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A B S T R A C T

Because of their low bandwidth in the phase-encode (PE) direction, the susceptibility-induced off-resonance field
causes distortions in echo planar imaging (EPI) images. It is therefore crucial to correct for susceptibility-induced
distortions when performing diffusion studies using EPI. The susceptibility-induced field is caused by the object
(head) disrupting the field and it is typically assumed that it remains constant within a framework defined by the
object, (i.e. it follows the object as it moves in the scanner).

However, this is only approximately true. When a non-spherical object rotates around an axis other than that
parallel with the magnetic flux (the z-axis) it changes the way it disrupts the field, leading to different distortions.
Hence, if using a single field to correct for distortions there will be residual distortions in the volumes where the
object orientation is substantially different to that when the field was measured.

In this paper we present a post-processing method for estimating the field as it changes with motion during the
course of an experiment. It only requires a single measured field and knowledge of the orientation of the subject
when that field was acquired. The volume-to-volume changes of the field as a consequence of subject movement
are estimated directly from the diffusion data without the need for any additional or special acquisitions. It uses a
generative model that predicts how each volume would look predicated on field change and inverts that model to
yield an estimate of the field changes. It has been validated on both simulations and experimental data. The
results show that we are able to track the field with high accuracy and that we are able to correct the data for the
adverse effects of the changing field.
Introduction

When an object, such as the human head, is placed in a homogeneous
magnetic field it will disrupt that field and it will no longer be homo-
geneous. This disruption, the difference between the initial homoge-
neous field and the actual field, is known as a susceptibility-induced off-
resonance field.

The off-resonance field presents a particular problem for echo-planar
imaging because of its low bandwidth in the phase-encode direction
(Jezzard and Clare, 1999). It is not unusual to have a bandwidth per pixel
of ~10Hz for EPI images acquired without in-plane acceleration (IPAT).
Typical off-resonance values for the worst affected areas (near sinuses
and ear canals) are ~150Hz for a 3T scanner, which leads to signal
displacements of up to 15 pixels.

This must be resolved and typical solutions aim at finding the off-
resonance field (field map) either through direct measurement (Jezzard
eadington, Oxford OX3 9DU, United
. Andersson).
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and Balaban, 1995; Robson et al., 1997) or by acquiring at least two EPI
images that are affected differently by the off-resonance field (Andersson
et al., 2003; Morgan et al., 2004; Holland et al., 2010; Irfanoglu et al.,
2015). Once the field is known it is easy to correct for the first order
effects of the distortions (Jezzard and Balaban, 1995; Munger et al.,
2000).

As a first approximation the off-resonance field is stationary in the
object (the head) framework. That is to say, if the subject moves to the
right inside the scanner, the off-resonance field will also move to the
right. But this is not true of any rotations around an axis non-parallel to
the magnetic flux (the z-direction). This means that EPI images acquired
with the subject in different orientations will be distorted in slightly
different ways, and even after a rigid-body alignment they will not line
up perfectly (Andersson et al., 2001; Ward et al., 2002; Sulikowska,
2016). To correct such a set of images with a single field map will not
address the issue of differentially distorted images.
Kingdom.
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A solution to the problem would entail finding a unique field map for
each EPI volume. Andersson et al. (2001) attempts to calculate the fields
directly from the observed shape differences remaining in an fMRI
time-series after rigid-body motion correction. Others (Boegle et al.,
2010) have suggested that if a map of magnetic susceptibilities for the
object is known the field can be calculated for each observed orientation
of the object. Another suggestion is to use the phase information in the
complex images of an fMRI time-series to get an idea of the changing field
(Ooi et al., 2013; Hutton et al., 2013; Dymerska et al., 2016). Finally,
Alhamud et al. (2016) has suggested acquiring a dual echo-time volu-
metric navigator to get a low resolution fieldmap for each volume.

However, all of these suggestions have limitations, in particular if one
wants to apply them to diffusion EPI images rather than fMRI. It is not
trivial to measure or deduce magnetic susceptibilities for an object,
diffusion sensitisation interferes with the phase information in the im-
ages and techniques requiring non-standard acquisitions are not avail-
able on most scanners. As a consequence there is presently no widely
used method to correct diffusion data for a dynamically changing
susceptibility-induced field.

In this paper we present an extension of the work in Andersson et al.
(2001) and Andersson and Sotiropoulos (2016). It uses the same Taylor
expansion of the susceptibility field as Andersson et al. (2001), but with a
generative model for diffusion data Andersson and Sotiropoulos (2015).
We have validated this new method using a combination of simulations
(Graham et al., 2017) and experimental data.

Theory

How to represent the dynamically changing field

Let us denote the susceptibility induced field in a framework that is
fixed with respect to the object (the head) by ωðxÞ where x denotes any
coordinate in the object framework. This field will depend on the
orientation of the object with respect to the flux of the external field, so it
is really

ωðxÞ ¼ ωðx : rÞ (1)

which we can think of as ωðxÞ given the object location rwithin the field,
where r denotes the parameters of a rigid body transform. It implies that
we would have to estimate a 3D field for any point r in a six-dimensional
space, which at a first glance seems intractable. However, as we outlined
in the introduction, the field is only expected to change as a consequence
of out-of-plane rotations. Hence, we can reduce r to ½θ ϕ�, i.e. any object
rotation around the x- or y-axes. Furthermore, Sulikowska (2016) have
shown that provided that θ and ϕ vary within a reasonably small range
(small in this case being �10 degrees) the field changes linearly with θ
and ϕ. This means that we may be able to approximate it with a Taylor
expansion around some point r0 ¼ ½θ0 ϕ0� at which we know ωðxÞ.

ωðx : rÞ ¼ ωðx : r0Þ þ Δθ
∂ω
∂θ

����
r0

þ Δϕ
∂ω
∂ϕ

����
r0

þ Δθ2

2
∂2ω
∂θ2

����
r0

þ⋯þ RN (2)

where N is the order of the expansion and where

∂ω
∂θ

����
r0

(3)

is a spatial map of the same size as ωðxÞ and signifies the partial derivate
of the field, at each point x, with respect to θ at the point ½θ0 ϕ0� (and
similarly for ∂ω=∂ϕjr0 , ∂2ω=∂θ2jr0 etc).

For the remainder of the theory section we will limit the derivation to
a first order Taylor expansion of the field where it is assumed that only
rotations around the x- and y-axes affects the field. In appendix B we
show how this is extended to higher order and more movement
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parameters.
Equation (2) is demonstrated in an intuitive fashion in Fig. 1.
The model for correcting the images

We have previously described a model that we use to correct the
observed diffusion images when the susceptibility- and eddy current-
induced off-resonance fields as well as the subject movement have
been estimated (Andersson and Sotiropoulos, 2016). It is

bsiðxÞ ¼ fiðx0ÞJxðω; βi; ri;aiÞ (4)

where

x0 ¼ R�1
i xþ dxðωþ eðβi; riÞ; aiÞ (5)

where bsi is the corrected volume i and fi is the original volume i. Jx de-
notes the Jacobian determinant of the transformation at location x. Ri is a
rigid-body transformation for the ith volume and dx is a voxel displace-
ment vector for location x. ω and eðβi; riÞ are scalar off-resonance fields
caused by susceptibility and eddy currents respectively. βi is a vector of
parameters encoding the eddy currents for the ith volume and ri is a
vector of movement parameters specifying the orientation of the object in
that volume. ai are the acquisition parameters of the ith volume and
serves to translate the scalar off-resonance field ωþ e into a vector-
valued voxel-displacement value d. For many protocols ai would have
the same value for all i, but in for example the HCP (Sotiropoulos et al.,
2013) protocol it would take one of two values and in the dHCP (Hutter
et al., 2017) protocol one of four values. A more detailed version of the
spatial model used inside eddy can be found in Andersson and Sotir-
opoulos (2016).

