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Abstract

Activation-induced cytidine deminase (AID) is crucial for controlling the immunoglobulin (1g)
diversification processes of somatic hypermutation (SHM) and class switch recombination (CSR).
AID initiates these processes by deamination of cytosine, ultimately resulting in mutations or
double strand DNA breaks needed for SHM and CSR. Levels of AID control mutation rates, and
off-target non-1g gene mutations can contribute to lymphomagenesis. Therefore, factors that
control AID levels in the nucleus can regulate SHM and CSR, and may contribute to disease. We
previously showed that transcription factor YY1 can regulate the level of AID in the nucleus and
Ig CSR. Therefore, we hypothesized that conditional knock-out of YY1 would lead to reduction in
AID localization at the Ig locus, and reduced AlD-mediated mutations. Using mice that
overexpress AID (/gxAID yy1™ or that express normal AID levels (yy17f), we found that
conditional knock-out of YY1 results in reduced AID nuclear levels, reduced localization of AID
to the Sp switch region, and reduced AlD-mediated mutations. We find that the mechanism of
YY1 control of AID nuclear accumulation is likely due to Y'Y1-AID physical interaction which
blocks AID ubiquitination.
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Introduction

Formation of functional immunoglobulin (Ig) genes in the B cell lineage requires the
somatic rearrangement of variable (V), diversity (D), and joining (J) segments [1]. After
antigen stimulation, further Ig gene diversification occurs largely within germinal centers
where both Ig light (L) and heavy (H) chain genes undergo somatic hypermutation (SHM) to
produce Ig molecules with increased affinity for antigen. Additionally, the IgH locus
undergoes class switch recombination (CSR) to place the rearranged VVDJ segment adjacent
to one of 8-10 distinct constant (C) region segments to produce various Ig isotypes that
provide distinct effector functions [2—4].

CSR is a complex process that involves approximately 50 different proteins [5-9]. CSR is
induced by various cytokines that activate transcription within switch regions upstream of
each IgH C region with the exception of the C5 region. This transcriptional process enables
access of activation-induced cytidine deaminase (AID) that deaminates cytosine to uracil.
Action of DNA repair processes (mismatch repair and base excision repair) results in
mutations and double strand DNA breaks within the switch regions which are subsequently
joined by ligation between the Cp switch break and the corresponding activated and broken
switch region to generate an IgH gene with the same VDJ segment linked to a new C region.

Key for initiating the process of CSR is the mutagenic activity of AID. AID knockout mice,
and patients with autosomal recessive AID mutations, generate only low affinity antibodies
of IgM isotype and thus suffer from a severe immunodeficiency known as hyper IgM
syndrome (HIGM2) [10]. Conversely, overexpression of AID can cause mutations leading to
cancer. AID function must be tightly regulated to avoid deleterious mutagenic activity at off-
target non-1g genes. AID catalyzed cytidine deamination is believed to be involved in
generation of lymphomagenic mutations and chromosome translocations, and
overexpression of AID in transgenic animals leads to T cell lymphomas and tumors in lung
epithelium [11-14]. AID expression is also implicated in a growing list of cancers apart
from B cell leukemias and lymphomas. AID is aberrantly expressed in numerous solid
tumors such as colitis-associated colorectal cancer, hepatocellular carcinoma, gastric cancer,
pancreatic cancer, lung cancer and cholangiocarcinoma [15-20].

