/depth6–8. Due to the widely-
recognized positive spatial autocorrelation signal of temperature
conditions along latitudinal (it is warmer in the tropics and cooler
towards the poles) and elevational/bathymetric (it is warmer at
low elevation/depth and cooler at high elevation/depth) gradients,
broad patterns of latitudinal and elevational/bathymetric range
shifts are frequently linked to climate change effects7,9–11. For
instance, Chen et al.12 calculated the velocity of species range
shifts as 16.9 kilometers per decade towards higher latitudes and
11 meters per decade towards higher elevations, presumably
tracking temperature changes under global warming.

However, like temperature conditions, land use can also be
positively autocorrelated in space13,14, especially in mountain
ecosystems where forest cover is not randomly distributed along
elevational gradients (Fig. 1 and Supplementary Methods). The
predominance of anthropogenic activities/disturbances in the
lowlands13 and the harsh climatic conditions prevailing at tree-
line15 constrain the proportion of forest cover per elevational
band to peak at mid elevations (Fig. 1a). This pattern suggests
that directional forest cover change (e.g., intensive deforestation
in lowland areas common in Southeast Asia or forest expansion
after land abandonment at high elevations in Europe) may be
confounded with climate change when studying patterns of ele-
vational range shifts for a large set of species16. Besides, small-
scale species movements such as elevational range shifts could be
largely constrained or confounded by local habitat availability17–
20. Hitherto, very few empirical studies have looked into inter-
acting effects between climate change and land-use
change on the magnitude and direction of species range
shifts21–23 despite a wide recognition of potential synergistic and
antagonistic effects24–26.

Based on a recent and exhaustive review7, we updated and
extracted data from a set of 39 studies on climate-driven species

range shifts to relate the rate of elevational range shifts against
habitat and climate variables capturing baseline conditions, as
well as temporal changes (Fig. 2). Making use of a high resolution
global forest cover and forest change dataset27, as well as the
CHELSA climate dataset28, we generated consistent and com-
parable climate and land-use change indicators for each study to
perform our analyses at two different resolution levels using
either the data aggregated at the site level (n= 43; some of the
39 studies focused on several study sites that were treated inde-
pendently here) or raw data at the species level (n= 1464). We
found that apart from temperature changes and baseline tem-
perature conditions, the rate of climate-related elevational range
shifts is also affected by local habitat features such as baseline
forest cover and recent forest cover change. The overall syner-
gistic effects between climate and habitat change reveal the
importance of considering multiple threats holistically when
predicting biodiversity redistribution and for biodiversity
conservation.

Results
Aggregated analysis. Among the different linear models tested
(see Methods) to explain the rate of species elevational range
shifts averaged at the site level (n= 43), the model selection
procedure yielded three candidate models of competing interest
according to the corrected Akaike information criteria (AICc)29

(cf. ΔAICc < 2) (Table 1). All three ordinary least-square (OLS)
regression models yielded similar AICc values (ΔAICc < 0.2) and
Akaike weights (~0.3). One model in particular (Model 2 in
Table 1), being the most parsimonious, had the simplest structure
common to all candidate models explaining the majority of
variation (OLS: F4,38= 5.76, R2= 0.31, P= 0.001) (Table 2 and
Supplementary Tables 1 and 2).

We found a consistent positive interaction effect (cf. synergistic
effect) between forest loss and baseline temperature conditions
across all three candidate models retained for the site-level
analysis (Table 2), even after controlling for sampling effort in
Model 2 (cf. sites weighted by the number of species included)
(Supplementary Table 2). Under warmer baseline conditions and
greater forest losses (e.g., in the tropics or lowland areas), species
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Fig. 1 Spatial autocorrelation signal of forest cover and temperature across elevation. a General pattern of forest cover (%) and temperature (°C) per 100
m elevational band for 140 global mountain ranges. b The associated autocorrelation function (ACF) displaying the elevational autocorrelation signal of the
proportion of forest cover and temperature along the elevational gradient. Lines and shade each represent the mean and ± 0.5 S.D. boundaries. For details
on calculation refer to Supplementary Methods
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tend to shift more rapidly towards higher elevations while under
colder baseline conditions (e.g., in boreal regions or high
elevation zones), the effect of forest loss is reversed: species tend
to shift less rapidly along the elevational gradient and even
towards lower elevations (cf. negative shift rates) (Fig. 3).

