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Long non-coding RNA ZFAS1 sponges miR-484 to promote cell proliferation and

invasion in colorectal cancer
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ABSTRACT

The incidence and mortality rate of colorectal cancer (CRC) have been significantly increasing. However,
mechanisms involved in CRC progression are still unclear. LncRNA ZFAS1 has been verified as oncogenic
molecular in a series of tumors, including CRC. However, the underlying mechanism of ZFAS1 in CRC
carcinogenesis remains unclear. In the present study, our data showed that ZFAS1 expression was
significantly upregulated in CRC tissues and cell lines. Correlation analysis showed that high ZFAS1
expression was significantly associated with Helicobacter pylori infection, lymph nodes metastasis,
advanced TNM stage and poor overall survival of CRC patients. Loss-of-function experiments revealed that
ZFAST inhibition could markedly suppress CRC cells proliferation and invasion both in vitro and in vivo.
Bioinformatics analysis and luciferase reporter assay revealed that ZFAS1 directly interacted with miR-484.
Rescue experiments showed that miR-484 inhibitor reversed the tumor suppressing roles of ZFAS1
knockdown on CRC cells. Therefore, our study suggested that ZFAS1 could act as an oncogene in CRC
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tumorigenesis, and discovered the functional regulatory pathway of ZFAS1 sponging miR-484.

Introduction

Colorectal cancer (CRC) is one of the most common malignan-
cies worldwide. Approximately 1.2 million patients worldwide
have been diagnosed with CRC [1,2]. Although aggressive ther-
apeutic strategies including surgery, radiotherapy, and chemo-
therapy have greatly improved, CRC morbidity and mortality
remain high [3]. Therefore, a better understanding of the
molecular mechanisms involved in CRC will provide novel
diagnostic biomarkers and effective therapeutics for the treat-
ment of CRC patients.

Long non-coding RNAs (IncRNAs) are RNA molecules
whose transcripts are more than 200 nt in length [4]. They do
not encode proteins, but play an important role in regulating
gene expression through both epigenetic and posttranscrip-
tional mechanisms [5,6]. Aberrant expression levels of
IncRNAs have been correlated with various malignant biologi-
cal processes, including carcinogenesis, cell proliferation,
migration, invasion and apoptosis [7,8]. Increasing studies
showed that IncRNAs play critical roles in tumor progression.
For example, Lin et al showed that increased expression of the
IncRNA ANRIL promoted lung cancer cell metastasis and cor-
relates with poor prognosis [9]. Li et al suggested that overex-
pression of IncRNA HOTTIP increased chemoresistance of
osteosarcoma cell by activating the Wnt/B-catenin pathway
[10]. Wang et al indicated that IncRNA XIST exerted oncogenic
functions in human glioma by targeting miR-137 [11]. Thus,
emerging evidences are proving the more and more significant
role of IncRNA in tumor progression.

LncRNA zinc finger antisense 1 (ZFAS1) is an antisense
transcript from 5’ end of Znfx1 gene, being firstly identified

to play a functional role in patients with acute myocardial
infarction [12]. Moreover, the dysregulated ZFAS1 expres-
sion in cancer tissues has been discovered. For example, Gao
et al found that IncRNA ZFASI could exhibit an oncogenic
role in glioma progression by regulating EMT and Notch sig-
naling pathway [13]. Xia et al showed that IncRNA ZFAS1
interacted with miR-150-5p to regulate Spl expression and
ovarian cancer cell malignancy [14]. Recent studies showed
that ZFAS1 play important roles in CRC. For example,
Wang et al showed that upregulation of IncRNA ZFAS1 pre-
dicted poor prognosis and promoted invasion and metastasis
in colorectal cancer [15]. Thorenoor et al indicated that
ZFAS]I interacted with CDKI and is involved in p53-depen-
dent cell cycle control and apoptosis in colorectal cancer
[16]. However, the underlying mechanism of ZFAS1 on CRC
progression remains unclear.

In the present study, our data elucidated the regulatory
function of ZFASI in the development of CRC via regulating
miR-484, suggesting an effective therapeutic strategy for CRC
treatment.