AID expression levels directly correlate with the frequency of AlD-dependent DNA
remodeling events and incidence of c-myc/IgH translocations [12, 21-24]. Therefore,
limiting AID levels in the nucleus protects the B cell genome from mistargeted mutations
and this is regulated by multiple mechanisms. AID is expressed at very low levels in naive B
cells, but is dramatically up-regulated in activated B cells [25]. Most of the AID protein is
retained in the cytoplasm with only a small fraction translocating into the nucleus to mediate
CSR and SHM [26-29]. AID is actively exported from the nucleus by a CRM1-exportin-
dependent mechanism to regulate nuclear AID levels [27-31], and AID stability is greatly
reduced in the nucleus by polyubiquitination and consequent degradation in nuclear
proteasomes [30]. A number of factors regulate AID stability including eEF1A, REG-y, and
Hsp90 [31-34]. Factors that impact AID nuclear stability and accumulation would have
profound impact on AID function in CSR and SHM, and may also contribute to
lymphomagenesis if misregulated.
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Previously, we showed that transcription factor YY1 controls IgH CSR [35]. Using a
conditional ex vivo knock-out system we found that ablation of YY1 in primary splenic B
cells results in a large drop in CSR. Loss of YY1 did not impact transcription of switch
region sequences or splenic B cell proliferation needed for CSR. Instead, we found that YY1
physically interacts with AID and regulates its nuclear accumulation, apparently by
controlling AID stability [35]. As AID is required for CSR, we proposed that YY1 may
control CSR, at least in part, by regulating the amount of nuclear AID. We hypothesized
here that conditional knock-out of YY1 will reduce localization of AID to the Sy switch
region DNA sequence, and will reduce AID mutagenesis. Our results support this hypothesis
and demonstrate that YY1 likely controls AID nuclear stability by regulating AID
ubiquitination. Therefore, YY1 regulation of AID protein stability in the nucleus impacts
AID mutagenesis and this may relate to lymphomagenesis.

YY1 affects AID mutation frequency

Deletion of YY1 results in dramatic reduction of Ig CSR [35]. YY1 loss does not impact Ig
switch region transcripts or cell proliferation. Instead, we found that loss of YY1 reduces the
level of nuclear AID, and overexpression of YY1 increases AID by increasing its nuclear
half life [35]. The ability of YY1 to control AID stability suggested that it might control
AID mutagenic activity. To investigate this, we measured AID mutagenic activity initially
using /gxAlD transgenic mice that overexpress AID, resulting in high levels of mutation in
the IgH mu switch region sequence (Su) and elevated CSR [36]. We crossed these mice onto
a yy1™ background so that YY1 could be deleted ex vivo by addition of recombinant TAT-
CRE protein [35]. We reasoned that loss of YY1 would result in reduced nuclear AID and
reduced CSR, similar to our previous work [35]. Indeed, treatment of /gxA/D yy1%f splenic
B cells with recombinant TAT-CRE resulted in loss of YY1, reduced nuclear AID, and
reduced CSR (Supporting Information Fig. 1A-D). Thus, we set out to determine if loss of
YY1 would result in reduced AID mutagenic activity.

Splenic B cells were isolated from six individual /gxA/D yy1"f mice. Cells were either
mock treated or treated with recombinant TAT-CRE protein to delete YY1, then cultured in
LPS plus IL4 for 4 days. DNA was isolated and then evaluated by Sanger dideoxy
sequencing after subcloning of the PCR-amplified IgH Sy switch region. Mock treated
samples showed an average mutation frequency of 58.7 x 1074, in close agreement with the
previously published frequency (57.4 x 1074) [36] (Fig. 1A). However, the TAT-CRE treated
samples showed a significant drop in average mutation frequency to 45.4 x 10~# (p<0.003)
(Fig. 1A). Data from individual mice are shown in Supporting Information Fig. 2, and
Supporting Information Table 1. Deletion of YY1 also resulted in a 2.5 fold increase in the
number of sequences with no mutations (14.8% vs 5.9%) (Fig. 1B). Thus, loss of YY1 in
IgxAID yy1t splenic B cells resulted in a drop in mutation frequency at Sp. Conversely,
YY1 deletion had no impact on the mutation frequency at the AlID non-target
transmembrane activator and CAML interactor ( 7aci) gene (0.67 x 10~* for mock and 0.62 x
104 for TAT-CRE treated samples) (Fig. 1C and Supporting Information Table 2).
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To test the effect of YY1 on AID mutagenesis in a more physiological setting (non-AlD
overexpressing mice) we deleted YY1 in splenic B cells from yy27/ mice that express
wildtype levels of AID. As in the previous experiment, we compared mock treated and TAT-
CRE treated splenic B cells that were cultured ex vivo for 4 days in LPS and IL4. We
analyzed regions known to accumulate AID mutations, i.e., the IgH Sy region and IgH Jh4
intron sequences. We expected much lower levels of overall AID-mediated mutations
compared to /gxAID yy17B cells which overexpress AID [36]. To detect this much lower
mutation frequency (up to 10~7) we used ultra-deep next generation sequencing (NGS)
yielding very high coverage (0.6 to 1.5 billion total base pairs were sequenced depending on
the locus) (Supporting Information Tables 3, 4). Raw sequence data were processed by a
deep-single nucleotide variant (deep-SNV) algorithm which identifies single nucleotide
variants (SNVs) above the sequencing background as a result of pairwise comparison of
mock and TAT-CRE treated samples detecting statistically significant differences in variant
allele frequency (VAF) at individual nucleotide positions (for details see Material and
Methods). We evaluated DNA mutations in six independent experiments, and observed
significantly reduced accumulation of SNVs in IgH Sp and Jh4 loci after TAT-CRE
treatment (p<0.05, Wilcoxon test; Fig. 2A, Supporting Information Table 3). Supporting
Information Figs. 3-5 show VAF in mock and TAT-CRE treated samples compared to
sequencing background in AID knockout samples.