We found additional, but not consistent interactions in the
other two OLS regression models (Table 1). The positive
interaction between forest loss and baseline forest cover (Model
1) was not significant itself, although the overall R2 was slightly
improved (Table 2). The interaction term between forest loss and
taxa type (Model 3) was marginally significant (Table 2) with
elevational range shifts being lower in magnitude for plants than
for animals under high forest loss (Supplementary Fig. 1).
However, this weak trend was likely driven by a single data point
attributed to changes in water balance30 (Supplementary Fig. 1).

Disaggregated analysis. Among the different mixed-effect mod-
els we tested (see the Methods section) to explain the rate of
species elevational range shifts at the species level (n= 1464), the
model selection procedure yielded 30 candidate models of com-
peting interest (cf. ΔAICc < 2) (Supplementary Table 3). The
generally similar Akaike weights across the 30 competing models
suggest that we cannot select one single “best” model. Hence, and
because of the large number of competing models, we here rely
on the model-averaged coefficients based on the 30 selected
models to assess the effect of different predictors on elevational
shift rate at the species level (Fig. 4). Our findings at the species

level suggest increasing shift rates for species with higher baseline
temperature conditions, and for greater elevational distance to the
highest mountain summit within the study area. Although the
data suggest that the magnitude of the elevational shift rate might
be higher under denser baseline forest cover conditions, this effect
was not significant (see the 95% confidence intervals crossing the
zero line for “Cover” in Fig. 4). The data also suggest that the
magnitude of the elevational shift rate might be affected by
synergistic effects between climate change rate and baseline
temperature, but these effects were also not significant (see the
95% confidence intervals crossing the zero line for “CCR” and

Table 1 Candidate linear models on the site average shift
rate

Model Variables AICc ΔAICc Weight R2

1 Loss, Cover, T, Loss × T,
Loss × Cover

357.2 0.35 0.34

2 Loss, Cover, T, Loss × T 357.3 0.08 0.33 0.31
3 Loss, Cover, T, Loss × T, Type,

Loss × Type
357.3 0.16 0.32 0.36

Candidate linear models with interactive effects between climate and habitat features on the site
average shift rate (n= 43), ranked by the corrected Akaike information criteria (AICc)
T: baseline temperature, Loss: forest loss percentage, Cover: forest cover percentage, Type: taxa
type (animal or plant)

Table 2 Model details for the site average shift rate

Parameter Estimate Std. error t value Pr (>|t|)

Model 1
Intercept 11.24 2.46 4.58 <0.001
scale (Loss) −5.80 2.93 −1.98 0.06
scale (Cover) 6.85 2.69 2.54 0.02
scale (T) 12.94 3.24 3.99 <0.001
scale (Loss) × scale (T) 15.98 4.52 3.53 0.001
scale (Loss) × scale (Cover) 5.84 3.61 1.62 0.11
Model 2*
Intercept 11.09 2.51 4.43 <0.001
scale (Loss) −7.78 2.71 −2.87 0.007
scale (Cover) 5.87 2.68 2.19 0.03
scale (T) 11.61 3.20 3.63 <0.001
scale (Loss) × scale (T) 15.79 4.62 3.42 0.002
Model 3
Intercept 8.68 2.97 2.92 0.006
scale (Loss) −3.36 3.25 −1.04 0.31
scale (Cover) 6.99 2.64 2.65 0.01
scale (T) 13.60 3.21 4.24 <0.001
Type_plant 2.88 4.62 0.62 0.54
scale (Loss) × scale (T) 18.16 4.76 3.82 <0.001
scale (Loss) × Type_plant −9.75 4.44 −2.20 0.03

