
Semiparametric Minimax Rates

James Robins,
Department of Biostatistics and Epidemiology, School of Public Health, Harvard University

Eric Tchetgen Tchetgen,
Department of Biostatistics and Epidemiology, School of Public Health, Harvard University

Lingling Li, and
Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, 
Boston, MA, 02215

Aad van der Vaart
Department of Mathematics, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The 
Netherlands

Abstract

We consider the minimax rate of testing (or estimation) of non-linear functionals defined on 

semiparametric models. Existing methods appear not capable of determining a lower bound on the 

minimax rate of testing (or estimation) for certain functionals of interest. In particular, if the 

semiparametric model is indexed by several infinite-dimensional parameters. To cover these 

examples we extend the approach of [1], which is based on comparing a “true distribution” to a 

convex mixture of perturbed distributions to a comparison of two convex mixtures. The first 

mixture is obtained by perturbing a first parameter of the model, and the second by perturbing in 

addition a second parameter. We apply the new result to two examples of semiparametric 

functionals:the estimation of a mean response when response data are missing at random, and the 

estimation of an expected conditional covariance functional.
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1. Introduction

Let X1, X2, …, Xn be a random sample from a density p relative to a measure ν on a sample 

space ( , ). It is known that p belongs to a collection  of densities, and we wish to 

estimate the value (p) of a functional :  → ℝ. In this setting the mimimax rate of 

estimation of (p) relative to squared error loss can be defined as the root of
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inf 
Tn

sup 
p ∈ 𝒫

Ep|Tn − χ(p)|2,

where the infimum is taken over all estimators Tn = Tn(X1, …, Xn). Determination of a 

minimax rate in a particular problem often consists of proving a “lower bound”, showing 

that the mean square error of no estimator tends to zero faster than some rate εn
2, combined 

with the explicit construction of an estimator with mean square error εn
2.

The lower bound is often proved by a testing argument, which tries to separate two subsets 

of the set {Pn: p ∈ } of possible distributions of the observation (X1, …, Xn). Even though 

testing is a statistically easier problem than estimation under quadratic loss, the 

corresponding minimax rates are often of the same order. The testing argument can be 

formulated as follows. If Pn and Qn are in the convex hull of the sets {Pn: p ∈ , (p) ≤ 0} 

and {Pn: p ∈ , (p) ≥ εn} and there exist no sequence of tests of Pn versus Qn with both 

error probabilities tending to zero, then the minimax rate is not faster than a multiple of εn. 

Here existence of a sequence of tests with errors tending to zero (a perfect sequence of tests) 

is determined by the asymptotic separation of the sequences Pn and Qn and can be described, 

for instance, in terms of the Hellinger affinity

ρ(Pn, Qn) = dPn dQn .

If ρ(Pn, Qn) is bounded away from zero as n → ∞, then no perfect sequence of tests exists 

(see e.g. Section 14.5 in [2]).

One difficulty in applying this simple argument is that the relevant (least favorable) two 

sequences of measures Pn and Qn need not be product measures, but can be arbitrary convex 

combinations of product measures. In particular, it appears that for nonlinear functionals at 

least one of the two sequences must be a true mixture. This complicates the computation of 

the affinity ρ(Pn, Qn) considerably. [1] derived an elegant nice lower bound on the affinity 

when Pn is a product measure and Qn a convex mixture of product measures, and used it to 

determine the testing rate for functionals of the type ∫ f(p) dν, for a given smooth function 

f:ℝ → ℝ, the function f(x) = x2 being the crucial example.

In this paper we are interested in structured models  that are indexed by several 

subparameters and where the functional is defined in terms of the subparameters. It appears 

that testing a product versus a mixture is often not least favorable in this situation, but testing 

two mixtures is. Thus we extend the bound of [1] to the case that both Pn and Qn are 

mixtures. In our examples Pn is equal to a convex mixture obtained by perturbing a first 

parameter of the model, and Qn is obtained by perturbing in addition a second parameter. We 

also refine the bound in other, less essential directions.