These results indicate that YY1 plays a role in accumulation of mutations in the IgH variable
region and switch Sp sequences. As YY1 knock-out reduces AID nuclear levels [35], we
observed dramatically reduced AID binding at the Sy region (Fig. 2B). Loss of YY1 protein
due to TAT-CRE treatment also greatly reduced YY1 binding at the Ep enhancer and the
rpL30 promoter (Fig. 2C). Reduced AID and YY1 binding at the IgH locus was not due to
reduced transcription of the locus, as IgM germline transcripts were unchanged by TAT-CRE
treatment (Fig. 2D).

Next, we asked whether YY1 affects AID mutagenesis outside of Ig loci. AID exerts its
mutagenic activity genome-wide with a strong preference for promoter proximal regions of
highly expressed genes associated with stalled RNA polymerase and Spt5 transcriptional
pausing factor [37, 38]. We sequenced about 1 kb downstream of the Cd83 promoter, as this
genomic region accumulates high levels of AID mutations in wildtype mice in vivo, and in
IgAID Ung™"~ B cells stimulated ex vivo [14, 38, 39]. Using NGS, we detected a 2.9 fold
lower SNV frequency in TAT-CRE treated compared to mock treated samples (Fig. 2A,
p<0.05, Wilcoxon test, Supporting Information Table 3). Our sequencing results were highly
reproducible as demonstrated by multiple independent sequencing runs yielding similar
results using DNA samples from the same mouse (data not shown).

YY1 knock-out does not alter AID mutation spectrum

AID preferentially mutates the RGYW/WRCY hotspot motif (W=A/T, R=A/G, Y=C/T) [14,
40]. Therefore, we evaluated whether mutations we detected in Sy, Jh4 and Cd83 loci were
within RGYW/WRCY hotspots. Indeed, we found increased targeting of AID hotspot motifs
in all three loci. RGYW/WRCY motifs were targeted in 63% or 72% of all mutations in
mock or TAT-CRE samples in the 1g switch regions, 35% or 17% of mutations in the Jh4
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intron, and 78% or 79% in mock and TAT-CRE samples in the Cd83 gene (Table 1). There
was a two-fold drop in hotspot mutations at the Jh4 intron, though the reason for this drop is
unclear. Even more mutations accumulated in more degenerate motifs GYW/WRC and
GNW/WNC also known to be targeted by AID [41] (Table 1). Thus, loss of YY1 did not
change AID hotspot preference apart from the two-fold drop detected in Jh4.

Next, we examined the proportion of G/C vs A/T nucleotides as well as the number of
transitions versus transversions in our dataset. Both Y'Y 1-containing and Y'Y 1-deficient
samples showed very high targeting of mutations to G or C nucleotides, and the mutations
were skewed towards transitions (Table 1). Overall, our results show that YY1 deficiency
resulted in a significant drop of AID mutation frequency in Ig and non-Ig loci, and the
mutations that we detected by both Sanger and NGS sequencing displayed a typical AID
mutation signature.