Materials and methods
Tissue specimens and ethics statement

The CRC tissues and adjacent non-tumor tissues were collected
from 49 patients who underwent surgical resection at Huaihe
Hospital of Henan University (China) between 2012 and 2013.
All patients did not receive any local or systemic treatment
before surgery. All the CRC tissues were confirmed by two
experienced pathologists. All patients signed the informed
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consent and the experimental protocol was approved by the
Ethics Committee of Huaihe Hospital of Henan University.

Cell lines and cell transfection

Human CRC cell lines (HCT116, SW480, SW620, HT-29 and
LOVO) and the human colonic epithelial cells HCoEpiC were
obtained from the American Type Culture Collection. All cells
were cultured in RPMI-1640 medium (Gibco) supplemented
with 10% FBS, 100 U/mL streptomycin and 100 U/mL penicil-
lin (Gibco). The culture condition was at 37 °C in a humidified
atmosphere containing 5% CO.,.

For RNA interference assay, cells were seeded at 70-80%
confluency before transfection and transfected with siRNAs
using Lipofectamine 2000 (Invitrogen). All the siRNAs (20nM)
were synthesized by Genepharma (Shanghai, China) and the
sequences were as follows: si-ZFAS1-1, 5'-CUGGCUGAAC-
CAGUUCCACAAGGUU-3'; si-ZFAS1-2, 5-CCCTGTGCTT-
TCATGAAAGTGAAGA-3’; si-NC, 5'-CCAAAACCAGGCU-
UUGAUUGA-3".

Total RNA extraction and quantitative real-time PCR

Tissues and cells samples were dissolved in TRIzol reagent (Invi-
trogen) and total RNAs was extracted according to the manufac-
turer’s instruction. The cDNA was synthesized with the Reverse
Transcription System (Promega). RT-PCR was performed using
the SYBR Green Master Mixture (Roche) reagent in ABI 7500
Real-time PCR instrument. U6 was acted as an internal control.
Relative expression levels were calculated and normalized
using the 2744 tmethod. All the primers were listed as follows:
ZFAS] forward, 5'-AAGCCACGTGCAGACATCTA-3/, reverse,
5" CTACTTCCAACACCCGCATT-3’; miR-484, forward, 5'-
CTCAACTGGTGTCTTCAGTTGAGG-GTGGAGTCGGCC-
3/, reverse 5'-ACACTCCAGGGCGCCGCGCTGGGAGGCGG-
3’; U6, forward, 5'-CGCTAGCACAT-ATCGGCTA-3’, reverse,
5'-TTCTGCGACGAATTTGTCAT-3".

Cell proliferation assay

Cell Counting Kit-8 (CCK-8, Dojindo) was employed to
determine cell proliferation. Briefly, 1 x 10* cells were
seeded into 96-well plates and 10 ul CCK-8 solution was
added to each well. Then, the cells and plates were incu-
bated at 37°C for 90 min. At the indicated time points (24,
48, 72 and 96 h), the absorbance at 450 nm was measured
using a spectrophotometer.

Colony formation assay

For the colony formation assay, cells were seeded into six-well
plates at density of 1 x 10° per well. After being cultured for
14 days, cells were washed with phosphate-buffered saline
(PBS) and fixed with 4% paraformaldehyde for 15 min. then,
cells were stained with crystal violet for 10 min and washed
with PBS to remove the staining solution. Colonies were exam-
ined and counted under microscope. The assays were repeat-
edly performed in triplicate.
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Transwell invasion assay

The cell invasion assay was performed using 24-well insert
transwell chambers (8um, Corning). Cells (2 x 10*) suspended
in 200 pL serum-free medium were added to the upper cham-
ber, and culture medium containing 20% FBS was placed in the
bottom chamber. The cells were then incubated for 48 h at
37°C; the cells on the upper surface were scraped and washed
away, whereas the cells on the lower surface were fixed with
20% methanol and stained with 0.1% crystal violet. The num-
ber of invaded cells was counted in 5 randomly selected fields
under a microscope.