The main general results of the paper are given in Section 2. In Section 3 we apply these 

results to two examples of interest.
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2. Main result

For k ∈ ℕ let 𝒳 = ∪ j = 1
k 𝒳 j be a measurable partition of the sample space. Given a vector 

λ = (λ1, …, λk) in some product measurable space Λ = Λ1 × ⋯ × Λk let Pλ and Qλ be 

probability measures on  such that

1. Pλ( j) = Qλ( j) = pj for every λ ∈ Λ, for some probability vector (p1, …, pk).

2. The restrictions of Pλ and Qλ to j depend on the jth coordinate λj of λ = (λ1, 

…, λk) only.

For pλ and qλ densities of the measures Pλ and Qλ that are jointly measurable in the 

parameter λ and the observation, and π a probability measure on Λ, define p = ∫ pλ dπ(λ) 

and q = ∫ qλ dπ (λ), and set

a = max 
j

sup
λ

χ j

(pλ − p)2

pλ

dν
p j

,

b = max 
j

sup
λ

χ j

(qλ − pλ)2

pλ

dν
p j

,

d = max 
j

sup
λ χ j

(q − p)2
pλ

dν
p j

.

Theorem 2.1

If npj(1 ∨ a ∨ b) ≤ A for all j and B̲ ≤ pλ ≤ B̅ for positive constants A, B̲, B̅, then there exists 

a constant C that depends only on A, B̲, B̅ such that, for any product probability measure π 
= π1 ⊗ ⋯ ⊗ πk,

ρ Pλ
ndπ(λ), Qλ

ndπ(λ) ≥ 1 − Cn2(max 
j

p j)(b
2 + ab) − Cnd .

Proof

The numbers a, b and d are the maxima over j of the numbers a, b and d defined in Lemma 

2.2, but with the measures Pλ and Qλ replaced there by the measures Pj,λj and Qj,λj given in 

(2.1). Define a number c similarly as

max 
j

sup
λ 𝒳 j

p2
pλ

dν
p j

.
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Under the assumptions of the theorem c is bounded above by B̅2 /B̲.

By applying Lemma 2.1 and next Lemma 2.2 we see that the left side is at least

E ∏
j = 1

k
1 − 1

4 ∑
r = 2

N j N j
r

br − 1
2 N j

2 ∑
r = 1

N j − 1
N j − 1

r
arb − 1

2 N j
2c

N j − 1
d

≥ 1 − E ∑
j = 1

k
1 − 1

4 ∑
r = 2

N j N j
r

br − 1
2 N j

2 ∑
r = 1

N j − 1
N j − 1

r
arb − 1

2 N j
2c

N j − 1
d ,

because ∏ j = 1
k (1 − a j) ≥ 1 − ∑ j = 1

k a j for any nonnegative numbers a1, …, ak. The expected 

values on the binomial variables Nj can be evaluated explicitly, using the identities, for N a 

binomial variable with parameters n and p,

E ∑
r = 2

N N
r

br = E((1 + b)N − 1 − Nb) = (1 + bp)n − 1 − npb,

EN2cN − 1 = np(cp + 1 − p)n − 2(cnp + 1 − p),

EN2 ∑
r = 1

N − 1 N − 1
r

ar = EN2((1 + a)N − 1 − 1) = np(1 + ap)n − 2(1 + nap + np − p) − np(1 − p) − n2p2 .

Under the assumption that np(1∨a∨b∨c) ≲ 1, the right sides of these expressions can be seen 

to be bounded by multiples of (npb)2, np and (np)2a, respectively. We substitute these 

bounds in the first display of the proof, and use the equality Σj pj = 1 to complete the proof.

Remark 2.1

If min pj ~ maxj pj ~ 1/n1+ε for some ε > 0, which arises for equiprobable partitions in k ~ 

n1+ε sets, then there exists a number n0 such that P(maxj Nj > n0) → 0. (Indeed, the 

probability is bounded by k(n maxj pj)n0+1.) Under this slightly stronger assumption the 

computations need only address Nj ≤ n0 and hence can be simplified.

The proof of Theorem 2.1 is based on two lemmas. The first lemma factorizes the affinity 

into the affinities of the restrictions to the partitioning sets, which are next lower bounded 

using the second lemma. The reduction to the partioning sets is useful, because it reduces the 

n-fold products to lower order products for which the second lemma is accurate.