For the purpose of this discourse it is useful to divide the transform
into on the one hand rigid-body movement and eddy current-induced off-
resonance and on the other hand susceptibility-induced off-resonance. To
that end we redefine x0 as

x0 ¼ R�1
i xþ dxðeðβi; riÞ;aiÞ (6)

so that we can rewrite equation (4) as

bsiðxÞ ¼ fi
�
x0 þ ωtipxi ; y

0 þ ωtip
y
i ; z

0�Jxðω; βi; ri; aiÞ (7)

where ω is the susceptibility field in Hz, ti denotes the total readout time
for a slice of volume i and pxi denotes the x-component of the phase-
encoding of volume i (and correspondingly for pyi ). Typically only one
of pxi and pyi are non-zero for a given i and will have a value of 1 or -1.
Using the expression for ω from equation (2) we can rewrite equation (7)
as

bsiðxÞ ¼ fi
�
x0 þ �ω0 þ Δθi
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�
(8)

whereΔθi and Δϕi are the rotations around the x- and y-axes respectively
of volume i compared to the reference r0 orientation.
Adding Gaussian Process predictions

For the following we will assume the existence of an independent

prediction s
�
i of how the corrected imagebsi from equation (8) should look.



Fig. 1. The figure is a graphical depic-
tion of equation (2) and shows how the
field ωi for any volume i is approxi-
mated by a linear combination of a
measured field ω0 and the derivative of
that field with respect to θ (rotation
around the x-axis) and ϕ (rotation
around the y-axis). The weights for the
derivative fields are given by the esti-
mated movement parameters where Δθi
denotes the rotation around the x-axis
of volume i relative the orientation that
ω0 was acquired in (and correspond-
ingly for Δϕi). The maps in the figure
are estimated from our simulations and
the grey-scales are �40 to 100 Hz for
the wi fields and �5 to 5 Hz/degree for
the ∂ω=∂θ and ∂ω=∂ϕ fields. An intuitive
description of the ∂ω=∂θ field is “How
much the field changes if one nods
forward (looks down) one degree”. The
corresponding description for ∂ω=∂ϕ
would be “How much the field changes
if one tilts one's head to the right (in the
direction of the dark part of the field)
one degree.
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This is obtained using a Gaussian Process (GP) and is a linear combina-
tion of all the diffusion weighted images (DWIs) corrected for the current
estimates of distortions and movements. It has been described in detail in

Andersson and Sotiropoulos (2015, 2016). Assuming that s
�
i � bsi we can

write
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where ε is the “error” or the deviation between s
�
i and bsi. For the case

where ∂ω=∂θjr0 , ∂ω=∂ϕjr0 etc are unknown (or not fully known, like in the
early stages of the iterative estimation) that error signal will contain
information about ∂ω=∂θjr0 , ∂ω=∂ϕjr0 etc.
Estimating the derivative fields

The formal derivation of the equations for estimating the field is in
appendix A. Below we present an intuitive explanation of the method.

Intuitive explanation of our proposed method
Our explanation depends on two notions. The first is that there is a

small number of “maps” that capture the variability of the off-resonance
field over the course of an experiment. The second notion is that the
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residual variance, i.e. the difference between observations and pre-
dictions, contains enough information to allow us to estimate these
“maps”.

These maps represent one anatomical location per voxel, as defined
by the reference (first) volume, and specifies the linear change with
respect to the parameter in question (pitch or roll) at that location.
Specifically is it the slope of a linear relationship between the strength of
the off-resonance field and orientation parameter (pitch or roll) in units
of Hz per degree. Formally these maps are maps of the partial derivative
of the off-resonance field with respect to pitch and roll.

Fig. 2 illustrates the forward model that is used. It shows how the
observed differences are explained in terms of off-resonance changes
caused by changes in pitch and changes in roll. Furthermore it demon-
strates how these can be subdivided into changes in deflection of the
signal and changes in stretching/compression of the signal, both along
the PE-direction (in the figure the y-direction is the PE-direction).

To get an intuition for this consider, for example, the part that is given
by Δθ6ð∂f6=∂yÞ � ð∂ω=∂θÞ halfway down on Fig. 2. The map ∂ω=∂θ de-
notes the rate of change of the field with respect to pitch in units of Hz/
degree, so when multiplying this with Δθ6 (degrees) we get a map with
the change in field (in Hz) as a consequence of pitch change for volume #
6.

In this forward model it is assumed that the derivative fields (∂ω=∂θ
and ∂ω=∂ϕ) are known, but these are of course the maps we are interested
in estimating. So, the next step is to describe a model to estimate the
unknown entities ∂ω=∂θ and ∂ω=∂ϕ.

Fig. 3 illustrates the forward model from 2 as a large system of linear
equations described in matrix vector notation. In this figure the unknown
fields ∂ω=∂θ and ∂ω=∂ϕ are now represented as Bbθ and Bbϕ respectively.



Fig. 2. This figure illustrates the forward model that explains the difference between observations and predictions as the result of a changing off-resonance field.
It demonstrates how the total difference can be described as the sum of the signal changes caused by a change in pitch and the signal changes caused by a change
in roll. The signal changes can be further subdivided into changes in translation of the signal along the PE-direction (i.e. how the sampling point in the predicted
image changes) and changes in Jacobian modulation (intensity changes caused by stretching/compression). The choice of volumes 1, 6 and 31 for demonstration
is arbitrary and the model of course encompasses all volumes (both b ¼ 0 and DWI volumes). The symbol � was used to denote Hadamard (or element-
wise) product.

Fig. 3. This figure shows the matrix-vector equation s
�� f ¼ Xbþ e that is solved for bb in a least squares sense. The matrix X implements the forward model

described in Fig. 2, but with a spatial basis set B in lieu of the (unknown) derivative fields. The vector b ¼ ½bT
θ bT

ϕ�
T
contains the weights for the fields ∂ω=∂θ and

∂ω=∂ϕ such that Bbbθ is an estimate of ∂ω=∂θ. By denotes a matrix that is organised in the same way as B, but where the columns consists of splines that have been
differentiated in the y-direction (PE-direction).
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The matrix B contains a B-spline basis set that covers the entire 3D space
of a data volume. The vector b consists of two “sub-vectors”, bθ and bϕ,
that contain the weights for the B-spline basis such that the resulting
280
weighted sums are the estimated fields.

In the formulation in Fig. 3 s
�� f is a very tall (Nnxnynz � 1) column

vector, that is modeled as the product of a matrix X calculated from
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known entities and an unknown vector b. This is simply an over deter-
mined system of linear equations that can be solved in a least squares
sense. However, the forward model described in Fig. 2 is a linearisation
of a problem that is fundamentally non-linear with respect to the un-
knowns (b). Therefore solving the linear system in Fig. 3 represents the
linearisation in a Gauss-Newton scheme and has to be repeated itera-
tively, each time updating b such that

bðkþ1Þ ¼ bðkÞ þ ðXTXÞ�1XT
�
s�� f

�
(10)

where X and f both depend on bðkÞ.
In appendix A we provide the formal derivation of the Gauss-Newton

step in equation (10) and that is the proper reference for the proposed
method. The calculation of XTX in equation (10) above is potentially very
computationally expensive. The reason for that, and how to reduce some
of that expense, is explained in appendix C.
Combining the model with estimation of eddy currents

There is an extra caveat with the method outlined in the previous
sections when there are also eddy current-induced distortions, as
explained in this section.

Looking at the derivative fields in Fig. 1 it is clear that there are strong
linear components in both ∂ω=∂θ and ∂ω=∂ϕ. This means that if one were
to model the change of the field for those images as just a linear gradient
(in the y-direction for ∂ω=∂θ and in the x-direction for ∂ω=∂ϕ) it would
already explain a fair proportion of the variance seen in the data (this is
the idea behind some attempts at real-time shimming (Ward et al., 2002;
Alhamud et al., 2016)). And for diffusion weighted images we estimate a
low order eddy current-induced field for each volume, hence this will
include also the low (spatial) order parts of the
susceptibility-by-movement interaction.