Xenograft nude mouse model

Male BALB/c nude mice (6 weeks) were maintained in clean
conditions and used for xenograft assay. cells (4 x 10°/100ml)
were transfected with sh-ZFAS1 or control (sh-NC), and then
subcutaneously injected into back of nude mice. After that,
tumor size was measured every week, and tumor weight was
measured after sacrifice of mice. The xenograft mice assay was
approved by the Committee on Animal Welfare of Huaihe
Hospital of Henan University.

Luciferase reporter assay

For luciferase assay, the 3-UTR of ZFAS1 cDNA was amplified
using PCR, then, cDNA were cloned into the downstream of
the firefly luciferase gene pGL3 (Invitrogen). HEK293T cells
were seeded into 96-well plates at density of 1 x 10* cells/well.
Afterwards, pGL3-ZFAS1-Wt (wild type) and pGL3-ZFASI-
Mut (mutant) was transfected into HEK293T cells with miR-
484 mimics using Lipofectamine 2000 according to the manu-
facturer’s instructions. After 24 h of transfection, luciferase
activities were measured using the dual-luciferase reporter gene
assay kit (Promega) according to the manufacturer’s instructions.

RNA immunoprecipitation

Cells were lysed using a complete RNA lysis buffer containing
protease inhibitor and RNase inhibitor using an EZ-Magna
RIP RNA-binding protein immunoprecipitation kit (Millipore)
following the manufacturers’ instructions. 100uL of whole cell
lysate was incubated with the RIP immunoprecipitation buffer
containing magnetic beads coated with Ago2 antibody and was
designated as the test group, while the control group consisted
of normal mouse IgG. After being incubated for 2 h at 4°C, the
immunoprecipitated RNA was isolated. The purified RNA was
further used in the qRT-PCR analysis of ZFAS1 and miR-484.

Statistical analysis

All data were represented as mean =+ standard deviation (SD)
and statistical analyses were performed using SPSS 19.0. The
differences were evaluated by the Student t-test and one way
ANOVA. Pearson correlation analysis was used to estimate
the relationship between the expression level of ZFAS1 and
miR-484. Kaplan-Meier methods with the log-rank test were
performed to calculate overall survival. p<0.05 was considered
statistically significant.
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Results
LncRNA ZFAS1 was upregulated in CRC tissues

To explore the clinical relevance of IncRNA ZFASI in
human CRC. We detected ZFAS1 expression in CRC tissues
using qRT-PCR. The results showed that ZFAS1 expression
was significantly upregulated in CRC tissues compared to
adjacent non-tumor tissues (Figure 1A and 1B; p<0.05).
According to the median value of ZFAS1 expression in CRC
tissues, patients were divided into two groups: the high
ZFAS]1 expression group (n = 25) and low ZFAS1 expression
group (n = 24). Results showed that high ZFAS1 expression
was positively associated with Helicobacter pylori infection,
lymph nodes metastasis and advanced TNM stage (Table 1;
p<0.05). As shown in Figure 1C, high ZFAS1 expression in
CRC tissues is significantly associated with worse overall sur-
vival (p<0.05, log-rank test). In addition, ROC (Receiver
Operating Characteristic) curve showed that comparing with
CRC patients and controls, ZFAS1 had an AUC (Area under
the Curve) value of 0.837 (95% CI: 0.713-0.921). Besides,
sensitivity, specificity and p value were respectively 0.752,
0.788 and 0.006 (Figure 1D). Taken together, those results
indicated that ZFAS1 could act as an oncogene in CRC
progression.
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Table 1. Correlation between ZFAS1 expression and clinicopathological features of
CRC.