Define probability measures Pλj and Qλj on j by
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dP j, λ j
=

1χ j
 dPλ

p j
, dQ j, λ j

=
1χ j

 dQλ

p j
. (2.1)

Lemma 2.1

For any product probability measure π = π1 ⊗ ⋯ ⊗ πk on Λ and every n ∈ ℕ,

ρ Pλ
ndπ(λ), Qλ

ndπ(λ) = E ∏
j = 1

k
ρ j(N j),

where (N1, …, Nk) is multinomially distributed on n trials with success probability vector 

(p1, …, pk) and ρj : {0, …, n} → [0, 1] is defined by ρj(0) = 1 and

ρ j(m) = ρ P j, λ j
m dπ j(λ), Q j, λ j

m dπ j(λ) , m ≥ 1 .

Proof

Set Pn ≔ ∫ Pλ
ndπ(λ) and consider this as the distribution of the vector (X1, …, Xn). Then, for 

pλ and qλ densities of Pλ and Qλ relative to some dominating measure, the left side of the 

lemma can be written as

ρ Pλ
ndπ(λ), Qλ

ndπ(λ) = EPn

∏ j = 1
k ∏i: Xi ∈ χ j

qλ(Xi)dπ(λ)

∏ j = 1
k ∏i: Xi ∈ χ j

pλ(Xi)dπ(λ)
.

Because by assumption on each partitioning set j the measures Qλ and Pλ depend on λj 

only, the expressions ∏i:Xi∈ j qλ(Xi) and ∏i:Xi∈ j pλ(Xi) depend on λ only through λj. In 

fact, within the quotient on the right side of the preceding display, they can be replaced by 

∏i:Xi∈ j qj, λj(Xi) and ∏i:Xi∈ j pj, λj(Xi) for qj,λj and pj,λj densities of the measures Qj,λj 
and Pj,λj. Because π is a product measure, we can next use Fubini’s theorem and rewrite the 

resulting expression as

EPn

∏ j = 1
k ∏i: Xi ∈ χ j

q j, λ j
(Xi)dπ j(λ j)

∏ j = 1
k ∏i: Xi ∈ χ j

p j, λ j
(Xi)dπ j(λ j)

.

Here the two products over j can be pulled out of the square root and replaced by a single 

product preceding it. A product over an empty set (if there is no Xi ∈ j) is interpreted as 1.
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Define variables I1, …, In, In that indicate the partitioning sets that contain the observations: 

Ii = j if Xi ∈ j for every i and j, and let Nj = (#1 ≤ i ≤ n: Ii = j) be the number of Xi falling 

in j.

The measure P̄
n arises as the distribution of (X1, …, Xn) if this vector is generated in two 

steps. First λ is chosen from π and next given this λ the variables X1, …, Xn are generated 

independently from Pλ. Then given λ the vector (N1, …, Nk) is multinomially distributed on 

n trials and probability vector (Pλ( 1), …, Pλ( k)). Because the latter vector is independent 

of λ and equal to (p1, …, pk) by assumption, the vector (N1, …, Nk) is stochastically 

independent of λ and hence also unconditionally, under P̄
n, multinomially distributed with 

parameters n and (p1, …, pk). Similarly, given λ the variables I1, …, In are independent and 

the event Ii = j has probability Pλ( j), which is independent of λ by assumption. It follows 

that the random elements (I1, …, In) and λ are stochastically independent under P̄
n.

The conditional distribution of X1, …, Xn given λ and I1, …, In can be described as: for 

each partitioning set j generate Nj variables independently from Pλ restricted and 

renormalized to j, i.e. from the measure Pj,λj; do so independently across the partitioning 

sets; and attach correct labels {1, …, n} consistent with I1, …, In to the n realizations 

obtained. The conditional distribution under P̄
n of X1, …, Xn given In is the mixture of this 

distribution relative to the conditional distribution of λ given (I1, …, In), which was seen to 

be the unconditional distribution, π. Thus we obtain a sample from the conditional 

distribution under P̄
n of (X1, …, Xn) given (I1, …, In) by generating for each partitioning set 

j a set of Nj variables from the measure ∫ P j, λ j

N j dπ j(λ j), independently across the 

partitioning sets, and next attaching labels consistent with I1, …, In.