YY1 does not affect AID nuclear export

The results presented here are consistent with our previous observations that YY1 influences
AID nuclear stability [35]. YY1 could also potentially regulate AID by reducing its nuclear
export. AID is actively exported from the nucleus by a Crm1-mediated mechanism that
requires the C-terminal AID amino acids 188-198, termed the nuclear export sequence
(NES) [27, 28, 29 ]. Deletion of these AID amino acids ablates AID nuclear export, and
therefore all AID remains in the nucleus. If the function of YY1 is to reduce AID nuclear
export, it should have no impact on nuclear levels of the AIDANES mutant. However,
transfection of CMV-YY1 with either Flag-AID or Flag-AIDANES resulted in increased
nuclear accumulation of both proteins (Fig. 3). Thus, Y'Y 1-mediated nuclear accumulation
of AID is not due to regulation of AID nuclear export.

YY1 controls AID ubiquitination

As YY1 can control AID stability, we sought to determine whether YY1 impacted AID
ubiquitination. We transfected Flag-AID into HEK293T cells in either the presence or
absence of YY1 expression vector, and inhibited proteasomal degradation with MG-132.
Nuclear extracts were isolated, denatured to dissociate interacting proteins, and
immunoprecipitated with anti-Flag antibody, then blotted with anti-ubiquitin antibody. AID
was clearly ubiquitinated as evidenced by the distinct bands larger than unmodified AID
(arrows in Fig. 4A). The high molecular weight signal also suggested that AID could be
polyubiquitinated (Fig. 4A, marked by an asterisk). Overexpression of YY1 caused a
significant drop in the level of AID ubiquitination (Fig. 4A). Data from 9 independent
experiments are shown in Supporting Information Fig. 6A. YY1 can physically interact with
AID through sequences contained within YY1 amino acids 1-200 [35]. Transfection of a
plasmid expressing YY1 sequences 1-200 also resulted in a significant drop in AID
ubiquitination (Fig. 4B). Data from 7 independent experiments are show in Supporting
Information Fig 6B. To explore whether YY1 inhibition of AID ubiquitination is likely due
to YY1-AID physical interaction, we tested YY1 deletion mutant, YY1 1-200A16-80 which
greatly reduces YY1-AlID interaction [35]. This mutant was six times less efficient, on
average, at reducing AID ubiquitination compared to YY1 1-200 (Fig. 4C). Results from 6
independent experiments are shown in Supporting Information Fig. 6C. Thus, we conclude
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that YY1 can reduce AID ubiquitination, and this block likely requires YY1-AID physical
interaction.

Discussion

In this work, we have demonstrated that YY1 can regulate the accumulation of AID-
mediated mutations, apparently by controlling AID ubiquitination, subsequent stability, and
binding to the Su region. As AID is directly responsible for development of diffuse large B
cell lymphoma [11], these results may relate to lymphomagenesis. Although YY1 could
impact AID stability by indirect mechanisms such as regulating expression of genes that
control AID stability, we favor a direct physical interaction model. We previously showed
that in the nucleus, YY1 physically interacts with AID and can regulate AID nuclear half life
[35]. We propose YY1-AID interaction blocks AID ubiquitination, resulting in AID
stabilization. Conversely, loss of YY1 results in reduced AID stability, nuclear
accumulation, Sp DNA binding, and AlD-mediated mutation.

Recently, it was shown that activation of Parpl by DNA damage results in reduced
proteasomal degradation of AID, and increased nuclear accumulation [42]. YY1 does not
regulate expression of Parpl, but our previous RNA transcript data in LPS plus IL4 activated
splenic B cells show that YY1 positively regulates Parp2 expression [43]. Whether YY1 and
Parpl function by the same mechanism to regulate AID nuclear levels is not clear. It is
currently not known whether the Parpl-mediated stabilization of AID is due to direct
physical interaction with AID or to indirect mechanisms. On the contrary, REG-y can
regulate nuclear AID accumulation apparently by direct physical interaction [33]. REG-y is
implicated in ubiquitin-independent degradation and its physical association with AID leads
to accelerated proteasomal degradation of AID [33]. It will be interesting to determine if
YY1 competes with REG-y for interaction with AID, thus enabling AID stabilization and
binding to the Su region. Within the cytoplasm, AID stability also can be regulated by
physical interaction with elF1A and Hsp90 [31, 34, 44]. These factors could also augment
AID function by increasing overall AID accumulation.

