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Abstract
Breast cancer is the most common malignancy in women worldwide, with a developmental process spanning
decades. The malignant cells recruit a variety of cells including fibroblasts, endothelial cells, immune cells, and
adipocytes, creating the tumor microenvironment. The tumor microenvironment has emerged as active
participants in breast cancer progression and response to treatment through autocrine and paracrine interaction
with the malignant cells. Adipose tissue is abundant in the breast cancer microenvironment; interactions with
cancer cells create cancer-associated adipocytes which produce a variety of adipokines that influence breast
cancer initiation, metastasis, angiogenesis, and cachexia. Interleukin (IL)-6 has emerged as key compound
significantly produced by breast cancer cells and adipocytes, with the potential of inducing proliferation, epithelial-
mesenchymal phenotype, stem cell phenotype, angiogenesis, cachexia, and therapeutic resistance in breast
cancer cells. Our aim is to present a brief knowledge of IL-6’s role in breast cancer. This review summarizes our
current understanding of the breast microenvironment, with emphasis on adipocytes as key players in breast
cancer tumorigenesis. The effects of key adipocytes such as leptin, adipokines, TGF-b, and IL-6 are discussed.
Finally, we discuss the role of IL-6 in various aspects of cancer progression.
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troduction
reast cancer is the most common malignancy in women worldwide,
ith nearly 1.7 million new cases diagnosed in 2012 (second most
mmon cancer overall), and the leading cause of cancer-related death
women worldwide. This represents about 12% of all new cancer
ses and 25% of all cancers in women [1]. The developmental
ocess spanning decades has a multifactorial etiology and a
terogeneous genetic background. Advances in molecular testing
ve allowed various markers to be analyzed including the human
idermal receptor 2 (HER2) expression status, and estrogen receptor
R) and progesterone receptor (PR) status [2,3]. Localized and early
agnosis of the the disease has better clinical outcome, whereas
vanced/metastatic disease usually has an abysmal prognosis despite
vances in treatment methods [3]. This has heightened the need to
entify new and effective targets for treatment. The stromal cells of
e breast cancer microenvironment have emerged as active
rticipants in the development of breast cancer and a potential
rget for future treatment. The breast cancer microenvironment
mprises stromal cells including fibroblasts, endothelial cells,
mune cells, and adipocytes with altered phenotype and function
om the normal state. The cell-to-cell and cells-to-tumor cell
teraction between the cells creates a complex tumor microenviron-
ent (TME) [4,5]. The stromal cells in the breast cancer
icroenvironment are not just passive participants but contribute
tively to influence disease progression and response to treatment
]. Paracrine interactions between the stromal cell and malignant
lls are the main mechanism by which stromal cells influence tumor
ll behavior [5]. Hence, the TME is presently an active area of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranon.2017.12.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.tranon.2017.12.009


re
in
th
ca
st
ca
ca
in
m
th
m
iv
an
re
en
se
gr
ad
in
he
in
m
(C
ad
si
of
re
th
w
ad
ly
em
re
fu
ta

A

ho
m
ro
th
pa
m
en
de
in
ce
hy
(H
th
an
to
pr
m
an
tu
hi
em

A
fi
m
th
cr
br
th
fo
hu
oc
ra
in
as
in
va
m
un
de
ad
in

T

ad
pr
W
va
ph
ad
su
th
W
tr
se
T
ne
R
id
m
ch
ge
un
ac
co
pr
ad
va
ce
ce
hi
(f
th
B
br