In itself it is not necessarily a problem that the EC-correction sub-
sumes the low frequency component of the derivative field. One would
expect the estimated susceptibility derivative field to be the high fre-
quency component of the true derivative field, and that the superposition
of the change of the susceptibility and the estimated EC field would still
be correct.

However, the b ¼ 0 volumes do not suffer from EC-induced distor-
tions, so none is modeled. That means that the derivative field one needs
for the b ¼ 0 volumes is the “full field”, i.e. both the low and high spatial
frequencies. That leads to problems if one wants to model a joint deriv-
ative field for the b ¼ 0 and the diffusion weighted images alike.

The option to model separate fields for b ¼ 0 and diffusion volumes
would be suboptimal for several reasons. It would increase computa-
tional effort, but above all it would negatively affect the precision of the
estimated fields and potentially introduce shape differences between the
corrected b ¼ 0 and diffusion volumes.

We have therefore opted for a scheme where we attempt to estimate
the “full field” (low and high spatial frequencies) for b ¼ 0 and diffusion
weighted volumes alike. It is done through a two step process where an
initial set of EC parameters is estimated while limiting the estimates by a
linear causal model of the diffusion weighting (referred to as a “linear
second level model” in Andersson and Sotiropoulos (2016)). This limits
the risk that the EC-model attempts to “explain” the shape differences
that has been caused by the susceptibility field varying with subject
orientation. However, this can potentially lead to suboptimal results
because i) the linear second level model may be too strict and give
slightly suboptimal results (Andersson and Sotiropoulos, 2016) and ii)
the EC-model can still “explain” some susceptibility shape differences.
For these two reasons, a second step is employed where iterations for
estimating the susceptibility derivative fields (i.e. equation (A6)) are
interleaved with iterations for estimating EC-parameters (without a
second level model), subject movement and outliers (Andersson and
Sotiropoulos, 2016; Andersson et al., 2016, 2017). A schematic of the
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algorithm is as follows:
Combining the model with estimation of intra-volume movement

We expect this method to be useful primarily for data/populations
where there is a relatively high degree of movement. Therefore it is likely
that the data will also be marred by intra-volume movement, i.e. there
will be volumes where the subject has moved during the acquisition of
the slices/MB-groups that constitute the volume. This results in a stack of
slices that may be translated and/or rotated relative each other and may
not even be parallel. It is important to ensure that the two corrections
(intra-volume and susceptibility-by-movement) work seamlessly
together.

As can be seen in Figs. 2 and 3 our model for estimating the derivative
fields operates with a volume as the unit. When the algorithm (see al-
gorithm 1 above) reaches the stage where it estimates the derivative
fields, one set of intra-volume movement parameters have already been
estimated and used to correct the data that goes into the estimation of the
derivative fields. Hence, the problem is not primarily that volumes
contaminated by intra-volume movement “confuse” the estimation of the
fields. The problem is that volumes where the subject has performed a
large movement (in particular if that includes a pitch and/or roll) have
not been acquired under the influence of a well defined field.

We have solved that by examining the (slice-wise) movement pa-
rameters for each volume after the initial step (prior to the estimation of
the derivative fields) to identify all volumes with an intra-volume stan-
dard deviation of Δθ and/or Δϕ greater than one degree. These volumes
are considered “poorly defined” with respect to orientation, and they are
excluded from the estimation of the derivative fields. However, it should
be noted that they are included in the movement-eddy-current-outlier
estimations that are interleaved with the derivative field estimation.
That way these parameters can still be updated for those volumes in the
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light of the derivative fields. It should also be noted that when building
the field for use in correcting a given volume, we use the intra-volume
parameters (provided a slice-to-volume model was used in the estima-
tion) so that the Δθ and Δϕ that are actually used in equation (2) vary
from slice-to-slice/group-to-group.

In the simulations described below the method was tested with both a
volumetric and a slice-to-volume movement model. For the experimental
data with large subject movements it was inevitable that there would also
be large intra-volume movement and only the slice-to-volume model was
used to analyse those.

Material and methods

Implementation

The method described in the present paper has been implemented in
Cþþ as part of the eddy tool (Andersson and Sotiropoulos, 2016 and
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY) in FSL (see Smith et al.
(2004) and http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Some of the steps of
the algorithm, in particular the calculation of the derivatives and the
spline-interpolation on an irregular grid, are very computationally
intense. They have therefore been parallelised for NVidia GPUs using
CUDA (Farber, 2011). All the results in the present paper have been
generated using the GPU version of the software.

The current version of eddy will estimate parameters for eddy
current-induced off-resonance fields and subject movement (see equa-
tions (4) and (5) and Andersson and Sotiropoulos (2016)). In addition it
will also detect and replace movement induced signal dropout (Ander-
sson et al., 2016) and correct intra-volume movement (Andersson et al.,
2017). The work presented here has extended that to also include
susceptibility-by-movement effects.

The new addition has increased the execution time for eddy. Not so
much because of the actual estimation of the fields, but more for the
additional iterations for estimation of eddy currents and movement that
are interleaved with the field estimation. Hence, it effectively doubles the
execution time compared to running eddy without the susceptibility-by-
movement correction.

Simulations

Data
The simulations that we use are similar to those described in Graham

et al. (2017) where the authors characterise the problem that the method
in the present paper is attempting to solve. In brief, the data was simu-
lated using POSSUM, a highly realistic MRI simulator (Drobnjak et al.,
2006) that has been extended to diffusion imaging (Graham et al., 2016).
It contains an input object (head) that has been segmented into air and
tissue and from which a susceptibility induced-field can be calculated for
any orientation relative to the magnetic flux (Jenkinson et al., 2004).

Using POSSUM, a diffusion data set was simulated with 60 b ¼ 1000
volumes and five interspersed b ¼ 0 volumes, where the diffusion di-
rections were optimised on the whole sphere and were identical to those
used for the FMRIB standard diffusion protocol. The simulated acquisi-
tions were single-band with a 72� 96� 55 matrix, an interleaved slice
ordering and an isotropic voxel size of 2.5 mm. The total readout time for
a slice was 77.4ms, corresponding to a bandwidth of 12.9 Hz/pixel in the
PE-direction. The susceptibility field was calculated for a 3T static field
and the eddy currents (when applicable) were commensurate with a
Stejskal-Tanner diffusion encoding.

Various other options were varied according to a 2� 2� 2� 2� 2
factorial. The factors that were varied were

Movement type: Volumetric or continuous movement. We expect
this method to be of particular use for subjects that move more than
average. Therefore we simulated data both with the movement injected
“per volume” (a commonly used model) and with movement continuous
in time (a more realistic model (Andersson et al., 2017)). The latter will
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result in a subset of “broken” volumes with movement between consec-
utive slices such that when stacked up they no longer represent
anatomically faithful volumes.

Movement magnitude: Normal or large movement. The “large”
movement trace was taken from a volunteer moving according to an
agreed pattern including pitch and roll (rotation around the x- and y-
directions). The “normal” movement was created from the same trace,
but with all parameters divided by three.

Eddy current distortions: With or without eddy current-induced
distortions.

Phase-encode direction:With phase-encode direction A→P or P→A.
SNR: With an SNR of 20 or 40. The SNR is defined from the b ¼ 0

volumes as the average intra-cerebral signal divided by the noise.
Ten distinct simulations with unique noise were performed for each

bin in this hyper-cube, resulting in a total of 320 data sets each consisting
of 65 vol.

In addition to the simulations described above we also simulated data
with exactly the same protocol but without any movement or off-
resonance fields. These “ground truth” data sets were simulated
without noise, or with added noise to yield b ¼ 0 SNR of 20 and 40.