The AID mutation distribution we observed here showed some differences compared with
vivo data reported in wildtype mice where frequency of mutations at A/T and G/C bases
were similar (reviewed in [45]). However, our results showing the preference for G/C
mutations and transitions pointed to AID activity. In addition, preferred G/C targeting in ex
vivo culture systems was previously reported by others [46, 47] and might be caused by
altered expression of BER or MMR repair enzymes and/or error-prone polymerases
(particularly DNA polymerase eta known for targeting WA motifs) which contribute to
mutations in A/T bases during somatic hypermutation.

We previously demonstrated that YY1 deletion in B cells ex vivo dramatically reduces class
switch recombination (CSR) [35] and we proposed that loss of CSR is caused at least in part
by reduced nuclear AID levels. However, we recently found that YY1 also controls other
functions that impact CSR. Specifically, we found that YY1 conditional knock-out ablates
the long-distance 220kb DNA loop between the Ep and 3'RR enhancers believed to be
necessary for CSR [43]. We further showed that the YY1 C-terminal half which lacks the
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transcriptional activation domain is sufficient for controlling this loop [43]. These results
indicate that YY1 impacts B cell function by numerous mechanisms including control of
gene expression, long-distance DNA loops, and AlD stability and nuclear function.

SHM and CSR generally occur in germinal centers (GC), and YY1 has been proposed to be
a master regulator of the GC-specific transcriptional program [48]. Recently, we and others
showed that YY1 plays a critical role in GC development and maintenance. YY1 conditional
ablation in mice results in a significant decrease of GC B cells and germinal centers [49, 50,
51]. However, RNA transcript analyses suggest that the impact of YY1 on GC development
is not a stage-specific B cell effect, but a more general effect [43, 50]. YY1 knock-out
impacts numerous cellular processes including mitochondrial function. In addition, YY1
conditional deletion at multiple B cell stages halts further development suggesting that a
more basic cellular function common to all cells is being impacted [50].

Our results here clearly indicate that YY1 can impact AID-mediated mutation frequencies.
The mechanism of this control likely involves regulation of AID nuclear stability and
concomitant AID DNA binding and mutagenesis. The consequences of this regulation on
development of DLBCL and other lymphomas will require additional studies.

Materials and methods

Mice

Y' Y17 mice described in Liu H et al. [52] were a gift from Yang Shi (Harvard). /gxA/D
mice described in Robbiani et al. [36] and AID knock-out mice were provided by Michel
Nussenzweig (Rockefeller University). We crossed /gxA/D and yy17f mice to generate
lgxAID yy 17t mice on a C57BL/6 background. Male and female animals between 8 and 12
weeks of age were used for experiments. All animal studies were performed in compliance
with the U.S. Department of Health and Human Services guidelines and were approved by
the University of Pennsylvania Institutional Animal Care and Use Committee.

YY1 deletion by TAT-CRE treatment in activated splenic B cells and measurement of CSR

Isolation of splenic B cells from either /gxA/Dyy 1" or yy 1"t mice, deletion of YY1 by
recombinant TAT-CRE treatment, LPS plus IL4 treatment, and measurement of CSR to
1gG1, were performed as previously described [35]. Briefly, follicular B cells were purified
from mouse spleen with anti-CD23-biotin (eBioscience) and streptavidin microbeads
(MACS, Miltenyi Biotec), and conditional YY1 knock-out was performed ex vivo using
TAT-CRE enzyme purified from bacteria. Cells were activated ex vivowith 10 pg/ml LPS
(Sigma) plus 20 ng/ml IL-4 (Peprotech). Splenic B cells were stained with PE anti-mouse
IgG1 (BD Pharmingen) and 7-amino-actinomycin D (Invitrogen) and isotype switching was
measured by flow cytometry (dead cells stained with 7AAD were excluded from analysis).
Flow cytometry was performed on a FACS Canto Il machine, and data was analyzed using
FlowJo software.