Details of the three best fitting models (Table 1) for the site average shift rate (n= 43).
Predictor variables are scaled (cf. the scale() function in R) for comparison purposes
*See Supplementary Tables 1 and 2 for unscaled estimates and weighted coefficients of model 2,
the most parsimonious model
T: baseline temperature, Loss: forest loss percentage, Cover: forest cover percentage, Type: taxa
type (animal or plant)
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Fig. 2 Locations of the 43 distinct study sites on climate-related elevation shifts. Base map created using mean temperature data from CHELSA28. Sub-
frame shows the zoomed-in details of study sites in North America and Europe. Blue dots represent studies on animals and red dots studies on plants. Dot
size varies by number of species resurveyed. Data are collected from 39 selected studies. For details of each study refer to the Supplementary References
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“CCR * T” in Fig. 4). Interestingly, when restricting data to forest
systems only (forest cover >25%, n= 1120), we found significant
synergistic effects between climate change rate and forest loss
percentage on elevational shift rate at the species level (Supple-
mentary Fig. 2). Therefore, reflecting our findings at the site level,
both climate and land-use change factors are important in driving
species upslope movement within forest systems.

Discussion
We found evidence for the confounding impacts of habitat fea-
tures (e.g., forest cover, forest loss) on climate-related species
range shifts across elevation using both an aggregated (site level)
and a disaggregated (species level) approach. At the site level, we
found a robust and consistent synergistic effect between baseline
temperature conditions and forest loss across all models.
Although forest loss in colder regions of the world is likely to
impede species upslope movements, potentially by interrupting
habitat connectivity19, this negative effect is somewhat reversed in
warmer regions where high forest loss tends to increase the ele-
vational shift rate towards higher elevations. The mechanisms
behind this synergistic effect of lowland deforestation on climate-
driven upslope range shifts in warm environments are not yet
known but may involve direct population extirpation of plant
species, drastic microclimatic changes (e.g., increasing tempera-
ture and decreasing humidity) following habitat
disturbance21,26,31,32 and, ultimately, local extinction at the lowest
margin of species’ elevational ranges33. This result supports
suggestions of rapid upslope range shifts through lowland biotic
attrition34, especially in tropical lowland areas experiencing both
warm temperature conditions and the most severe contemporary
human disturbance impacts in terms of deforestation13,27.

In both analyses (i.e., aggregated and disaggregated), the gen-
erally positive effects of forest cover (although not significant at
the species level) on the elevational shift rate reveal the impor-
tance of habitat cohesion and availability for species’ movement
under climate change impacts18,20,24. The fact that warm-adapted
species tend to shift more rapidly upslope compared to those in

cooler regions could be explained by seasonal temperature sta-
bility, i.e., they need to move greater elevational distances to reach
the suitable and very stable environment to which they are nar-
rowly adapted to and which corresponds with their restricted
thermal niches35,36. Alternatively, it could also be partially driven
by the shallow temperature gradient across latitude in the tropics,
which makes latitudinal shifts less likely than elevational shifts
towards mountain summits34. The rate of climate change over
time is not a major predictor in most models, likely due to the low
spatial resolution of climate data, especially for mountainous
regions. However, we did observe a positive interaction between
forest loss percentage and climate change rate for the dis-
aggregated analysis, when restricted to forest systems. Overall, the
above-mentioned interactions emphasize the fact that isolating
the effects of co-occurring stressors and ignoring their potential
synergistic or antagonistic effects could be misleading21,25.

The elevational distance to the highest mountain summit
within the study area was also found to be an important factor in
explaining upslope shift rates at the species level: the greater the
elevational distance to the highest summit, the more rapidly
species shifted their range upslope. This finding supports the idea
that limited physical space may constrain the rate of species’
range shifts along elevational gradients16,37,38. In addition,
microclimate conditions and soil nutrition levels determined by
montane mass (the Massenerhebung effect) could also limit
species range extension39,40.

One limitation to our work lies in the short time-span of the
forest data used (2000–2015), especially given that most selected
studies covered periods of several decades. On average, initial
surveys were conducted 44 years prior to the period covered by
the Global Forest Watch database. Land-use history over the last
decade is not likely to accurately mirror changes over previous
decades, and this mismatch in time scale might have contributed
to the unexplained variance in our models at the species level (cf.
87.4% on average, with ± 0.97% S.D.). Nonetheless, the spatial
consistency that the Global Forest Watch dataset offers is a
breakthrough for large-scale comparisons in habitat features (see
discussion on model limitations using various habitat data
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sources in Mantyka-Pringle et al.25), and the baseline forest cover
data in year 2000 might also represent previous land-use histories
that were missed in terms of forest change information. Apart
from the forest cover dataset, the elevational shift data analyzed
here are also likely biased towards species that have exhibited
observable responses to climate change. Other factors such as
precipitation change, individual species’ physiology and biotic
interactions may also greatly impact shift patterns30,41–44. Geo-
graphic bias, especially the relative lack of tropical studies, is
another limitation here, which also characterizes former find-
ings7. Moreover, the fact that most tropical studies in our dataset
were from islands, whereas temperate studies were largely con-
tinental could bring in additional bias in terms of biotic com-
position. However, because our aim was to investigate the
overlooked interaction between climate and land-use change on
species redistribution, instead of drawing a conclusive quantita-
tive model, we believe the data used here are suitable.