Now rewrite the right side of the last display by conditioning on I1, …, In as

EPn
EPn

∏
j = 1

k ∏i: Ii = j q j, λ j
(Xi)dπ j(λ j)

∏i: Ii = j p j, λ j
(Xi)dπ j(λ j)

I1, …, In .

The product over j can be pulled out of the conditional expectation by the conditional 

independence across the partitioning sets. The resulting expression can be seen to be of the 

form as claimed in the lemma.

The second lemma does not use the partitioning structure, but is valid for mixtures of 

products of arbitrary measures on a measurable space. For λ in a measurable space Λ let Pλ 
and Qλ be probability measures on a given sample space ( , ), with densities pλ and qλ 
relative to a given dominating measure ν, which are jointly measurable. For a given 

(arbitrary) density p define functions ℓλ = qλ − pλ and κλ = pλ − p, and set

a = sup
λ ∈ Λ

κλ
2

pλ
dν,
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b = sup
λ ∈ Λ

ℓλ
2

pλ
dν,

c = sup
λ ∈ λ

p2
pλ

dν,

d = sup
λ ∈ Λ

( ℓμdπ(μ))2

pλ
dν .

Lemma 2.2

For any probability measure π on Λ and every n ∈ ℕ,

ρ Pλ
ndπ(λ), Qλ

ndπ(λ) ≥ 1 − 1
4 ∑

r = 2

n n
r

br − 1
2n2 ∑

r = 1

n − 1 n − 1
r

arb − 1
2n2cn − 1d .

Proof

Consider the measure Pn = ∫ Pλ
ndπ(λ), which has density pn( x n) = ∫ ∏i = 1

n pλ(xi)dπ(λ) relative 

to νn, as the distribution of (X1, …, Xn). Using the inequality E 1 + Y ≥ 1 − EY2/8, valid for 

any random variable Y with 1 + Y ≥ 0 and EY = 0 (see for example [1], we see that

ρ Pλ
ndπ(λ), Qλ

ndπ(λ) = EPn
1 +

[∏i = 1
n qλ(Xi) − ∏i = 1

n pλ(Xi)]dπ(λ)
pn(X1, …, Xn)

≥ 1 − 1
8EPn

[∏i = 1
n qλ(Xi) − ∏i = 1

n pλ(Xi)]dπ(λ)2

pn(X1, …, Xn)2 .

(2.2)

It suffices to upper bound the expected value on the right side. To this end we expand the 

difference ∏i = 1
n qλ(Xi) − ∏i = 1

n pλ(Xi) as Σ|I|≥1 ∏i∈Ic pλ(Xi) ∏i∈I ℓλ(Xi), where the sum 

ranges over all nonempty subsets I ⊂ {1, …, n}. We split this sum in two parts, consisting of 

the terms indexed by subsets of size 1 and the subsets that contain at least 2 elements, and 

separate the square of the sum of these two parts by the inequality (A + B)2 ≤ 2A2 + 2B2.

If n = 1, then there are no subsets with at least two elements and the second part is empty. 

Otherwise the sum over subsets with at least two elements contributes two times
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∑|I | ≥ 2 ∏
i ∈ Ic pλ(xi)∏i ∈ I ℓλ(xi)dπ(λ)2

∏i pλ(xi)dπ(λ)
dνn( x n)

≤ ∑
|I | ≥ 2

∏
i ∈ Ic

pλ(xi) ∏
i ∈ I

ℓλ
pλ

(xi)
2
dπ(λ)dνn( x n)

= ∑
|I | ≥ 2

∏
i ∈ Ic

pλ(xi) ∏
i ∈ I

ℓλ
2

pλ
(xi)dπ(λ)dνn( x n) .

To derive the first inequality we use the inequality (EU)2/EV ≤ E(U2/V), valid for any 

random variables U and V ≥ 0, which can be derived from Cauchy-Schwarz' or Jensen's 

inequality. The last step follows by writing the square of the sum as a double sum and noting 

that all off-diagonal terms vanish, as they contain at least one term ℓλ(xi) and ∫ ℓλ dν = 0. 

The order of integration in the right side can be exchanged, and next the integral relative to 

νn can be factorized, where the integrals ∫ pλ dν are equal to 1. This yields the contribution 

2 Σ|I|≥2 b|I| to the bound on the expectation in (2.2).