Analysis
If nothing else is specified the analyses below was performed using a

first order Taylor expansion around x- and y-rotation, a spline knot-
spacing of 10mm, 20 iterations and a regularisation λ of 10 (see equa-
tion (A13)). The static field was estimated from a pair of A→P and P→A
b0-volumes (using the FSL-tool topup, Andersson et al. (2003)) from the
simulations. These were the first volumes from their respective data sets,
so before any movement was injected. Movement was estimated either
using a volumetric model or with a slice-to-volume model with 17 de-
grees of freedom per volume.

Estimating the “true” derivative fields. The susceptibility fields used for the
simulations were generated in a framework that was fixed with respect to
the object (head). Therefore these were all reoriented to the space of the
first volume (the reference space for eddy) using the known movement
parameters, after which the phase was fitted to a general linear model
consisting of a constant and the (known) rotations around the x- and y-
axes (Δθ and Δϕ respectively). The resulting parameter maps for Δθ and
Δϕ are considered as the “true” ∂ω=∂θ and ∂ω=∂ϕ fields.

Checking the assumptions of the Taylor expansion. One of the assumptions
of the model is that a first order Taylor expansion is sufficient to track the
changes of the field with head orientation. This was tested on the
simulated data by generating R2-maps for a first order model. First the
“true” first order derivative fields were calculated, as described above,
after which the fraction of variance explained by these was calculated.

Comparing estimated and true derivative fields. The “true” derivative fields
were estimated as described above and compared to the ∂ω=∂θ and ∂ω=∂ϕ
maps estimated using the method described in the present paper.

Comparing estimated and true off-resonance fields. For each volumewe had
full knowledge of the actual off-resonance field that had affected that
acquisition. We were able to compare that, on a volume-by-volume basis,
to the estimated field. The estimated field was calculated in two ways, as

� The sum of the static susceptibility field estimated with topup and the
eddy current-induced field estimated by eddy.

� The sum of the static susceptibility field (topup), the eddy current-
induced field and the change in the susceptibility induced-field
caused by the change of orientation of the head. The two latter esti-
mated by eddy.

This analysis was limited to the data simulated with volumetric

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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movement because the slice-to-volume case does not have fields that are
defined for entire volumes.

Comparing corrected and true images. After correcting the simulated data
for movement and distortions it was compared to the “ground truth” data
simulated without any movement or off-resonance effects. This was done
by calculating the correlation between paired (with the same diffusion
encoding) volumes. We compared the results when excluding or
including susceptibility-by-movement effects in the correction.

The effects of the diffusion encoding direction (being fixed in the
scanner framework) changing in the subject framework as the subject
rotates its head (Leemans and Jones, 2009) were not included in any of
our simulations. Hence, the volume pairs should have identical contrast.
Human data

A healthy and experienced volunteer was scanned three times in the
same session, twice with the FMRIB standard diffusion protocol and once
with an augmented protocol. The standard protocol consists of 60 unique
directions with a b-value of 1500 and five interspersed b ¼ 0 volumes.
The augmented protocol had the same 60 directions with a b-value of
1500, but instead of five b ¼ 0 volumes it had a total of 61 b0-volumes
such that the full sequence was “b0, b0, DWI, b0, DWI, b0 … b0, DWI”.
Each of these scans was preceded by the acquisition of two b ¼ 0 volumes
with identical scanning parameters except for the phase-encode direction
being reversed. For the first scan the subject was instructed to lie as still
as possible. For the second scan he was instructed to make a set of
movements (rotations around the x- and y-axis), where after each
movement the new position was held for ~10 volumes. For the third scan
the instruction was to try and mimic the movement from the second scan,
but this time hold each new position for ~20 volumes. Note that, simi-
larly to the simulations with intra-volumemovement injected, this means
that the human data contained volumes contaminated by intra-volume
movement.

The data was acquired on a Siemens Magnetom Prisma system with a
32-channel receive head coil and monopolar Stejskal-Tanner gradients
were used for the diffusion encoding. The resolution was 1.5mm
isotropic with 84 slices of a 150� 150 matrix. A multi-band factor of 4
was used, no in-plane acceleration, phase-encoding A→P and a 6/8
partial k-space. The TR was 3.35 s, the TE was 88.8ms and the total
readout-time (time between centre of first and last echo) was 107ms,
yielding a bandwidth per voxel of 9.32 Hz.

Analysis
We performed several analyses of the data to explore different aspects

of the method. If nothing else is stated all estimations/corrections below
were performedwith a slice-to-volumemovement model with 17 degrees
of freedom per volume, eddy current correction and detection and
replacement of outliers. The susceptibility-by-movement estimation was
performed using a knot-spacing of 10mm, a regularisation λ of 10 and 20
iterations in 5 interleaves with movement, EC and outlier estimation as
outlined in algorithm 1.

Test-retest reproducibility of the estimated derivative fields. By excising
relevant b0-volumes from the third scan we mimicked the data from the
second scan. Thus we had two corresponding, but independent, data sets
with similar levels of movement from which to estimate the ∂ω=∂θ and
the ∂ω=∂ϕ fields. In order to ensure that we performed the Taylor
expansion around the same point in orientation space we used the static
field estimated from scan two for both scans. We also replaced the first
b ¼ 0 in the third scan by the first b ¼ 0 from the second scan, thus
ensuring the same reference space for both analyses.

Ability to estimate derivative fields from diffusion data. It is potentially
more difficult to estimate the derivative fields from diffusion data than
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from data with inherently similar contrast. The differing contrast/infor-
mation content in the different diffusion weighted volumes is one
complication, and there is also the difficulty of estimating it in the
presence of volume specific eddy current-induced distortions. To inves-
tigate that, the third scan was sub-sampled into two data sets, one where
the additional b ¼ 0 volumes had been stripped away to yield a data set
consisting of 60 diffusion weighted volumes and 5 interspersed b ¼ 0
volumes as in the standard protocol. The other sample consisted only of
the 61 b ¼ 0 volumes. For this analysis the static field was estimated from
the first b ¼ 0 volume from the third scan and the immediately preceding
b ¼ 0 scan with reversed PE-direction. The two samples have the same
initial volume, so the reference space was the same. The estimation from
b ¼ 0 data was performed in the same way as for the diffusion weighted
data, except that eddy currents were not estimated.

Ability to correct the data for susceptibility-by-movement effects. For this
analysis the images acquired in the first scan were considered as “ground
truth”. Both visual inspection and the estimated movement parameters
confirmed that there were very little movement and no obvious move-
ment related dropout. It was corrected using a volume-to-volume
movement model, eddy current correction and detection and replace-
ment of outliers. Data set two and three (the latter after stripping of
extraneous b ¼ 0 volumes) were used as “test” data sets. They were
corrected as described above, once with and once without susceptibility-
by-movement estimation. The fields estimated from the reversed PE-
direction data were used as the static fields. After within-scan correc-
tion a rigid-body motion transform was calculated for scans 2 and 3
relative to scan 1, and the former data sets were resampled into the space
of scan 1 using spline interpolation. This entails an additional interpo-
lation, but that should not matter for the comparison between results
with and without susceptibility-by-movement estimation.

Unlike the simulations, these data will be affected by the diffusion
encoding direction rotating in the subject framework when the subject
rotates its head. However, that should only lead to a slightly lower cor-
relation for the volumes with the greatest rotation and will not bias the
comparison between results with and without susceptibility-by-
movement.

Results

Simulations

Looking at movies of the simulated data (Fig. S1 in the supplementary
material) after correcting for eddy currents, subject movement and a
static susceptibility field it was clear that in the areas with a strong off-
resonance field from susceptibility it was not sufficient to correct with
a single field. The susceptibility-by-movement effects were obvious as
apparent shape changes between volumes. It was also clear that these
were very well corrected by the susceptibility-by-movement model.