ad
W
ob
ca

276 Role of IL-6 in adipocyte-breast cancer interaction Gyamfi et al. Translational Oncology Vol. 11, No. 2, 2018
search, particularly in understanding how the various components
fluence cancer progression and the possibility of developing novel
erapies targeting the microenvironment [5,6]. The influence of
ncer-associated fibroblast (CAF) on breast cancer cells is the most
udied microenvironment interaction. These studies reveal signifi-
nt alteration in genetic and epigenetic signatures in the CAF, which
n potentially predict clinical outcomes [7,8]. These findings have
creased interest in the other components in the breast cancer
icroenvironment and their potential role as prognostic and
erapeutic targets. Surprisingly, white adipose tissue [comprising of
ature adipocytes and progenitors (preadipocytes and adipose-der-
ed stem cells)], which accounts for 80% of the adult breast volume
d forms the site of early local invasion of breast cancer cells, has
ceived relatively little attention [9,10]. The emergence of the
docrine function of adipocytes, i.e., their ability to produce and
crete a diverse group of molecules called adipokines (i.e., hormones,
owth factors, cytokines), has brought the potential influence of
ipocytes and breast cancer behavior to the forefront [10]. The
teraction between adipocytes and breast cancer cells is reciprocal;
nce, both adipocytes and breast cancer cells are altered during their
teractions. Adipocytes during this interaction assume an inflam-
atory phenotype and are termed “cancer-associated adipocytes”
AAs) [10,11]. Among the myriad of cytokines secreted by
ipocytes, the inflammatory cytokine interleukin-6 (IL-6) is
gnificantly produced [12]. IL-6 is associated with the development
stem cell phenotype [13], angiogenesis [14], cachexia [15], and
sistance to therapy [16] in breast cancer and other solid tumors. In
is review, we focus on the adipocyte–breast cancer cell interaction,
ith emphasis on the current knowledge on the influence of
ipocyte-derived IL-6 on breast cancer progression, and subsequent-
discuss the potential roles for adipocyte-derived IL-6 based on
erging evidence from various stromal cells. We also discuss the
ciprocal effects of breast cancer cells on adipocyte phenotype and
nction. This has implication for the development of novel therapy
rgeting adipocytes in the breast cancer microenvironment.

dipocytes as Components of the Breast Cancer Microenvironment
The myriad of cytokines produced by cancer cells recruits various
st cells such as macrophages, fibroblast, and dendritic cells to the
icroenvironment [17]. The various components of the microenvi-
nment function to promote tumorigenesis, protect the tumor from
e host immunity and therapeutic response [12]. The ensuing
racrine interaction between host cells and tumor cells in the
icroenvironment results in genetic alterations in stromal cells that
able them to produce growth factors, cytokines, and ECM-remo-
ling proteins that enhance tumor cell proliferation and invasion
to surrounding tissues [5,18]. The aggregation of host and tumor
lls creates a hypoxic microenvironment; the tumor cells adapt to the
poxic condition by upregulation of hypoxia-inducible factor-a
IF-1a) gene [19]. HIF-1a upregulation results in an alteration in
e expression of genes involved in migration, metabolism,
giogenesis, dedifferentiation, and apoptosis, enabling tumor cells
adapt and survive in low oxygen concentration [20,21]. There is
esently a great interest in understanding how the individual
icroenvironment populations of cells are recruited and modulated
d how they influence breast cancer behavior. In breast cancer, the
mor originates in the mammary glands, which are composed of
ghly branched ducts and lobuloalveolar differentiated units
bedded in a complex stroma termed mammary fat pad [22].
dipose tissue in the mammary gland is composed of adipocytes,
broblast, and immune cells. In the normal breast, the basement
embrane separates mature adipocytes from the epithelial cells lining
e mammary gland, serving as a barrier for heterotypic interaction/
oss talk between the two cell types [9,10]. However, during invasive
east cancer, the basement membrane separation is disrupted, and
e two cell populations appear mixed together in the ECM, allowing
r paracrine interaction to occur [10]. Histological sections from
man breast carcinomas show that early invasion of tumor cells
cur in the localized adipocytes [11,23]. This area also has a high
tio of adipocytes to fibroblasts; however, the adipocytes are reduced
size compared with those observed at a distance [11,23]. This close
sociation indicates a potential for adipocytes to influence the
vasive behavior of breast tumor cells through the secretion of
rious adipokines [11,23]. This makes adipocytes an interesting
ember of breast tumor microenvironment, and it is important to
derstand clearly the role these adipocytes play in the breast cancer
velopment. Recently, studies have emerged indicating how
ipocytes may influence breast cancer proliferation, migration,
vasion, and metabolism (discussed below).