The sum over sets with exactly one element contributes two times

∑ j = 1
n ∏i ≠ j pλ(xi)ℓλ(x j)dπ(λ)2

∏i pλ(xi)dπ(λ) dνn( x n) . (2.3)

Here we expand

∏
i ≠ j

pλ(xi) − ∏
i ≠ j

p(xi) = ∏
i ≠ j

pλ(xi) − ∏
i ≠ j

(pλ − κλ)(xi) = − ∑
|I | ≥ 1, j ∉ I

∏
i ∈ Ic

pλ(xi) ∏
i ∈ I

( − κλ)(xi),

where the sum is over all nonempty subsets I ⊂ {1, …, n} that do not contain j. Replacement 

of ∏i≠j pλ(xi) by ∏i≠j p(xi) changes (2.3) into

∑ j = 1
n ∏i ≠ j p(xi)ℓλ(x j)dπ(λ)2

∏i pλ(xi)dπ(λ)
dνn( x n) ≤ n ∑

j = 1

n ∏i ≠ j p2(xi) ℓλ(x j)dπ(λ)2

∏i pλ(xi)dπ(λ)
dνn( x n)

≤ n ∑
j = 1

n
∏

i ≠ j

p2
pμ

(xi)
ℓλdπ(λ)2

pμ
(x j)dπ(μ)dνn( x n) .

In the last step we use that 1/EV ≤ E(1/V) for any positive random variable V. The integral 

with respect to νn in the right side can be factorized, and the expression bounded by 

n2cn−1d. Four this this must be added to the bound on the expectation in (2.2).

Finally the remainder after substituting ∏i≠j p(xi) for ∏i≠j pλ(xi) in (2.3) contributes
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∫ ∑ j = 1
n ∑|I | ≥ 1, j ∉ I ∏

i ∈ Ic pλ(xi)∏i ∈ I ( − κλ)(xi)ℓλ(x j)dπ(λ 2

∫ ∏i pλ(xi)dπ(λ) dνn( x n)

≤ ∑
j = 1

n
∑

|I | ≥ 1, j ∉ I
∏

i ∈ Ic
pλ(xi) ∏

i ∈ I

−κλ
pλ

(xi)
ℓλ
Pλ

(x j)
2
dπ(λ)dνn( x n)

≤ n ∑
j = 1

n ∫ ∫ ∑
|I | ≥ 1, j ∉ I

∏
i ∈ Ic

pλ(xi) ∏
i ∈ I

−κλ
pλ

(xi)
2ℓλ

2

pλ
(x j)dπ(λ)dνn( x n)

= n ∑
j = 1

n
∑

|I | ≥ 1, j ∉ I
∫ ∫ ∏

i ∈ Ic
pλ(xi) ∏

i ∈ I

κλ
2

pλ
(xi)

ℓλ
2

pλ
(x j)dπ(λ)dνn( x n) .

We exchange the order of integration and factorize the integral with respect to νn to bound 

this by n2Σ|I|≥1,j∉I a|I|b.

3. Applications

3.1. Estimating the mean response in missing data models

Suppose that a typical observation is distributed as X = (Y A, A, Z) for Y and A taking 

values in the two-point set {0, 1} and conditionally independent given Z. We think of Y as a 

response variable, which is observed only if the indicator A takes the value 1, and are 

interested in estimating the mean response EY. The covariate Z is chosen such that it 

contains all information on the dependence between response and missingness indicator 

(“missing at random”). We assume that Z takes its values in  = [0, 1]d.

The model can be parameterized by the marginal density f of Z relative to Lebesgue measure 

measure ν on , and the probabilities b(z) = P(Y = 1|Z = z) and a(z)−1 = P(A = 1|Z = z). 

Alternatively, the model can be parameterized by the function g = f/a, which is the 

conditional density of Z given A = 1 up to the norming factor P(A = 1). Under this latter 

parametrization which we adopt henceforth, the density p of an observation X is described 

by the triple (a, b, g) and the functional of interest is expressed as (p) = ∫ abg dν.