Checking the assumptions of the Taylor expansion
Fig. 4 shows the R2-maps for two different levels of the brain. It can be

seen that the maps are close to 1 for most of the intra-cerebral voxels. In
fact they are greater than 0.99 for most of the brain at these levels. The
regions that are less than 0.99 coincide with areas where it was prob-
lematic to estimate the “true” field due to phase wrapping. Together with
the observation that there are fewer voxels with an R2 less than 0.99 for
the large movement case makes us conclude that a first order model is
sufficient for the simulations. If those areas had truly reflected a need for
a higher order expansion one would have expected more voxels with R2

less than 0.99 for the large compared to the normal movement case.

Comparing estimated and true derivative fields
Fig. 5 shows estimated versus “true” derivative fields for some of the

simulations. The particular simulations used for Fig. 5 used a volumetric



Fig. 4. This figure shows the R2-maps that demonstrate the
proportion of true variance in the simulated off-resonance
fields explained by a first order model. The left column
shows b ¼ 0 images for anatomical guidance. The middle
and rightmost columns show the R2-maps for the “normal”
and “large” movement simulations respectively. The grey-
scale goes from 0 (black) to 1 (white).

Fig. 5. This figure shows the true and estimated
maps of ∂ω=∂θ and ∂ω=∂ϕ (top two and bottom two
rows respectively) when using simulations with
volumetric movement, phase-encoding A→P and an
SNR of 40. The first column shows the true b ¼ 0
images for anatomical guidance. Columns 2–4 show
the results for the “normal” movement case. Col-
umn 2 shows the “truth”, column 3 the estimated
fields for the “No eddy currents” case and column 4
the estimated fields when they were jointly esti-
mated with eddy current-induced fields. Corre-
spondingly columns 5–7 show the results for the
“large” movement case, where column 5 is the
“truth” and columns 6 and 7 shows the estimated
fields in the absence and presence of eddy current-
induced fields respectively. The units of the color-
bars are Hz/degree.
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movement model, phase-encoding in the A→P direction and an SNR of
40. It can be seen that the estimated derivative fields capture the features
of the true fields very well for both “normal” and “large”movements and
regardless of the presence of eddy current-induced distortions.
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The correlations between “true” and estimated derivative fields are
tabulated for all the different simulations in Tables S1 and S2 in the
supplementary material S. Fom the results in Fig. 5 and Tables S1 and S2
we conclude that
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� We are able to accurately estimate the rate of change of the field from
the diffusion data.

� That ability is largely independent of PE-direction, the absence or
presence of eddy-currents, the absence or presence of intra-volume
movement artefacts and of SNR in the range 20–40.

� The one things that appears to have an appreciable effect on that
ability is the magnitude of movement. We believe that is partly
explained by a poorer “estimate of truth” (can be seen as ringing ar-
tefacts in Fig. 5) for the normal movement case. But also that it re-
flects less information about the susceptibility-by-movement in data
with less movement.

Comparing estimated and true off-resonance fields
The results from the comparison of estimated and true off-resonance

fields are shown in Fig. 6. It shows the simulations for phase-encode
direction A→P and an SNR of 40. The results for phase-encode direc-
tion P→A and SNR 20 are sufficiently similar that we have chosen to not
include those results. As expected it shows that the advantage of our
method is greater for “large” than for “normal” movement, though there
is a clear advantage also for “normal” movement. The loss of accuracy of
the estimated fields when not taking susceptibility-by-movement into
account (grey lines) is strongly related to a “rotation proxy” (dashed
black line) that we calculated as a composite measure of the x- and y-
rotations (see legend to Fig. 6). It can also be seen that the accuracy of the
estimated fields were poorer when the simulated data contained eddy
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current-induced distortions. However, the relative increased accuracy
offered by the method in the present paper remained the same.

Comparing corrected and true images
Figs. 7 and 8 show the correlation between true and corrected images

for a volumetric and slice-to-volume movement model respectively. The
correlation was calculated for a single slice corresponding to the most
basal slice shown in Figs. 4 and 5, i.e. a slice that is appreciably affected
by susceptibility-by-movement effects. These (Figs. 7 and 8) correspond
to the simulations with phase-encoding in the A→P direction and an SNR
of 40. Similar figures for both PE-directions, both SNR levels (20 and 40)
and for slices at different levels (in the inferior-superior directions) of the
brain are shown in Figs. S3–S34 in the supplementary material. The
appearance of the plots in Figs. 7 and 8 are similar to those in Fig. 6,
which simply shows that there is a close relationship between getting the
fields right and getting the corrections right.

Human data

Similarly to the simulated data, the human data also exhibited clear
residual distortions after correcting for eddy currents, subject movement
and a static susceptibility field. This manifested itself as changes in dis-
tortions between volumes, and can be seen as a movie in S2 in the sup-
plementary material. It can also be seen how these apparent shape
changes largely disappear when correcting also for susceptibility-by-
Fig. 6. This figure shows the correlation
between true and estimated off-resonance
fields for all volumes of the simulated data.
The data used for this figure was simulated
such that the phase encode direction was
A→P and the SNR was 40. The solid black
and solid grey lines represent the correlation
between true and estimated off-resonance
fields for the method in the present paper
and the method assuming a constant sus-
ceptibility field respectively. The scale for
both these curves is found on the left-hand of
the graphs. The dashed black line shows a
“proxy” for the rotation relevant to suscep-

tibility field. It was calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ R2

y

q
where Rx and Ry denote rotation around the
x- and y-axes respectively. The scale for that
curve is found on the right hand side of the
graphs. The graphs in the left column show
the results for “normal” subject movement
and the right column for “large” movement.
The top row shows the situation when no
eddy current distortions were simulated and
no attempt was made to estimate eddy cur-
rents. The bottom row shows the situation
when eddy currents were included in the
simulations and eddy currents and
susceptibility-by-movement were jointly
estimated by eddy.



Fig. 7. This figure shows the correlation
between true and corrected images for all
volumes of the simulated data. The data
used for this figure was simulated such that
the phase encode direction was A→P, the
SNR was 40 and all movement was “inter-
volume”, i.e. any movement was assumed to
occur between acquisition of consecutive
volumes. Correspondingly the analysis used
a volumetric movement model. The solid
black and solid grey lines represent the cor-
relation between true and corrected images
for the method in the present paper and the
method assuming a constant susceptibility
field respectively. See the legend for Fig. 6
for more details.
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movement effects.

Test-retest reproducibility of the estimated derivative fields
The outcome of estimating the derivative fields from two different

runs is shown in Fig. 9. It can be seen that the reproducibility is good and
the correlation between the two ∂ω=∂θ fields is 0.945 and for the ∂ω=∂ϕ
fields it is 0.880. It can also be seen that there is a general agreement with
the appearance of the derivative fields estimated from the simulated data
(see Fig. 5). When considering Fig. 9 it should be remembered that the
fields are estimated from completely distinct data sets with distinct
subject movements and with a slightly different starting position of the
subject.

Ability to estimate derivative fields from diffusion data
The fields estimated from a diffusion data set (60 DWI þ 5 b ¼ 0)

compared to a field estimated from only b ¼ 0 volumes (61 vol) are
shown in Fig. 10. The agreement is very good with a correlation of 0.966
for the ∂ω=∂θ fields and 0.975 for the ∂ω=∂ϕ fields.

Ability to correct the data for susceptibility-by-movement effects
Fig. 11 shows a similar pattern to the simulated data with respect to

our ability to correct the data. The greater our “rotation proxy” the
greater the difference between the correction with and without
susceptibility-by-movement correction. The overall correlations after
correction are lower than for the simulated data. This would be expected
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since the rotation of the diffusion gradients in a subject framework leads
to increasing differences in contrast with increasing subject rotation. We
also find that the measured fields tend to be “sharper” (i.e. contain higher
spatial frequencies) than the simulated ones, making their correction a
little more difficult.