heEvolution of Adipocytes in the Breast CancerMicroenvironment
The two main types of adipose tissue present in humans are white
ipose tissue (WAT) and brown adipose tissue (BAT) [24]. The
edominate population of adipose tissues in an adult human is the
AT composed of adipocytes, along with other cells in the stroma
scular fraction (adipose-derived stem cells, preadipocytes, macro-
ages, fibroblasts, and vascular endothelial cells) [24]. White
ipocytes have a spherical shape with a single large lipid droplet
rrounded by a reduced rim of cytoplasm, which essentially occupies
e fat cell volume and with very few mitochondria [22,24]. The
AT is mainly responsible for storing energy in the form of
iglycerides and also functions as an essential endocrine organ that
cretes a myriad of cytokines, hormones, and growth factors [22,24].
he other adipose population, BAT, is predominantly found in
wborn children but is replaced by WAT during development [24].
ecent studies with positron emission tomography imaging have
entified BAT in adult individuals [25]. Brown adipocytes have a
ultilocular lipid inclusions and numerous well-developed mito-
ondria. BATs are highly innervated and associated with thermo-
nesis due to the presence of a unique mitochondrial protein, the
coupling proteins (UCPs) [26]. UCPs regulate proton leakage
ross the inner mitochondrial membrane, thus decreasing the
upling of respiration to ADP phosphorylation and shifting the
oton imbalance towards heat production [27]. Another class of
ipose cells recently identified develops in WAT in response to
rious stimuli and is referred to as brite (or beige or systemic) adipose
lls and is located in the much larger area of WAT tissue [28]. Beige
lls in mouse are characterized by their multilocular lipid droplet and
gh mitochondrial content and express genes similar to brown fat
or example, Ucp1, Cidea, and Pgc1α) at lower levels [28]. They are
ought to have the same origin as WAT cells but function more like
AT in expressing UCP and having thermogenic capacity similar to
own adipocytes although genetically different [28].
Histological sections of breast cancers invading surrounding
ipose tissues show the large spherical and single lipid droplet
AT replaced by reduced lipid droplets in adipocytes [11]. This
servation is characteristic of the in vitro cross talk between breast
ncer cells and adipocytes, where adipocytes are observed to undergo
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kind of “adipocyte dedifferentiation” where they acquire a
roblast-like phenotype with reduced lipid droplets [29]. Recent
vitro and in vivo studies indicate that this activated state of
ipocytes is characterized by a decreased expression of adipocyte
arkers and an overexpression of proinflammatory cytokines [11,30].
he new population of adipocytes presenting this unique phenotype
s been referred to as “cancer-associated adipocytes” (CAAs) [11].
ontroversies exist pertaining to the role and nature of these CAAs. In
in vitro and in vivo study by Petruzzelli et al. on the effects of
mor cells on adipocytes, the authors associated this alteration in
AT phenotype to “WAT browning,” the process by which WAT
tains characteristics of BAT [31]. IL-6 secreted by tumor cells was
entified as the main cytokine driving the process and linked the
ipocyte delipidation to early events in cancer-associated cachexia.
he change has also been associated with lipolysis of the lipid stores to
pport tumor cell metabolism. A recent in vitro study clearly
monstrated that co-culture between mouse 3T3-F442A–derived
ipocytes and breast cancer cells (ZR-75-1 and SUM159PT)
sulted in lipolysis and transfer of free fatty acids (FFAs) to tumor
lls. The transferred FFAs are used in fatty acid β-oxidation by tumor
lls to drive their migration and invasion [32]. These studies clearly
dicate that the heterotypic cross talk between adipocytes and tumor
lls, at least in invasive primary tumors, results in modification of
ipocytes. These changes significantly involve changes to lipid stores,
ne expression, and secretory profile of adipocytes [33], suggesting a
lease of fatty acids from adipocytes and a reduction in the
iacylglycerol (TAG) stores [33]. Delipidation of adipocytes has been
sociated with increased expression of TAG lipases adipose
iglyceride lipase and hormone-sensitive lipase and reduced
pression of adipocytes differentiation markers such as LIPE and
BP4 [32–34]. Hence, cancer cells may induce delipidation in
ipocytes via the secretion cytokines that alter adipocytes function.
lthough the specific cytokine and the mechanism involved in the
ocess have not been completely deciphered, IL-6 has been
sociated with this delipidation process. Petruzzelli et al. identified
-6 as the key cytokine driving lipid lipolysis in WAT browning
1]. Wang et al. also observed IL-6 as the only lipolytic factor
creased in cancer cells after co-culture, although treatment with
ti–IL-6 monoclonal antibodies did not inhibit fatty acids lipolysis
2]. Changes in adipocyte secretory profile are also observed after
-culture with breast cancer cell or in isolated adipocytes from breast
mors. These changes include increased expression of genes
gulating adipokines and adipocytokines (TNF, IL-6, and IL-1B),
oteases, and inhibitors (MMP11 and SERPine1). These changes are
companied by altered protein secretion [30]. Dirat et al. using a
-culture system demonstrated that cocultured adipocytes under-
ent delipidation with overexpression of IL-6 and IL-1β. Immuno-
stochemical staining and quantitative polymerase chain reaction of
man breast tumors confirmed the presence of modified
ipocytes with increased IL-6 secretion [11]. In another
udy, human preadipocytes collected from fat pad immediately
jacent to malignant breast tumors had a lower lipid formation
d reduced differentiation capacity [30]. Reviewing pathology
ecimens of human breast cancer patients revealed morphologic
aracteristics of dedifferentiation in CAAs and upregulation of
-6 [30]. Additionally, indirectly co-culture of 3T3-L1 adipocytes
ith breast cancer cells resulted in an upregulation of inflamma-
n-related genes including IL-6 [30]. These studies clearly highlight
role of adipocytes in breast cancer progression, with the CAAs
ansitioning into proinflammatory states that enhance breast cancer
ogression.