To conclude, we found large and consistent impacts of habitat
features, indicated by forest cover and forest cover changes, on
the rate of species’ elevational range shifts. Furthermore, we also
discovered significant interactions between land-use change and
climate variables in driving species’ upslope movement. There-
fore, species elevational redistributions cannot be attributed to
warming impacts alone, although climate change is an important
factor. Assessments must consider not only climate (both the
baseline conditions and the magnitude of the change) but also
habitat loss stressors and baseline conditions and, importantly,
their synergistic effects in conservation planning and
management.

Methods
Data collection. We selected 39 studies on climate-related elevational range shifts
(Fig. 2) as synthesized by Lenoir and Svenning7 and by searching literature pub-
lished between 2014 and 2017 following the same protocol as in Lenoir and
Svenning7 (see Appendix 1 therein). Data were only included if observed eleva-
tional range shifts were reported in the original research. When more than one
geographically distinctive site was surveyed in a study with shift information
separately reported (e.g., Freeman and Freeman45), we treated them as different
sites (n= 43). Sites with fewer than 5 species resurveyed were excluded for the sake
of representativeness. In addition to some general information (e.g., location,
kingdom/taxon, species number, starting and ending year, study period calculated
by subtracting start year from end year) at the study level, which is tabulated in
Lenoir and Svenning7 (Table A3), we also recorded the elevation range covered by
each focal study, together with detailed species’ elevational range shifts as reported
in the original focal study (positive values for upslope movements and negative for
downslope shifts). When only significant shifts were reported, we calculated the
average shifts based on the ratio between shifting species and the total number
surveyed. When raw data were not available, we used the “DataThief” program
(http://datathief.org/) to extract the raw data from figures. In terms of different
reference points (e.g., upper limit, lower limit or midpoint), we used a simplified
binary classification (center vs. margin); when possible, shift data on optimum
position were preferred, as they are less sensitive to sampling effort46 and statis-
tically more robust compared with shift data at the distribution margins47. Data on
marginal reference points were included if there was no better alternative (order of
preference: optimum/mean/midpoint > margins).

As indicators of land-use change for each mapped location5, we extracted high
resolution (30 m resolution at the equator) baseline forest cover (year 2000), forest
cover loss (2000–2015) and forest cover gain (2000–2012) data from Global Forest
Watch27 (http://earthenginepartners.appspot.com/science-2013-global-forest/
download_v1.3.html). To assess habitat alteration and species distribution shift
patterns for specific elevation ranges, we overlaid these forest layers onto fine scale
digital elevation models (SRTM Arc-Second Global, 30 m resolution at the equator,
https://lta.cr.usgs.gov/SRTM1Arc) for each site (in one Norway site with no SRTM
data, a local digital elevation model with 10 m resolution was obtained from
Norwegian Mapping Authority, Kartverket, https://www.kartverket.no/en/data/
Open-and-Free-geospatial-data-from-Norway/) and exported forest data at
intervals of 10-m elevation bands (See Supplementary Fig. 3 for an example).
Therefore, baseline forest cover percentage and forest cover change profiles by 10-
m elevation bands along the elevational gradient could be generated for each study
site for subsequent analyses (Supplementary Figs. 4 and 5).