Discussion

In this paper we have demonstrated our ability to track the
movement-induced changes in the susceptibility-induced off-resonance
field. It is very important to be clear that this is done without any need to
actually measure any field, either by traditional field measurement or by
reversed gradients. The method achieves this purely from the deviation
of the observed images from the expected/predicted images. This is
encouraging since it will enable workers to correct their data for this
artefact without the need to alter protocols, acquire additional data or
invest in costly hardware. It also means that the method can be applied to
“historical” data that suffers from high levels of subject movement.

It should be noted that if a single, static, field is measured (for
example by a volume pair with reversed gradients at the start of the scan)
the expansion in equation (2) is performed with that field as the constant.
In that case the corrected data will be internally consistent (corrected for
susceptibility-by-movement effects) and anatomically faithful (corrected
for susceptibility). If no susceptibility field is provided the constant term
in equation (2) will be zero. The data will still be corrected for



Fig. 8. This figure shows the correlation
between true and corrected images for all
volumes of the simulated data. The data
used for this figure was simulated such that
the phase encode direction was A→P, the
SNR was 40 and movement was continuous,
i.e. volumes occurring during periods of
rapid movement were corrupted by intra-
volume movement. Correspondingly the
analysis used a slice-to-volume movement
model. The solid black and solid grey lines
represent the correlation between true and
corrected images for the method in the pre-
sent paper and the method assuming a con-
stant susceptibility field respectively. See the
legend for Fig. 6 for more details.
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susceptibility-by-movement effects, and hence be internally consistent,
but will not be anatomically faithful.

The results from our simulations and from our human experimental
data are in good agreement, and indicate that the errors due to
susceptibility-by-movement effects are determined by the amount of
pitch and/or roll relative to the orientation of the subject when the field
was measured. They also indicate that the method in the present paper
can to a large degree eliminate this error. The rate-of-change maps are
also in good agreement with those reported by Sulikowska (2016), both
in magnitude and general appearance. Note that Sulikowska (2016) ap-
pears to have chosen an opposite convention with regards to the sign of
the rotation (our fields are predicated on positive Δθ and Δϕ corre-
sponding to nodding forward and tilting one's head to the right respec-
tively), and also differ in terminology such that what we denote “roll” is
denoted “yaw” in Sulikowska (2016).

When do we need this?

The effects of the susceptibility field changes are relatively small in
most of the brain and depend strongly on howmuch the subject moves. It
is therefore of greatest importance for subjects who are uncooperative,
such as babies, children or patients that find it hard to remain still. In this
respect it is similar to corrections for intra-volumemovement (Andersson
et al., 2017), though the way its effects manifest themselves is very
different. Intra-volume movement introduces variance in the data that is,
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as a first approximation, proportional to the temporal derivative of the
movement. The changing susceptibility, in contrast, causes variance that
is proportional to the movement, specifically to rotation around any axes
non-parallel with the magnetic flux.

Our assumption is therefore that the present method will be impor-
tant, together with the intra-volume motion correction (Andersson et al.,
2017), for all categories of subjects that move a lot.

In addition we predict that it will be useful for very long examinations
(such as for example the diffusion acquisitions in the HCP project,
Sotiropoulos et al. (2013)), where even slow changes in position can add
up to sizeable movements over the course of an hour or more. Since the
susceptibility-by-movement effects are proportional to relative orienta-
tion it doesn't matter how slow the movement is and it can potentially
have a significant impact on such studies.

Higher b-values

In the present paper we have tested the method on simulated data
with b-values up to 1000 and on human data with b-values up to 1500. It
has previously been demonstrated (Andersson and Sotiropoulos, 2016)
that eddy can correct for eddy current-induced distortions and subject
movement for high b-value data. That ability hinges on its internal pre-
dictive model for the diffusion weighted images. We therefore expect this
method to similarly work well on data up to at least the b-values of 5000
that was used in Andersson and Sotiropoulos (2016).



Fig. 9. This figure shows the test-retest agreement of de-
rivative fields estimated from two different data sets in the
same subject. The first column is shown for anatomical
reference and the two rightmost columns show the estimated
derivative fields. The top two rows show the rate-of-change
of the field with respect to pitch, and the bottom two rows
with respect to roll. The units of the fields are Hz/degree
rotation.
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Possible extensions

Another source of changing field is the breathing of the subject. Even
though the lungs are a relatively long distance away from the object we
image (the head) its effects on the field are experienced as a very
smoothly varying off-resonance field at the location of the head. Such a
smoothly varying field is in principle easy to compensate for with
shimming, but the problem is that it varies during the respiratory cycle.
Hence, it is another source of a field varying over time.

The framework we have suggested in the present paper can be
extended to take this source into consideration. One would then replace
(or add to)Δθ andΔϕwith a low-order basis expansion of the point in the
respiratory cycle (for example measured using a bellows belt). This could
be for example p, cosðπpÞ and cosð2πpÞ where p is a number between
0 and 1 defining the point in the respiratory cycle. It would also need to
be changed so as to allow for different values of p, cosðπpÞ and cosð2πpÞ
for different slices/multi-band-groups in Fig. 3 and equation (A8).

Our method could in principle also be combined with prospective
motion correction (Maclaren et al., 2013) where subject movement is
estimated by some external device (Maclaren et al., 2012) or by a 3D
navigator (Alhamud et al., 2012) and used to inform the prescription of
subsequent acquisitions. In that case the external recordings of pitch and
roll would be used in lieu of the retrospectively estimated ones in
288
equations (2), (8) and (A8). It would also mean that the algorithm as
described in 1 would be simplified in that no movement parameters
would need to be estimated.

Is it a problem that the derivative fields are poorly estimated when subjects
move little?

No, it is not. It is the variance that is introduced by the susceptibility-
by-movement that drives the estimation of the derivative fields. In the
absence of susceptibility-by-movement-induced variance there is nothing
to drive the estimation and it will be dominated by the regularisation of
the fields, resulting in smooth estimated fields with values close to zero.
When used for correction of the data (equation (2)) these “close to zero”
fields will be multiplied by very small values for Δθ and Δϕ, and effec-
tively not contribute at all. Which is the desired outcomewhen there is no
susceptibility-by-movement-induced variance.

Alternative methods

As far as we know the only viable alternatives to the method sug-
gested in the present paper are the dynamic shimming methods sug-
gested byWard et al. (2002) and by Alhamud et al. (2016). The former of
those methods was implemented for gradient echo EPI and has as far as



Fig. 10. This figure shows the agreement between deriva-
tive fields estimated from b ¼ 0 volumes only (middle col-
umn) and from a diffusion data set (right column). The first
column contains a corresponding b ¼ 0 volume after
correction for susceptibility distortions, and is shown for
anatomical reference. The top two rows show the rate-of-
change of the field with respect to pitch, and the bottom
two rows with respect to roll. The units of the fields are Hz/
degree rotation.
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we know not been applied to diffusion data. Furthermore, those methods
are only capable of correcting for field changes that are constant or linear
in space. As can be seen from Figs. 5, 9 and 10 that is not sufficient to fully
capture the actual field changes due to subject movement. Our tests (data
not shown) indicate that a linear combination of linear fields in the
principal directions can capture roughly half of the observed field
changes. We don't know if either of those methods are freely available or
implemented by any vendor.

The method suggested by Boegle et al. (2010) hinges on having a map
of susceptibilities in exact register with the data one wishes to correct.
Neither the acquisition or registration of such a map is trivial.

Methods based on tracking the phase of each voxel in the time-series
(Ooi et al., 2013; Hutton et al., 2013; Dymerska et al., 2016) can not be
used with spin-echo EPI data.
Relation to earlier work

The ideas and principles behind the suggested method are similar to
those described in Andersson et al. (2001), but there are many important
differences.

� The inclusion of a predictive model for diffusion weighted images has
allowed us to extend the method to diffusion data.
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� The co-existence of volume-specific eddy current-induced fields with
a changing susceptibility-induced field presents additional challenges
that have been solved.

� It is implemented within a framework that models and corrects for
intra-volume movement.