Define CM
α [0, 1]d as M times the unit ball of the Hölder space of α-smooth functions on [0, 

1]d. For given positive constants α, β, γ, ϕ and M̲, M, we consider the models

•
𝒫1 = {(a, b, g):a ∈ CM

α [0, 1]d, b ∈ CM
β [0, 1]d, g = 1/2, a, b ≥ M} .

•
𝒫2 = {(a, b, g):a ∈ CM

α [0, 1]d, b ∈ CM
β [0, 1]d, g ∈ Cγ[0, 1]d, a, b ≥ M} .

If (α + β)/2 ≥ d/4, then a n-rate is attainable over 2 (see [3]), and a standard “two-point” 

proof can show that this rate cannot be improved. Here we are interested in the case (α + 
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β)/2 < d/4, when the rate becomes slower than 1/ n. The paper [3] constructs an estimator 

that attains the rate n−(2α+2β)/(2α+2β+d) uniformly over 2 if

γ
2γ + d > α ∨ β

d
d − 2α − 2β
d + 2α + 2β ≔ γ(α, β) . (3.1)

We shall show that this result is optimal by showing that the minimax rate over the smaller 

model 1 is not faster than n−(2α+2β)/(2α+2β+d).

In the case that α = β these results can be proved using the method of [1], but in general we 

need a construction as in Section 2 with Pλ based on a perturbation of the smoothest 

parameter of the pair (a, b) and Qλ constructed by perturbing in addition the coarsest of the 

two parameters.

Theorem 3.1—If (α + β)/2 < d/4 the minimax rate over 1 for estimating ∫ abg dν is at 

least n−2α−2β/(2α+2β+d).

Proof: Let H: ℝd → ℝ be a C∞ function supported on the cube [0, 1/2]d with ∫ H dν = 0 

and ∫ H2 dν = 1. Let k be the integer closest to n2d/(2α+2β+d) and let 1, …, k be translates 

of the cube k−1/d[0, 1/2]d that are disjoint and contained in [0, 1]d. For z1, …, zk the bottom 

left corner of these cubes and λ = (λ1, …, λk) ∈ Λ = {−1, 1}k, let

aλ(z) = 2 + k−α/d ∑
i = 1

k
λiH((z − zi)k

1/d),

bλ(z) = 1/2 + k−β/d ∑
i = 1

k
λiH((z − zi)k

1/d) .

These functions can be seen to be contained in Cα[0, 1]d and Cβ[0, 1]d with norms that are 

uniformly bounded in k. We choose a uniform prior π on λ, so that λ1, …, λk are i.i.d. 

Rademacher variables.

We partition the sample space {0, 1}×{0, 1}×  into the sets {0, 1}×{0, 1}× j and the 

remaining set.

We parameterize the model by the triple (a, b, g). The likelihood can then be written as

(a − 1)1 − A(Z) bY(Z)(1 − b)1 − Y(Z) A .

Because ∫ H dν = 0 the values of the functional ∫ abg dν at the parameter values (aλ, 1/1, 

1/2) and (2, bλ, 1/2) are both equal to 1/2, whereas the value at (aλ, bλ, 1/2) is equal to
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aλbλ
dν
2 = 1

2 + 1
k

α/d + β/d ∑
i = 1

k
H((z − zi)k

1/d)
2

dν
2 = 1

2 + 1
2

1
k

α/d + β/d
.

Thus the minimax rate is not faster than (1/k)α/d+β/d for k = kn such that the convex mixtures 

of the products of the perturbations do not separate completely as n → ∞. We choose the 

mixtures differently in the cases α ≤ β and α ≥ β.

α ≤ β. We define pλ by the parameter (aλ, 1/2, 1/2) and qλ by the parameter (aλ, bλ, 1/2). 

Because ∫ aλ dπ(λ) = 2 and ∫ bλ dπ(λ) = 1/2, we have

p(X) ≔ pλ(X)dπ(λ) = (bY(Z)(1 − b)1 − Y(Z) A,

(pλ − p)(X) = (1 − A)(aλ − 2)(Z),

(qλ − pλ)(X) = A(bλ − 1/2)Y(1/2 − bλ)1 − Y ,

(q − p)(X) ≔ (qλ − pλ)(X)dπ(λ) = 0 .