Climate data were obtained from CHELSA Version1.228 and CRU_TS4.0048.
We used the annual mean temperature from 1979 to 2013 (cf. bio1 at 30 arc-
second which is about 1 km resolution at the equator, http://chelsa-climate.org/
downloads/) as the baseline temperature for each site. We also computed

temperature data for each 10-m elevation band by overlaying it onto digital
elevation models using the same method as we did for the forest data. Time-series
data on temperature from CRU (0.5°, ~55 km at the equator, https://crudata.uea.ac.
uk/cru/data/hrg/cru_ts_4.00/ge/) were analyzed to estimate site-specific climate
change rate (°C per decade) by fitting the regression line of temperature (response
variable) against time (predictor variable) over each study period, following Chen
et al.12. When the study area was too large for fine grid calculation, and considering
that site-specific temperature data were obtained by averaging across all grid cells
covering the study area (which were less sensitive to resolution differences), we
used the 5° resolution temperature anomaly data which is ~550 km at the equator
(CRUTEM449,50, https://crudata.uea.ac.uk/cru/data/crutem/ge/) to run the
regression over time. Both climate and habitat data were obtained using Google
Earth and ArcGIS 10.2.

Aggregated analysis. For each of the 43 sites (from 39 selected studies), the
average elevational range shift (m) for all examined species across the spatial extent
of the focal site was either reported as in the original paper or calculated from
published raw data. To account for the fact that each study focused on a different
period (cf. starting and ending years were study-specific), we calculated the average
elevational range shift rate (m per decade) as the response variable for cross-site
comparisons. We ran ordinary least-square (OLS) regressions to assess the
potential confounding effect of land-use change on “climate-driven” elevational
range shifts. As explanatory variables, we used site-specific climate data (T: baseline
temperature based on annual mean conditions between 1979 and 2013 (°C), CCR:
climate change rate (°C per decade)), average forest data within the elevation range
of the focal study (Cover: baseline forest cover (%), Loss: forest cover loss (%),
Gain: forest cover gain (%)), as well as other recorded parameters, including taxon
(plants vs. animals) and reference point (center vs. margin). All numeric variables
were scaled for effect size comparisons25,51. Prior to analysis, we checked for data
collinearity by calculating the variance inflation factor (VIF) and applied a cutoff
threshold of 252. No signal of covariate collinearity was detected with this pre-
selected, conservative threshold (see Supplementary Table 4 for correlation matrix).
We used the “stepAIC()” function in the R package MASS53 to select (in both
directions: forward and backward) for the models with the smallest Akaike
information criteria (AIC) values, with interactions specified to up to two degrees
between variables. Given the fact that stepwise model selection process does not
necessarily generate the most meaningful model, especially for limited sample
sizes29,54, we manually added/removed parameters and interaction terms that
appeared in the last round of model selection to/from the top model to generate
candidate models for comparison. The best of these candidate models was deter-
mined based on AICc (corrected for finite sample size), parsimony and adjusted R2

values. We inspected diagnostic residual plots to assess goodness of fit of the best
model (Supplementary Fig. 6). All analyses were performed in RStudio55.

Disaggregated analysis. Species within each mountain range were found to
exhibit very diverse range shifts, both in magnitude and direction41, likely asso-
ciated with their elevational locations. Therefore, we retrieved all species-level shift
data (n= 2798) to construct disaggregated models of species range shifts, with
individual species’ shift rates as the response variable. The species-level shift dataset
is dominated by records from a single study site (Dainese et al.23, n = 1334 out of
2798), of which the rapid shift rates were associated with proximity to roads and
the occurrence of several non-native species. The goodness of fit of models
including these data points are low ðR2

conditional < 0:02;R2
marginal < 0:05Þ. Therefore,

we excluded data from Dainese et al.23 and only used data from other study sites in
the following analyses (n = 1464). We located different species onto specific ele-
vation bands (10-m interval) based on their historical central/marginal location
along the elevation gradient, as reported from the original study. We then matched
the species-level shift rate with temperature and habitat features (baseline forest
cover and forest cover change) with reference to their elevational locations (See
Supplementary Fig. 3 for an example). As the raw mean shift extent across species
was 66 m, we constructed a 100-m buffer for both forest and temperature data by
calculating the area-weighted mean of five bands above and below each 10-m
elevation band, and used the buffered mean as the overall representation of sur-
rounding microclimate features. When temperature data were missing for certain
elevation bands (due to the coarser resolution compared with forest data), we
estimated temperature values by calculating the mean local elevational lapse rate,
based on the temperature at other elevations of the same site. Climate change rate,
however, was a more regional feature and thus remained the same as in the
aggregated analysis (assuming all species located in the same study site experience
the same climate change rate).