IncRNA ZFAS1
expression
Parameters Group Total High Low P value
Gender Male 30 17 13 0.320
Female 19 8 1
Age (years) <60 23 1 12 0.674
>60 26 14 12
Tumor size (cm) <5cm 25 15 10 0.453
>5cm 24 10 14
Histological grade Well and 36 16 20 0.199
moderately
Poorly 13 9 4
Helicobacter pylori Negative 20 6 14 0.015
Positive 29 19 10
Lymph nodes Negative 38 16 22 0.020
metastasis
Positive 1 9 2
TNM stage -l 19 6 13 0.030
i-Iv 30 19 1"

ZFAS1 knockdown suppressed CRC cells proliferation and
invasion in vitro

It had been testified that ZFAS] was upregulated in CRC tissue,
and the high ZFAS] expression was closely correlated with
advanced clinical features and poor overall survival. Thus, we
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Figure 1. LncRNA ZFAS1 was upregulated in CRC tissues and associated with poor prognosis. (A,B) Relative expression of ZFAS1 measured by qRT-PCR in CRC tissues and
adjacent non-tumor tissues. (C) Kaplan-Meier analysis and log-rank test were performed to assess the prognosis of CRC patients with high- and low- ZFAS1 expression.

(D) ROC curve showed the AUC value of ZFAS1 (0.837, 95% Cl: 0.713-0.921). “p<0.05



performed loss-of-functional experiments to explore the role of
ZFAS1 on CRC cells in vitro. QRT-PCR showed that ZFAS1
expression in CRC cells (HCT116, DLD1, SW480, SW620, HT-
29 and LOVO) was significantly increased compared to
HCoEpiC cells (Figure 2A; p<0.05). The synthesized small
interfering RNAs were respectively transfected into SW480 and
HT-29 cells. The ZFASI expression was significantly decreased
in si-ZFAS1 transfecting cells (Figure 2B; p<0.05). CCK-8
assay showed that ZFAS1 knockdown inhibited cell viability in
SW480 and HT-29 cells compared to si-NC group (Figure 2C;
p<0.05). Furthermore, colony formation assay showed that
ZFAS]1 inhibition effectively suppressed the clone formation
ability of SW480 and HT-29 cells (Figure 2D; p<0.05). Addi-
tionally, the invasion ability of SW480 and HT-29 cells trans-
fected with si-ZFAS1 was inhibited compared with si-NC
group (Figure 2E; p0.05). Taken together, those results sug-
gested that ZFAS1 suppression could inhibit CRC cell viability
and invasion.

ZFAS1 knockdown suppressed tumor growth in vivo

To confirm the biological function of ZFAS1 in CRC in vivo,
SW480 cells stably transfected with sh-ZFAS1 or sh-NC were
subcutaneously injected into the right flank of the nude mice.
Tumor volume was measured every weeks for 7 weeks. As
shown in Figure 3A, ZFAS1 knockdown suppressed tumor
growth in vivo compared with sh-NC group (p<0.05). Xeno-
graft tumors were resected and weighed after 7 weeks of injec-
tion. Tumor weight in sh-ZFAS1 group was lower than that in
sh-NC group (Figure 3B and 3C; p<0.05). Thus, these data
demonstrated that ZFAS1 knockdown could suppress tumor
growth in vivo.

miR-484 was directly regulated by ZFAS1

Recently, increasing studies demonstrated that IncRNA
might act as a competing endogenous RNA (ceRNA) or a
molecular sponge in regulating the biological functions of
miRNAs [17]. To investigate the underlying mechanism of
ZFAS1 on CRC tumorigenesis, the bioinformatics tool
DIANA was used to explore the targets of ZFASI. Results
showed that miR-484 shared complementary binding sites
with ZFAS1 3’-UTR (Figure 4A). Luciferase reporter assay
revealed that miR-484 mimics could evidently suppress the
luciferase activity of the ZFAS1-Wt, but not of ZFAS1-Mut
(Figure 4B; p<0.05). In addition, we explored the expres-
sion of miR-484 in CRC tissues and cell lines, results
showed that miR-484 was significantly downregulated in
CRC tissues and cell lines (Figure 4C and 4D; p<0.05).
Pearson’s correlation analysis revealed an inverse correlation
between miR-484 and ZFAS1 in CRC samples (Figure 4E;
p<0.05). Furthermore, we found that miR-484 expression
was upregulated after ZFAS1 inhibited in CRC cells
(Figure 4F; p<0.05). RNA immunoprecipitation experi-
ments showed that both miR-484 and ZFAS1 were in the
Ago2-pulled down pellet (Figure 4G; p<0.05). Thus, those
data indicated that ZFAS1 might acted as a molecular
sponge for miR-484.
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miR-484 reversed the effect of ZFAS1 on CRC progression