Eur J Immunol. Author manuscript; available in PMC 2019 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zaprazna et al. Page 8

Mutational analysis

DNA samples (200 ng) from individual /gxA/D yy17 mice either mock treated or treated
with recombinant TAT-CRE protein were amplified in 24 cycles of PCR using Q5® High-
Fidelity DNA polymerase (NEB). The IgH switch sequence preceding the Sy core region
was amplified with primers Sm.F: GACCCAGGCTAAGAAGGCAATC and Sm.R:
GCGGCCCGGCTCATTCCAGTTCATTACAG vyielding a 542 bp product [36]. The Taci
gene sequence was amplified with primers: GTCAGGTCAGACAACTCAGGAAGG and
GTTTGCCACCCACATCAAGC. Amplified products were A-tailed and cloned into the
pGEM-T vector (Promega) for Sanger DNA sequencing. The Cd83 locus was amplified with
MusgCd83.F2 CTCCTCCGACTGGGGAGT and MusgCd83.R2
CAATGTTGGAGTCTGAGGGCT yielding a 1020 bp product. The Jh4 intron sequence
was amplified in a nested PCR with MusVhJ558.F 5-
GGAATTCGCCTGACATCTGAGGACTCTGC-3" and MusJh4intron.R 5’-
CTGGACTTTCGGTTTGGTG-3" in the first round (14 cycles) and MusJh4intron.NF 5’-
GGTCAAGGAACCTCAGTCA-3" and MusJh4intron.NR 5’-
TCTCTAGACAGCAACTAC-3’ in the second round of PCR (21 cycles) yielding a 581 bp
product. PCR products were purified using the Agencourt AMPure XP kit (Beckman
Coulter). Sequencing libraries of DNA from either mock or TAT-CRE treated splenic B cells
from yy17" mice, were prepared using the Nextera XT DNA Sample Preparation kit
(IMumina) and then sequenced using MiSeq Reagent kit v2 (300 cycles) on an Miseq
instrument (Illumina) according to the manufacturer’s recommendations.

NGS data analysis

Sequencing reads were mapped onto reference genome GRCm38 using the BWA-MEM
algorithm [53]. For SAM to BAM conversion and sorting and indexing of BAM files
SAMtools was used [53]. For detecting low-level mutations, quantitative variant caller deep-
SNV from the R/Bioconductor package repository was applied. The beta-binomial model
was used to discriminate low-level single nucleotide variants (SNVs) from sequencing errors
at each of the loci. Paired mock and TAT-CRE samples were directly compared and
positions differing in variant allele frequency (VAF) with statistical significance p<0.05 were
scored. Obtained p-values were adjusted by the Benjamini-Hochberg correction.

Analysis of Sanger sequencing data

Sanger sequences in the ab1 format were imported into CLC bio (https://
www.giagenbioinformatics.com/). After mapping onto the reference genome GRCm38,
variant calling was performed. Only good quality sequences and variants, devoid of clones
and mixed traces, were used for mutational pattern analyses.

Mutational pattern analysis

Only regions with coverage higher than 10,000 reads/position (based on NGS) were further
analyzed (genomic coordinates in Supporting Information Table 4). Regions of interest were
extracted from the mouse reference genome by bedtools2 [54]. Sequences representing
genes coded on the reverse strand (Supporting Information Table 4) were converted into the
reverse complement by http://www.bioinformatics.org/sms/rev_comp.html. AID motifs were
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localized in given regions of interest by http://www.bioinformatics.org/sms2/
dna_pattern.html. Detected variants were annotated for their presence and position in these
motifs by an in-house script.