Applying the same VIF threshold to check for data collinearity, the forest gain
variable (with VIF > 2) was excluded in the following analyses (see Supplementary
Table 5 for the correlation matrix) due to its positive correlation with forest loss.
According to the Global Forest Watch database, forest gain is defined as a change
from a non-forest to forest state, and unlike the annually allocated forest loss
information, forest gain percentage was calculated over the entire study period
(2000–2012) due to the slow growing process27. Natural growth of existing long-
lived forest was not considered as forest gain27. Therefore, forest loss and gain are
often correlated in areas with temporary deforestation (e.g., logging, harvesting,
fire, etc.) followed by replantation or natural regrowth. Based on this, we decided to
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focus on forest loss solely as it better reflects the dynamic of habitat disturbances.
To account for the nested design of our disaggregated dataset (cf. several range shift
values for a given single study site) and the potential pseudo-replication issue of
having identical values for the set of variables available only at the study site level
(e.g., climate change rate), we ran linear mixed-effect models (LMMs) with “Site” as
a random factor potentially affecting the intercept (i.e., 1|Site) and the slope
parameters of the elevation band-specific predictor variables (i.e., 1+ Cover|Site, 1
+ Loss|Site, 1+ T|Site, as well as additive combinations including 1+ T+ Cover|
Site, 1+ T+ Loss|Site and 1+ Cover+ Loss|Site). We used the “lmer()” function
from the lme4 package in R56 to run LMMs. The optimal random component
structure among the previously mentioned structures was determined by
comparing AICc values of LMMs fitted by restricted maximum likelihood (REML),
while the fixed effects were kept constant with all possible explanatory variables
and two-way interaction terms incorporated (cf. the “beyond optimal model” sensu
Zuur et al.51). Using REML is generally considered to give better estimates for the
random effects. Candidate fixed effect variables were similar to the aggregated
approach (all standardized), although most data were elevation-band-specific,
whereas climate change rates were still averaged across the whole study. We also
calculated the elevational distance of each species’ location to the highest mountain
summit (Sdist) available within the study area as an additional explanatory variable
in the fixed effect terms. The reasoning behind this variable is that a species’
elevational optimum/margin that is already located very close (cf. in terms of
vertical distance) to the highest mountain summit available within the study area is
more constrained to shift upward than a species for which the elevational
optimum/margin is located further away. The optimal random effect structure we
found when running all seven beyond optimal models mentioned above suggests
that forest cover tends to have site-specific impacts on individual species' shift rates
(i.e., the 1 + Cover|Site random structure showed the lowest AICc value). Based on
this optimal random effect structure, the fixed effect component was then modified
using the “dredge()” function available from the R package MuMIn57 for model
selection. To compare models with nested fixed effects (but with the same random
structure: here 1+ T+ Cover|Site), we used maximum likelihood (ML) estimation
instead of REML, as recommended by Zuur et al.51. Based on the outcomes of the
“dredge” function, the relative variable importance was calculated as the sum of
Akaike weights across selected models, using the “importance()” function and after
refitting all selected models using REML for final inference and reporting of the
models’ parameters51. We also calculated the model averaged coefficients and their
bootstrapped confidence intervals to identify significant relationships. We
inspected diagnostic residual plots to assess goodness of fit of the top model
(Supplementary Fig. 7). All analyses were performed in RStudio55.

Sensitivity analysis restricted to forest systems only. To test whether the forest
change data we used could adequately represent elevational habitat changes in
general, we reran the above analyses at both site (n= 29) and species (n= 1120)
levels on forest systems only, by restricting data to locations with average forest
cover greater than 25%, and to sites with no fewer than 5 species resurveyed.
Results were largely consistent with those across the entire forest cover gradient
(Supplementary Table 6 and Supplementary Fig. 2).

Data availability. Supplementary Data 1 is the data used for site-level analysis, and
Supplementary Data 2 for species-level analysis. Both datasets are available on
Dryad [https://doi.org/10.5061/dryad.k8g2672].

Code availability. R script for running the analyses are available as Supplementary
Software.
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