dipose Signaling
Adipocytes present in the breast cancer microenvironment secrete
ipokines that affect various aspects of cancer development. Various
udies using human- and mouse-derived adipocytes have demon-
rated that adipocytes enhance the proliferation, migration, and
vasive characteristics of breast cancer cells in co-culture [11,35,36].
nderstanding the role of adipocytes and the effect of the various
ipokines on breast cancer cells has been obtained through studies
ing adipocytes conditioned media to culture breast cancer cells with
fferent molecular characteristics or using a co-culture system with
ipocytes and breast cancer cells [32,35,37–39]. Three of the
st-characterized adipokine molecules in the adipocyte–breast cancer
teractions are leptin, adiponectin, and IL-6. These factors regulate
e inflammatory tumor microenvironment and the tumor behavior
uch as stimulating cancer cell proliferation and invasion) through
e activation of various intracellular signaling pathways and
anscription factors that affect various aspect of the cell function
0,41].
Leptin. Leptin is a multifunctional neuroendocrine peptide
rmone with a molecular weight of 16 kDa secreted by adipocytes
d generally functions in appetite control, energy reserve metabo-
m, immune response, and reproductive processes [42,43]. Breast
mors have increased expression of leptin and its receptors; this
crease is associated with distant metastasis [44]. Leptin activates the
K/STAT, PI3K, and mitogen-activated protein kinase (MAPK)
thways and regulates the cellular activity through various
wnstream targets [43,45,46]. Leptin expression results in increased
ll survival and proliferation by inducing c-MYC expression [47].
ptin is also an activator of stem cells signaling pathways such as
otch and Wnt, and both leptin and its receptors are upregulated in
east cancer stem cells [45,48,49]. The role of leptin in breast cancer
lls is emphasized in an in vitro study where silencing the leptin
ceptor via shRNA lentivirus inhibited the expression of stem cell
lf-renewal transcription factors Nanog, sox2, and oct4 in
DA-MB-231 breast cancer cells [49,50]. Leptin receptor silencing
so exhibited a mesenchymal to epithelial transition morphologically
ith increased E-cadherin and decreased vimentin expression,
ggesting a role in mesenchymal-epithelial transition (MET) [49].
ptin also regulates angiogenesis by increasing endothelial cell
oliferation and by VEGF signaling [45,51]. Hence, leptin has a
oliferative, self-renewal, and survival function in adipocyte–breast
ncer interaction.
Adiponectin. Adiponectin is a unique adipokine known for its
tiproliferative effects on human breast cancer cells. It has a
olecular weight of 28 to 30 kDa, with several identified isoforms
2]. Adiponectin activates AMP-activated protein kinase, and the
activation of p42/p44 MAPK results in the initiation of apoptosis
d inhibition of the cell survival [53–55]. In vitro studies in breast
ncer cells indicate that adiponectin increased apoptosis by
creasing poly(ADP-ribose) polymerase cleavage [56]. Adiponectin
so regulates the expression of tumor suppressor genes, oncogenes,
o- and antiapoptotic genes, and cell cycle regulatory genes including
3, Bax, Bcl-2, c-myc, cyclin D1, MAPK3, and ataxia telangiectasia
utated [40,57]. Cell proliferation induced by leptin and oxidized
w-density lipoprotein can be inhibited by adiponectin [56]. The
ycogen synthase kinase-3b (GSK-3b)/β-catenin signaling pathways
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e involved in adiponectin-mediated growth inhibition of breast
ncer cell lines, where adiponectin inhibits GSK-3b phosphorylation
d suppresses the intracellular accumulation of β-catenin [56].
veral studies have also shown a significant association between low
rum adiponectin levels and increased risk of breast cancer [58].
hese studies clearly elucidate the antiproliferative and proapoptotic
nctions of adiponectin and its potential to inhibit breast cancer
ogression.
IL-6 and the IL-6/JAK/STAT3 Signaling Pathway in the Tumor
icroenvironment. Approximately one-third of plasma IL-6 is
oduced by adipose tissues. In healthy adipose tissue, the major
urce of IL-6 are the nonadipocyte members; however, under
thological conditions like obesity and cancer, the levels of IL-6
creted from adipocytes increase significantly [59,60]. In breast
ncer, the increase in adipocyte IL-6 secretion is regulated by
racrine interaction with tumor cells. The increased secretion of IL-6
CAAs and the pleiotropic roles associated with IL-6 make the
tential effects of adipocyte-derived IL-6 on breast cancer cells an
teresting area of research [30]. IL-6 is an inflammation-associated
tokine, with pleiotropic effects produced by a diverse cell
pulation including T cells, B cells, macrophages, monocytes,
broblasts, endothelial cells, and several tumor cells. IL-6 is involved
diverse cellular and physiological responses including immune