Transient expression assays, ubiquitination analysis, and western blots

HEK?293T cells were transfected by Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s procedures. For nuclear export experiments, 6ug CMV-FlagAID or CMV-
FlagANES [29] plasmids were co-transfected with 6 pg or 18 pg of CMVYY1. Nuclear
extracts were prepared as previously described [55] two days after transfection and then
immunoblotted with anti-Flag (M2, Sigma), anti-Y'Y1 (H414, Santa Cruz Biotechnology),
and anti-TFIIB (Santa Cruz Biotechnology) antibodies. For ubiquitination experiments,
plasmids CMV-FlagAID, GAL-YY1, GAL-YY1 1-200, and GAL-YY1 1-200A16-80 were
previously described [35, 47, 56, 57]. For ubiquitination analysis, HEK293T cells were
transfected with 6pg CMV-FlagAlID and either 6 or 18ug of each Y'Y 1-expressing construct.
Two days after transfection, MG132 was added for 5 hrs, and nuclear fractions were
prepared as described [55]. SDS was added to final concentration 1%, samples were heated
to 95°C for 10 minutes, diluted 10 fold with immunoprecipitation buffer and 0.5% NP-40
before overnight immunoprecipitation with anti-Flag antibody. Western blot was performed
with anti-ubiquitin antibody conjugated to HRP (FK2H) and after stripping, reprobed with
anti-Flag to indicate the level of AID. Western blots were performed with the following
antibodies: anti-Flag (M2, Sigma), anti-YY1 (H414, Santa Cruz), anti-TFIIB (Santa Cruz),
anti-ubiquitin FK2H (Enzo Life Sciences), and anti-GAL4 (sc577; Santa Cruz). For western
blots of splenic B cell extracts, the following antibodies were used: Anti-AID (L7E7, Cell
Signaling Technologies), anti-YY1 (H414, Santa Cruz), and anti-TBP (Cell Signaling
Technologies).

Chromatin Immunoprecipitation and RNA transcript analyses

CD23" cells were isolated, mock treated or treated with TAT-CRE protein to delete YY1,
and cultured in RPMI media in the presence of LPS and IL4. After 24 hours, both the mock
and TAT-CRE treated cells were transduced with pMX-HA or pMX-HA-AID retrovirus (a
gift from M. Nussenzweig, Rockefeller University). At 72 hours, cells were harvested, cross-
linked with formaldehyde and ChIP assays were performed as described earlier [58, 59] with
modifications. Chromatin was sonicated using a Covaris AFA Focused-ultrasonicator and
100 ug of chromatin was taken for each immunoprecipitation (IP) with anti-Y'Y1 (C-20X,
Santa Cruz) or anti-HA (ab9110, Abcam), antibodies. Purified DNA was taken for qPCR
with primers designed in the Sy region where Robbiani et al. [36] found the maximum
number of mutations (F1: GCTGAGCAAAATTAAGGGAACAA; R1
TCAGAGAAGCCCACCCATCT and F2 GGTGGGCTTCTCTGAGTGCTTCTA; R2
GCTCATTCCAGTTCATTACAGTCT). Efficiency of YY1 deletion by TAT-CRE treatment
was verified by monitoring YY1 binding at the Ey enhancer (EpF:
GGAATGGGAGTGAGGCTCTCTC, EpR: GGACTTTCGGTTTGGTGG) and rpL30
promoter sites (rpL30 F: AGCAACCAACTACCGCAGACTACT and rpL30 R:
ATCCAGAGCGTCAAACACCAGCTA). The data was plotted as percentage of input and
rabbit 19G (2729S, Cell Signaling Tech.) was used as the negative control. The data
represents the average of three replicate experiments with gPCRs being performed twice in
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triplicates. To quantitate IgM germline transcripts, RNA was isolated from spleens of six
individual animals that had been either mock treated or TAT-CRE treated, and QPCR was
performed using primers 5-CTCTGGCCCTGCTTATTGTTG-3" and 5'-
GAAGACATTTGGGAAGGACTGACT-3’. Values were normalized to the mock treated
sample and error bars show the standard deviation of the mean.
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Refer to Web version on PubMed Central for supplementary material.
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Figurel.
YY1 effect on AID-mediated mutations within the Sy region in /gxA/D yy17 mice. (A)