� The forward model has been complemented with an additional term
(described as “Signal change caused by change in stretch/compres-
sion of signal” in Fig. 2) compared to the model that was used in
Andersson et al. (2001).

� The use of a spline basis set (as opposed to the DCT set used in
Andersson et al. (2001)) and the re-ordering of summations described
in appendix C have facilitated estimating the derivative fields at
higher spatial resolution with realistic computational and memory
demands.
Where to next?

In a series of papers we have described the development of a
comprehensive tool to correct diffusion data for some of the most
important sources of artefacts. The current version (as described in the
present paper) corrects for eddy current-induced distortions,
susceptibility-distortions (including changes with subject orientation)
and subject movement (inter- and intra-volume bulk motion as well as



Fig. 11. This figure shows the volume-wise correlation with “truth” when performing correction with (solid black line) and without (solid grey line)
susceptibility-by-movement correction. The images to the left show the slices where the comparisons were made for the two rows. The leftmost plot pertains to the
first scan and the rightmost to the second scan.
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motion induced signal drop-out). Additional sources that we hope will be
addressed in future work include

Spin history: The signal in a given voxel depends on the time that has
passed since it was previously excited, with shorter time leading to less
signal. In the absence of movement this time is identical for all voxels in
all volumes. When there is movement, that time can vary considerably
and cause unwanted variance over volumes. With knowledge of the
history of excitation for each voxel (which requires an intra-volume
movement model) it should be possible to correct.

Receive bias field: There is, especially for coil arrays, an inhomo-
geneous intensity bias field caused by differential sensitivity to the RF-
signal from different parts of the FOV. This is, to a first approximation,
fixed in the scanner framework. When the subject moves within that,
stationary, field it will result in unwanted variance across the volumes.

Long time-constant eddy currents: We have seen some evidence
that the first one or two slices/MB-groups for a given volume (diffusion
gradient) are affected by different eddy currents compared to the
remaining slices/MB-groups. This violates the assumption within eddy of
a single, constant, eddy current-induced field per volume.
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Conclusion

We have augmented our framework for simultaneous correction of
susceptibility- and eddy current-induced distortions and subject move-
ment effects with a model that estimates how the susceptibility-induced
field changes with subject orientation.
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APPENDICES.

A Formal derivation of equations for the estimation

Equation (2) shows how to calculate the field for any orientation ri of the object. The unknowns in equation (2) are the derivative fields, i.e. ∂ω=∂θjr0 ,
∂ω=∂ϕjr0 etc. This section describes how to estimate these derivative fields.

We want to find the fields (∂ω=∂θ and ∂ω=∂ϕ) such that we minimise the mean squared difference between the GP predictions s
�
i and the corrected

images bsi. The summation is over all voxels in all volumes. If one assumes that the differences between the predicted and the corrected images are
approximately normally distributed (i.e. that ε 	 Nð0; σÞ) the least squares estimate would also be the maximum likelihood estimate of the fields. Hence
we want to find the fields ∂ω that fulfills

c∂ω ¼ arg min
∂ω

C ð∂ωÞ (A1)

where

C ð∂ωÞ ¼ 1
nN

26664
s�1 � f1ð∂ωÞ � J1ð∂ωÞ
s�2 � f2ð∂ωÞ � J2ð∂ωÞ

⋮
s�N � fNð∂ωÞ � JNð∂ωÞ

37775
26664

s�1 � f1ð∂ωÞ � J1ð∂ωÞ
s�2 � f2ð∂ωÞ � J2ð∂ωÞ

⋮
s�N � fNð∂ωÞ � JNð∂ωÞ

37775 (A2)

i.e. the mean squared difference between predictions and observations, where ∂ω denotes all the derivate fields in the model, n denotes the number of
voxels in a volume, N denotes the number of volumes. fið∂ωÞ denotes a column vector containing all n voxels of fið∂ω;ω0; βi; ri; aiÞ, Jið∂ωÞ denotes all n
voxels of Jð∂ω;ω0; βi; ri;aiÞ and � denotes Hadamard product.

We have chosen to represent the fields as linear combinations of Cubic B-spline basis functions (Rueckert et al. (1999)), so for example ∂ω=∂θ is
given by

∂ω
∂θ ¼ Bbθ (A3)

where B is an n�M matrix of 3D-splines and whereM is the number of splines used to represent a field. Hence, we can rewrite equations (A1) and (A2)
as

bb ¼ arg min
b

C ðbÞ (A4)

where

C ðbÞ ¼ 1
nN

26664
s�1 � f1ðbÞ � J1ðbÞ
s�2 � f2ðbÞ � J2ðbÞ

⋮
s�N � fNðbÞ � JNðbÞ

37775
T26664

s�1 � f1ðbÞ � J1ðbÞ
s�2 � f2ðbÞ � J2ðbÞ

⋮
s�N � fNðbÞ � JNðbÞ

37775 (A5)

where b ¼ ½bT
θ bT

ϕ�
T
.

The number of parameters (i.e. the size of b) can potentially be very large, so in order to estimate it we need an efficient optimisation method. We
have opted for the Gauss-Newton method, which means b can be estimated from a sequence of iterations of the form

bðkþ1Þ ¼ bðkÞ � �HjbðkÞ
��1rjbðkÞ (A6)

where rjbðkÞ is the gradient of C calculated at bðkÞ and where HjbðkÞ is the Gauss-Newton approximation to the Hessian calculated at the same point.
The gradient r can be calculated as

r ¼ � 2
nN

26666666664

d
db

½f1ðbÞ� � ð1T 
 J1ðbÞÞ þ ð1T 
 f1ðbÞÞ � d
db

½J1ðbÞ�
d
db

½f2ðbÞ� � ð1T 
 J2ðbÞÞ þ ð1T 
 f2ðbÞÞ � d
db

½J2ðbÞ�
⋮

d
db

½fNðbÞ� � ð1T 
 JNðbÞÞ þ ð1T 
 fNðbÞÞ � d
db

½JNðbÞ�

37777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

X

26664
s�1 � f1ðbÞ � J1ðbÞ
s�2 � f2ðbÞ � J2ðbÞ

⋮
s�N � fNðbÞ � JNðbÞ

37775 (A7)

where 
 denotes the Kronecker product. The components of the first term in X are as follows: 1T 
 JiðbÞ is simply 2M (2 because we are modeling 2
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fields) copies of the Jacobian volume Ji concatenated horizontally.
d
db ½fiðbÞ� is defined as

d
db

½fiðbÞ� ¼
	
Δθi

d
dbθ

½fiðbÞ� Δϕi
d

dbϕ
½fiðbÞ�



(A8)

where

d
dbθ

½fiðbÞ� ¼

266666666666664

∂f ð1Þi

∂bð1Þ
θ

∂f ð1Þi

∂bð2Þ
θ

⋯
∂f ð1Þi

∂bðMÞ
θ

∂f ð2Þi

∂bð1Þ
θ

∂f ð2Þi

∂bð2Þ
θ

⋯
∂f ð2Þi

∂bðMÞ
θ

⋮ ⋮ ⋱ ⋮

∂f ðnÞi

∂bð1Þ
θ

∂f ðnÞi

∂bð2Þ
θ

⋯
∂f ðnÞi

∂bðMÞ
θ

377777777777775
(A9)

and where ∂f ðjÞi =∂bðkÞ
θ is the partial derivative of the jth voxel of the ith volume w.r.t. the kth element of bθ. d

dbϕ
½fiðbÞ� is defined correspondingly. Finally

∂f ðjÞi

∂bðkÞ is given by

∂f ðjÞi

∂bðkÞ ¼ ti

 
pxi
∂f ðjÞi

∂x þ pyi
∂f ðjÞi

∂y

!
Bjk (A10)

where ti is the total readout time for a slice/group of the ith volume, pxi and pyi are the x- and y-components of the phase-encode direction of the ith

volume and f ðjÞi =∂x and f ðjÞi =∂y are the x- and y-components of the image gradient of fi at voxel j.
Among the components of the second term, ð1T 
 fiðbÞÞ is 2M copies of the (corrected) image fi. d

dbθ
½JiðbÞ� is given by

d
dbθ

½JiðbÞ� ¼

266666666666664

∂Jð1Þi
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θ

∂Jð1Þi

∂bð2Þ
θ

⋯
∂Jð1Þi

∂bðMÞ
θ

∂Jð2Þi

∂bð1Þ
θ

∂Jð2Þi

∂bð2Þ
θ

⋯
∂Jð2Þi

∂bðMÞ
θ

⋮ ⋮ ⋱ ⋮

∂JðnÞi

∂bð1Þ
θ

∂JðnÞi

∂bð2Þ
θ

⋯
∂JðnÞi

∂bðMÞ
θ

377777777777775
(A11)

where

∂JðjÞi

∂bðkÞ ¼ ti
�
pxiB

x
jk þ pyiB

y
jk

�
(A12)

and where ti, pxi and pyi are defined as in equation (A10) and where Bx and By are matrices of 3D-splines differentiated in the x- and y-directions
respectively.