sponse, inflammation, hematopoiesis, and oncogenesis [61].
IL-6 gene expression is NF-κB dependent and produces a 26-kDa
otein [62]. IL-6 signaling occurs via two types of cellular receptors:
e membrane-bound ligand-binding chain, IL-6R (IL-6Ra,
D126), which ensures ligand specificity, and a signal-transducing
ain [63,64]. A receptor subunit is shared with other cytokines in
gure 1. Signaling pathway of IL-6. IL-6 secreted by cancer-associated
duces a cascade of JAK phosphorylation [2] that results in phosphor
her phosphorylated stat3 [4], translocates into the nucleus, binds to
der its control [5], which are usually involvedwith invasion, proliferation
ug resistance. SHP1/SHP2, PIAS, and SOCs are negative feedback reg
crete IL-6 and other inflammatory molecules [8] that stimulate WAT b
ermogenesis. CNTO-328 and tocilizumab are monoclonal antibodies t
e IL-6 family, gp130 homodimer (IL-6Rb, CD130), which is the
gnal-transducing component [63,64]. IL-6R and gp130 dimeriza-
on activates the Janus kinase 1/2 (JAK1/2) and the subsequent
osphorylation of the signal transducer and activator of transcription
(STAT3) by JAK1/2 in the cytoplasm [65], as shown in Figure 1.
hosphorylated STAT3 dimerizes with other STAT family members,
d the activated STAT3 complex translocates into the nucleus,
tivating the transcription of genes under STAT3 control including
clin D1, Bcl-xL, c-myc, Mcl1, and VEGF [62–64]. Genes
ntrolled by STAT3 are associated cancer traits such as angiogenesis,
ll survival, cell proliferation, and cell transformation [62–64]. The
K/STAT3 signaling pathway is regarded as the “classical” signaling
thway for IL-6. IL-6 signaling is terminated by the upregulation of
ppressor of cytokine signaling 3 gene via homologous or
terologous feedback regulation [62,63]. The extracellular signal-
gulated kinase 1 and 2 signaling pathways are also activated by
K1 through phosphorylation of the protein tyrosine phosphatase
nreceptor type 2 [62,63].
In cells that express gp130 but not IL6-Ra, an alternative to
assical IL-6 signaling occurs: the soluble type of the IL-6 receptor
IL-6R) produced by proteolytic cleavage of membrane-bound
-6R or alternative splicing of IL-6R mRNA [66,67]. SIL-6R binds
IL-6 and recruits gp130, allowing IL-6 signaling to occur [66,67].
his alternate pathway is referred to as IL-6 trans-signaling, and it is
oposed to act as a danger signal to enhance IL-6 responsiveness and
ive inflammatory events [67,68]. The IL-6sR expression has been
monstrated in human breast cancer cell lines, suggesting the
tential of IL-6 trans-signaling to mediate the effects of IL-6 in
east cancer cells [67,69]. IL-6 signaling can also occur through
adipocytes binds to the IL-6 receptor [1] on breast cancer cell and
ylation and activation of Stat3 [3]. Activated stat3 dimerizes with
target DNA sequences, and activates the transcription of genes
,metastasis, stemness, angiogenesis, immune suppression, and
ulated of the JAK/STAT pathway [6, 10, 11]. The tumor cells also
rowning [9] with increase in UCP1 expression, mitochondria, and
hat target and inhibit IL-6 activation of the JAK/Stat3 signaling [7].
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Table 1. Effects of Adipocytes–Cancer Cell Interactions