Average mutation frequency at the Sy region from 6 independent /gxA/D yy17f mice.
Isolated splenic B cells were either mock treated, or treated with TAT-CRE to delete the yy?
gene, then induced with LPS plus IL4 in culture for 4 days. DNA was isolated, the Sy region
was amplified by PCR, cloned, and subjected to Sanger sequencing. Error bars indicate the
standard deviation from the mean. The three asterisks denote p<0.002 in a two tailed T-test.
(B) The frequency of Sy mutation numbers in a sequence (indicated by the numbers around
the periphery of the circle) are shown by the size of the pie slice. The total number of
sequenced clones is shown in the middle of each pie. (C) Average mutation frequency at the
7ac/ gene from 6 individual mice detected by Sanger sequencing of mock and TAT-CRE
treated samples. The same DNA from 6 independent mice used in (A) above was amplified
with primers to the 7aci gene promoter and individual clones were sequenced. Error bars
represent the standard deviation from the mean. There was no statistical difference at the
Taci gene between Mock and TAT-CRE treated samples (ns) in a two tailed T-test.
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YY1 effect on AID mediated mutations and AID genomic localization in ex vivo stimulated
splenic B cells from yy27 mice. (A) Frequencies of single nucleotide variants (SNVs) in S,
Jh4, and Cd83 promoter regions detected by NGS. Splenic B cells isolated from six
individual yy27f mice were either mock treated or treated with TAT-CRE to delete the yyZ
gene. After induction for 4 days with LPS plus IL4, DNA was isolated and DNA sequences
at the Sy, Jh4, and CD83 promoter were subjected to NGS DNA sequencing. The
frequencies of single nucleotide varients are shown in mock treated (black columns) or TAT-
CRE treated (white columns) mice. Differences between mock and TAT-CRE were
calculated using the Wilcoxon test. (B and C) Recruitment of AID to the Sy region, and
YY1 to the Ep enhancer and rpL30 promoter. Mock and TAT-CRE treated splenic yy17/B
cells were transduced with retroviral vector pMX-HA-AID, and two days later cells were
subjected to ChIP with control anti-1gG or anti-HA antibody (B), or YY1 antibody (C).
QPCR was performed with primers that amplify the IgH Sy region (B) or Ep enhancer and
rpL30 promoter (C). Error bars indicate standard deviation from the mean, and asterisks
indicate p<0.001 in a two tailed T-test. (D) Quantitative RT-PCR of IgM germline transcripts
in mock and TAT-CRE treated samples. RNA isolated from Mock and TAT-CRE treated
samples was evaluated by quantitative RT-PCR with primers that detect the germline IgM
transcript. Data are from six independent experiments and error bars show the standard
deviation of the mean.
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Figure 3.

Effects of YY1 on AID nuclear export. HEK293T cells were transfected with plasmids
expressing either CMV-FlagAID or CMV-FlagAIDANES (which deletes the AID nuclear
export sequence causing loss of AID nuclear export), along with 6 or 18ug of pPCDNA3
vector expressing YY1 (CMV-YY1). Cells were harvested 2 days later and 20 or 40ug of
nuclear extract protein was probed on western blots with anti-Flag, anti-Y'Y1, or anti-TFIIB.
Representative results from three independent experiments are shown.
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Effects of YY1 on AID ubiquitination. HEK293T cells were transfected with CMV-FlagAID
plus either GALY'Y1 or various YY1 mutants. Two days after transfection cells were treated
with MG132 to inhibit proteosomal degradation, nuclear extracts were prepared, heated to
dissociate protein interactions, immunoprecipitated with anti-Flag, then subjected to western
blot with anti-ubiquitin antibody. Blots were subsequently stripped and probed with anti-
Flag to indicate the level of AID. Expression of various GAL-YY1 fusion proteins was
detected by western blot with anti-GAL4 antibody. (A) Experiments with wild type YY1
fused to the GAL4 DNA binding domain. Arrows show ubiquitination bands higher than the
size of AID, and the asterisk denotes possible AID polyubiquitination. (B) Experiments with
GALYY1 compared to the GALYY1 1-200 mutant containing YY1 amino acids 1-200. (C)
Experiments with GALYYY1 1-200 compared to GALY'Y1 1-200A16-80. In all cases the
top panel shows signals with anti-ubiquitin antibody, middle panel the amount of
immunoprecipitated Flag-AID, and the bottom panel, the western signal with anti-GAL4
antibody. Quantification of 9, 7, and 6 independent experiments is shown in the right panel
of each figure, respectively. The densitometric signal in each lane with the anti-ubiquitin
antibody was normalized to the amount of AID in the same sample observed with FLAG
antibody. Error bars show standard deviation from the mean. Two asterisks denote p<0.02
and a single asterisk denotes p<0.05 in a two tailed T-test.
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