Therefore, it follows that the number d in Theorem 2.1 vanishes, while the numbers a and b 
are of the orders k−2α/d and k−2β/d times

max
j 𝒵 j

∑
i = 1

k
λiH((z − zi)k

1/d)
2

dν
1/k ∼ 1,

respectively. Theorem 2.1 shows that

ρ Pλ
ndπ(λ), Qλ

ndπ(λ) ≥ 1 − C′n21
k k−4β/d + k−2α/dk−2β/d .

For k ~ n2d/(2α+2β+d) the right side is bounded away from 0. Substitution of this number in 

the magnitude of separation (1/k)α/d+β/d leads to the rate as claimed in the theorem.

α ≥ β. We define pλ by the parameter (2, bλ, 1/2) and qλ by the parameter (aλ, bλ, 1/2). The 

computations are very similar to the ones in the case α ≤ β.

3.2. Estimating an expected conditional covariance

Suppose that we observe n independent and identically distributed copies of X = (Y, A, Z), 

where as in the previous section, Y and A are dichotomous, and Z takes its values in  = [0, 
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1]d with joint density given by f. Let b(z) = P(Y = 1|Z = z) and a(z) = P(A = 1|Z = z). We 

note that

b(Z) = P(Y = 1| A = 1, Z)a(Z) + {1 − a(Z)}P(Y = 1| A = 0, Z)
= {P(Y = 1| A = 1, Z) − P(Y = 1| A = 0, Z)}a(Z) + P(Y = 1| A = 0, Z)
= {P(Y = 1| A = 0, Z) − P(Y = 1| A = 1, Z)}{1 − a(Z)} + P(Y = 1| A = 1, Z)

so that by combining the last two equations above, we can write

P(Y = 1| A, Z) = Δ(Z){A − a(Z)} + b(Z)

where Δ (Z) = P (Y = 1|A = 1, Z) − P (Y = 1|A = 0, Z). This allows us to parametrize the 

density p of an observation by (Δ, a, b, f). The functional χ (p) is given by expected 

conditional covariance

E f {covΔ, p, b(Y , A |Z)} = EΔ, p, b, f (Y A) − abfdν (3.2)

We consider the models

•
ℬ1 = (Δ, a, b, f ):Δ is unrestricted, a ∈ CM

α [0, 1]d, b ∈ CM
β [0, 1]d, f = 1, a, b ≥ M

•
ℬ2 = (Δ, a, b, f ):Δ is unrestricted, a ∈ CM

α [0, 1]d, b ∈ CM
β [0, 1]d, f ∈ CM

γ [0, 1]d, a, b ≥ M

We are mainly interested in the case (α + β) /2 < d/4 when the rate of estimation of χ (p) 

becomes slower than 1/ n. The paper [3] constructs and estimator that attains the rate n
−(2α+2β)/(2α+2β+d) uniformely over ℬ2 if equation 3.1 of the previous section holds. We will 

show that this rate is optimal by showing that the minimax rate over the smaller model ℬ1 is 

not faster than n−(2α+2β)/(2α+2β+d).

The first term of the difference on the right side of equation (3.2) can be estimated by the 

sample average n−1∑i = 1
n Y iAi at rate n−1/2. It follows that χ (p) can be estimated at the 

maximum of n−1/2 and the rate of estimation of ∫ ab f dν. In other words, to establish that 

the minimax rate for estimating χ (p) over ℬ1 is n−(2α+2β)/(2α+2β+d), we shall show that the 

minimax rate for estimating ∫ ab f dν over ℬ1 is n−(2α+2β)/(2α+2β+d).

Theorem 3.2—If (α + β) /2 < d/4 the minimax rate over ℬ1 for estimating ∫ ab f dν is at 

least n−2(α+β)/(2α+2β+d).