Mechanism Important Findings References

EMT (i) 3T3-L1 adipocytes induced an EMT phenotype and enhanced proliferation, migration, and invasion n TNBC cells. Lee et al., 2015
(ii) Depletion of IL-6 in adipose stromal cells inhibited migration and invasion in ER-negative breast cancer cells. Walter et al., 2009

Cancer stem cells (i) Matured adipocytes enhanced the mammosphere-forming cells and cells expressing stem-like markers in MCF-7,
MDA-MB-231, and T47D.

Picon-Ruiz et al., 2016

Cancer-associated cachexia (i) IL-6 from tumor cells induced a rapid weight loss and cachexia in xenograft mouse models; blocking IL-6 secretion
with shRNA rescued the cachectic phenotype.

Petruzzelli et al., 2016

(ii) Co-culture of breast cancer cells and adipocytes resulted in delipidation of adipocytes with overexpression of IL-6. Dirat et al., 2011
Therapeutic resistance (i) Co-culture of preadipocytes and mature human adipocytes with HER2-expressing breast cancer cells inhibited

trastuzumab-mediated ADCC via the secretion of soluble factors.
Duong et al., 2015

(ii) A 2D co-culture of mature adipocyte induced radioresistance in breast tumor cells; radioresistance in breast cancer
cells was associated with adipocyte-induced increase in IL-6 expression in tumor cells.

Bochet et al., 2011
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her kinase-dependent pathways including the MAPK pathway and
e PI3K/Akt pathway [62,63,70]. IL-6 expression is upregulated in
sponse to other adipokines, IL-1β, TNF-α, and TGF-β1, and a wide
nge of transcription factors such as NF-kB, Jun D proto-oncogene (Jun
), cAMP responsive element binding protein 1 (CREB1), and Jun
cogene (c-Jun), depending on cell type and ligand specificity [10,71].
The JAK/STAT signaling pathway regulates the expression of over
different cytokines or growth factors [70,72,73]. The pathway also
ays an important role in promoting tumorigenesis of diverse human
ncers. The effect of IL-6 on cancer cells is accomplished by both
tocrine and paracrine mechanisms [70,72]. Certain cancers (breast
ncer, lung cancer) have increased IL-6 gene expression, produce
rge amounts of IL-6, and also express the IL-6R and gp130 receptor
bunits; this allows for autocrine stimulation [61,74,75]. In other
ncers (myeloma and neuroblastoma), IL-6 stimulation occurs via
racrine stimulation since the tumor cells do not produce IL-6 but
press functional IL-6/gp130 receptor complex and thus respond to
-6 produced in the TME [76]. Paracrine signaling can still occur in
ncer cells that produce IL-6 and express its receptors since several
mponents of the TME also secrete IL-6 [76]. The possibility of
racrine signaling means the IL-6 secretion from stromal cells in the
ME is essential for these cells. Hence, IL-6 secreted by adipocytes
ay be essential in these types of cancers.