Using equations (A8)–(A12) one can calculate X, and inserting that into equation (A7) gives the gradientr. The Gauss-Newton approximation of the
Hessian is simply H ¼ XTX, hence we have all we need for the iterative process indicated by equation (A6) to estimate the derivative fields.

A.1 Regularisation of the field
To ensure that the estimated derivative fields are well behavedwe include a regularisation term such that the cost-function in equation (A5) becomes

arg min
b

C ðbÞ ¼ 1
nN

26664
s�1 � f1ðbÞ � J1ðbÞ
s�2 � f2ðbÞ � J2ðbÞ

⋮
s�N � fNðbÞ � JNðbÞ

37775
T26664

s�1 � f1ðbÞ � J1ðbÞ
s�2 � f2ðbÞ � J2ðbÞ

⋮
s�N � fNðbÞ � JNðbÞ

37775þ 1
m

Xm
i¼1

λbT
i Sbi (A13)

wherem is the number of fields (m ¼ 2 for the case of a first order expansion with respect to Δθ and Δϕ), bi is the part of the vector b that pertains to the
ith field and where S is a matrix that implements the bending energy of a field given by bi.
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B Extension to a second order model

When deriving the method in sections 3.1–3.4 of the main text and appendix A we have mostly (with the exception of equation (2)) used a first order
Taylor expansion of the susceptibility-induced field as our example. This was done to provide an example that was not overly complicated, and that
would also allow us to fit the equations within the margins of the pages. In this appendix we will show how to extend the estimation to a second order
model. A second order model is also what has been implemented in our software eddy, with the option to limit it to a first order model (that is also the
default).

Furthermore, in the main text we only considered changes of the field caused by rotations (θ and ϕ) around the axes orthogonal to the magnetic flux
(x and y). This is in accordance with the theory, but mathematically there is nothing to stop one from modeling the changes w.r.t. any of the rigid-body
movement parameters, thus testing that theory. This is how it has been implemented in eddy, and the user has a choice as to which of the movement
parameters to include in the model (though the default is θ and ϕ).

If we denote the subset of movement parameters we want to include in the model by r and the number of parameters as nwe can write equation (2)
as

ωðx : rÞ ¼ ω
�
x : rð0Þ

�þ Δr1
∂ω
∂r1

þ⋯þ Δrn
∂ω
∂rn

þ Δr21
2

∂2ω
∂r21

þ⋯þ Δrn�1Δrn
2

∂2ω
∂rn�1∂rn

þ R2 (B1)

where we have denoted the orientation of the subject at which the field was measured as rð0Þ and where it is implicit that all the derivative fields are
defined at that same point.

This model contains nþ nðnþ 1Þ=2 fields that need to be estimated, so for example in the case with only θ and ϕ the number of fields would be five
and if modeling all six movement parameters it would be (a forbidding) 27. The iterative procedure now becomes

b0 ¼ 0

yðjÞ ¼

2666664
s�
ðjÞ
0 � f ðjÞ0

s�
ðjÞ
1 � f ðjÞ1

⋮
s�
ðjÞ
N�1 � f ðjÞN�1

3777775
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377777777775
(B2)

bðjþ1Þ ¼ bðjÞ þ
��

XðjÞ�TXðjÞ
��1�

XðjÞ�TyðjÞ

where rði;jÞ denotes the ith movement parameter for the jth volume and where

DðjÞ
i ¼

�
1T 


	
ti

�
pxi
∂fi
∂xjωðjÞ

i
þ pyi

∂fi
∂yjωðjÞ

i

�
� J
�
ωðjÞ

i ; βi; ri;ai

�
�
� B (B3)

C Computational complexity

There is one problem with equations (A8)–(A12) as they stand. The computational cost of calculating XTX is huge. The size of X is NNxNyNz � LM
where N is the number of volumes, Nx, Ny and Nz define the dimensions of a single volume, M is the number of splines used to model a field and L
depends on the order of the Taylor expansion in equation (2).

If we take an HCP data set (Sotiropoulos et al. (2013)) as an exampleNNxNyNz ¼ 1;546;739;712. Lwould be 2 for the lowest (first) order expansion
with respect to θ and ϕ. Finally, if we assume a warp resolution of 10mm for the fields,M ¼ 8064. Hence, XTX has 130,064,256 unique elements, each
of which takes 9,280,438,272 multiplications and 4,640,219,136 additions to calculate. Even for a GPU, a straightforward calculation of XTX is out of
the question.

Luckily there are ways to increase the efficiency of the calculations. If we use the lowest order expansion as an example, XTX it is of the form

XTX ¼

2664
XN
i¼1

XT
θ;iXθ;i

PN
i¼1

XT
θ;iXϕ;iXN

i¼1

XT
ϕ;iXθ;i

PN
i¼1

XT
ϕ;iXϕ;i

3775 (C1)
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where for example Xθ;i refers to the sub-matrix of X (equation (A7)) that pertains to volume i and the ∂ω=∂θ field. The XTX in equation (C1) consists of
four sub-matrices where for example

X
i¼1

N

XT
θXθ ¼

X
i¼1

N

ðΔθiB� ∂fiÞTðΔθiB� ∂fiÞ þ
X
i¼1

N �
ΔθiB'

i � fi
�T�ΔθiB'

i � fi
�þX

i¼1

N �
ΔθiB'

i � fi
�TðΔθiB� ∂fiÞ þ

X
i¼1

N

ðΔθiB� ∂fiÞT
�
ΔθiB'

i � fi
�

(C2)

where fi denotes 1T 
 fi (i.e. M copies of fi horizontally concatenated), where

∂fi ¼ 1T 
 ti

�
pxi
∂fi
∂x þ pyi

∂fi
∂y

�
(C3)

and

B0
i ¼ ti

�
pxiB

x þ pyiB
y
�

(C4)

When there is a limited number of different values of pxi and pyi , this can easily be re-written to achieve almost a factor of N speed up. For the
following example let us assume a data set where phase encoding is in the y-direction for all volumes so that pxi ¼ 0 for all volumes i and so that pyi is
always either 1 or -1. The matrix in equation C2 can then be rewritten as

X
i¼1

N

XT
θXθ ¼ BT

 
B�

 X
i¼1

N

Δθ2i ∂fi � ∂fi
!!

þ ðByÞT
 
By �

 X
i¼1

N

Δθ2i t
2
i fi � fi

!!
þ ðByÞT

 
B�

 X
i¼1

N

Δθ2i tifi � ∂fi

!!
þ BT

 
By �

 X
i¼1

N

Δθ2i ti∂fi � fi

!!
(C5)

There are additional re-orderings that can be, and are, used to speed up the calculations, but this is the most important one. Furthermore, the
resulting matrix XTX is very sparse (the higher the warp resolution, the sparser XTX becomes) which can also be used to speed up its calculation.
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