Proof: Under the parametrization (Δ, a, b, f), the density of an observation X is given by
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([Δ(Z){A − a(Z)} + b(Z)]a(Z))Y A × ([1 − Δ(Z){A − a(Z)} − b(Z)]a(Z))(1 − Y)A

× ([Δ(Z){A − a(Z)} + b(Z)]{1 − a(Z)})Y(1 − A) × [{1 − Δ(Z){A − a(Z)} − b(Z)}{1 − a(Z)}](1 − Y)(1 − A) × f (Z
)

Suppose α < β and set

aλ(z) = 1/2 + δaλ(z) = 1/2 + k−α/d ∑
i = 1

k
λiH (z − zi)k

1/d

bλ(z) = 1/2 + δbλ(z) = 1/2 + k−β/d ∑
i = 1

k
λiH (z − zi)k

1/d

Δλ(Z) =
−δbλ(Z)

1/2 − δaλ(Z)

then at the parameters values (0, aλ, 1/2, 1), ∫ ab f dυ = 1/4 with a corresponding likelihood 

pλ = {aλ (Z)}A×[{1 − aλ (Z)}](1−A), whereas at parameter values (Δλ, aλ, bλ, 1), ∫ ab f dυ 
= 1/4 + n−2(α+β)/(d+2(α+β)) and the likelihood is given by

qλ(X) = {aλ(Z)/2}Y A × {aλ(Z)/2}(1 − Y)A × ([1/2 + δbλ(Z)])Y(1 − A)([1/2 − aλ(Z) − δbλ(Z)])(1 − Y)(1 − A)

so that

(qλ − pλ)(X) = (1 − A) × δbλ(Z)Y × { − δbλ(Z)}(1 − Y)

And we conclude that (q − p) (X) = ∫ (qλ − pλ) (X) dπ (λ) = 0. Furthermore

(pλ − p)(X) = {δaλ(Z)}A × [ − δaλ(Z)](1 − A)

so that

max
j

sup
λ

𝒳 j

(qλ − pλ)2

pλ

1
P(𝒳 j)

dυ = k−2β/dmax
j

sup
λ

𝒳 j

∑i = 1
k λiH((z − zi)k

1/d) 2

pλ

1
P(𝒳 j)

dυ ≾ k−2β/d,
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sup
λ

𝒳 j

(∫ (qλ − pλ)dπ(λ))2

pλ

1
P(𝒳 j)

dυ = 0

and

max
j

sup
λ

𝒳 j

(qλ − p)2

pλ

1
P(𝒳 j)

dυ = k−2α/d max
j

sup
λ

𝒳 j

∑i = 1
k λiH((z − zi)k

1/d) 2

pλ

1
P(𝒳 j)

dυ ≾ k−2α/d

Therefore, it follows that the number d of Theorem 2.1 vanishes, while the numbers a and b 
are of order k−2α/d and k−2β/d respectively. Theorem 2.1. shows that

ρ Pλ
ndπ(λ), Qλ

ndπ(λ) ≥ 1 − C″n21
k k−4β/d + k−2β/dk−2α/d

which gives the desired result for the choice of k ~ n2d/(2α+2β+d).

Next, suppose α > β, set aλ (Z) and bλ (Z) as above, and let

Δλ(Z) =
−δaλ(Z)bλ(Z)

(1/2 − δaλ(Z))a(Z)

then at the parameters values (0, 1/2, bλ, 1), ∫ ab f dυ = 1/4 with corresponding likelihood

pλ(X) = [(bλ(Z))]Y × [(1 − bλ(Z))](1 − Y)

whereas at parameter values (0, pλ, bλ, 1), ∫ ab f dυ = 1/4 + n−2(α+β)/(d+2(α+β)) with 

corresponding likelihood given by

qλ(X) = [bλ(Z)/2]Y × ([aλ(Z) − bλ(Z)/2])(1 − Y)A × [1/2 − δaλ(Z) − bλ(Z)/2](1 − Y)(1 − A)

so that

(qλ − pλ)(X) = (1 − Y) × δa(Z)A × [ − δaλ(Z)](1 − A)

and we conclude that (q − p) (X) = ∫ (qλ − pλ) (X) dπ (λ) = 0. Furthermore

(pλ − p)(X) = δbλ(Z)Y × [ − δbλ(Z)](1 − Y)

so that
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max
j

sup
λ

𝒳 j

(qλ − pλ)2

pλ

1
P(𝒳 j)

dυ ≾ k−2α/d,

sup
λ

𝒳 j

(∫ (qλ − pλ)dπ(λ))2

pλ

1
P(𝒳 j)

dυ = 0

and

max
j

sup
λ

𝒳 j

(pλ − p)2

pλ

1
P(𝒳 j)

dυ ≾ k−2β/d

which yields the desired result by arguments similar to the previous case.
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