To explore whether ZFAS1 exerted biological functions
through miR-484, we performed rescue experiments by inhibit-
ing miR-484 expression in ZFAS1 knockdown SW480 cells
(Figure 5A; p<0.05). MTT and colony formation assay showed
that miR-484 inhibitor could reverse the inhibition of ZFAS1
on proliferation capacity of SW480 cells (Figure 5B and 5C;
p<0.05). Transwell invasion assay showed that miR-484 inhibi-
tor increased the invasion ability of SW480 cells reduced by
ZFAS1 knockdown (Figure 5D; p<0.05). Overall, miR-484
inhibitor could reverse the tumor suppressing of ZFAS1 knock-
down on CRC cells, indicating the antagonism regulation of
ZFAS1 and miR-484.

Discussion

Despite the great therapeutic advances made in CRC, includ-
ing surgical resection and adjuvant therapy, the long-term
prognosis of CRC patients with distant metastases remains
unfavorable [18]. Increasing functional studies have indi-
cated that IncRNAs, which may act as oncogenes or tumor
suppressors, are involved in the carcinogenesis and progres-
sion of several tumors, including CRC [19]. For example, Liu
et al showed that enhanced expression of IncRNA Sox2ot
promoted cell proliferation and motility in colorectal cancer
[20]. Wang et al revealed that IncRNA AB073614 regulated
proliferation and metastasis of colorectal cancer cells via the
PI3K/AKT signaling pathway [21]. Liu et al suggested that
IncRNA SPRY4-IT1 promoted proliferation and invasion
by acting as a ceRNA of miR-101-3p in colorectal cancer
cells [22].

In the present study, we focused on the IncRNA ZFASI and
found that its expression was significantly upregulated in CRC
tissues and correlated with Helicobacter pylori infection, lymph
nodes metastasis, advanced TNM stage, and poor overall sur-
vival. Furthermore, function experiments showed that ZFAS1
inhibition markedly suppressed the proliferation and invasion
ability of CRC cells. In addition, our results showed that ZFASI
knockdown suppressed tumor growth in vivo. Thus, our data
strongly suggested that ZFAS1 could function as an oncogene
in CRC tumorigenesis.

LncRNA is type of non-protein coding RNA and modulate
pathophysiology process involving multi-levels regulation [5].
One of the major regulating approach is to bind target miRNAs
to absorb the miRNAs abundance and further modulate func-
tional genes expression [17]. For example, Zhang et al IncRNA
UCA1 promoted cell progression by acting as a competing
endogenous RNA of ATF2 in prostate cancer [23]. Wang et al
indicated that IncRNA TUG1 promoted migration and inva-
sion by acting as a ceRNA of miR-335-5p in osteosarcoma cells
[24].

Recent studies showed that miR-484 play important roles
in tumor progression. For example, Hu et al showed that
miR-484 suppressed proliferation and epithelial-mesenchy-
mal transition by targeting ZEB1 and SMAD?2 in cervical
cancer cells [25]. While, Li et al showed that miR-484
promoted non-small-cell lung cancer progression through
inhibiting Apaf-1 associated with the suppression of
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apoptosis [26]. However, the expression and roles of miR-
484 on CRC remains unclear.

In the present study, qRT-PCR showed that miR-484
expression was significantly decreased and negatively correlated
with ZFAS1 expression in CRC tissues. Bioinformatics predic-
tion and luciferase reporter assay validated that miR-484 was
the target of ZFAS1 sharing complementary binding sites at
3’-UTR. Besides, miR-484 reversed the functions of ZFAS1 on

CRC cells proliferation and invasion, suggesting the competing
endogenous RNA (ceRNA) mechanism in CRC progression.

In conclusion, our work revealed the overexpression of
ZFAS]1 and investigated the potential interaction with miR-484
in CRC tumorigenesis, indicating the ceRNA mechanism
or miRNAs sponge in CRC. Thus, it could be argued the
ZFAS1-miR-484 axis may become a new epigenetic therapeutic
target for the treatment of CRC.
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