ole of adipocyte-derived IL-6 in breast cancer progression
It is now well established that breast cancer cell lines produce IL-6
R-positive cells and secrete lower levels than ER-negative cells] [77].
ther cells in the TME such as fibroblasts and macrophages secrete
-6, which stimulates the growth and invasiveness and induces
ithelial-mesenchymal transition (EMT) in breast cancer cells
8,78]. IL-6 also regulates the formation and maintenance of breast
ncer stem cells through STAT3 activation [78]. The pleiotropic
les of IL-6 in cancer progression make it a potential target for
erapy; however, these functions are not linked directly to
ipocytes. With attention directed at the role adipocytes play in
e breast cancer microenvironment, the potential role of adipocy-
-derived IL-6 in breast cancer progression is beginning to emerge.
veral members of the adipokines secreted by adipocytes have been
monstrated independently to regulate various aspects of breast
ncer progression. It can be hypothesized that adipokines secreted by
ipocytes may promote breast cancer proliferation, migration, and
vasion by similar established mechanism or other yet to be
entified mechanisms. The remaining section of the review focuses
the established role of IL-6 in the adipocyte–breast cancer cell

teraction and the potential role adipocyte-derived IL-6 may play in
ncer progression based on established functions of IL-6.
Role of Adipocyte-Derived IL-6 in EMT. The ability for epithelial
lls to transit into a mesenchymal status is key in development,
ound healing, stem cell behavior, and tumorigenesis; this process is
own as EMT [79]. It is a reversible biologic process where polarized
ithelial cells undergo molecular, genetic, and biochemical changes
d acquire a mesenchymal phenotype with enhanced tumorigenic
pacity [79]. EMT is characterized by the loss of cell junctions, loss
apical-basal polarity, reorganization of cytoskeleton, and repro-
ammed gene expression [79]. The completion of EMT is marked
the degradation of the basement membrane and the formation of a
esenchymal cell with enhanced migratory and invasion ability
9,80]. A reverse process known as MET that involves the
nversion of mesenchymal cells to their epithelial derivatives can
so occur when circulatory mesenchymal tumor cells settle in
vorable environments [79,81]. The process of EMT and MET
ustrates the inherent plasticity of the epithelial phenotype.
nderstanding of the EMT process is important since about 90%
cancer-associated death is due to metastasis and EMT is an
portant step in cancer cell metastasis [80,82].
A number of distinct molecular signals are required to induce
MT; the successful completion of the process requires the activation
transcription factors, expression of specific cell-surface proteins,
organization and expression of cytoskeletal proteins, production of
CM-degrading enzymes, and changes in the expression of specific
icroRNAs [79,81,83]. EMT is identified experimentally by the loss
E-cadherin expression (associated with epithelial phenotype) and
e increased expression of vimentin (associated with mesenchymal
enotype) [79,81]. Several genes are also involved in the EMT
ocess including Twist, Snail (SNAI1), Slug (SNAI2), SIP1, or zinc
ger E-box-binding (ZEB) and basic helix-loop-helix (bHLH)
anscription factors [81]. The EMT process is initiated by various
tracellular signals such as TGF-β and IL-6; these molecules activate
rious downstream signals such as the SMADs, PI3K/AKT, and
K/STAT3 that regulate EMT [83,84]. In breast cancer, the
idence of EMT is well documented; impaired e-cadherin expression
human breast tumors correlates with enhanced invasiveness,

etastatic potential, and decreased breast cancer patient survival [85].
Emerging evidence indicates that adipocytes are capable of
ducing similar effects when cultured with breast cancer cells. A
cent in vitro study demonstrated that a direct co-culture between
urine 3T3-L1–derived adipocytes and breast cancer cells of various
olecular subtypes [ER+, ER−, and triple-negative breast cancer
NBC)] induced an EMT phenotype and enhanced their
oliferation, migration, and invasion capabilities [35]. Although
e study did not demonstrate adipocyte-derived IL-6 as the cytokine
ducing EMT in the cells, results from similar studies with
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ipocyte-conditioned media both in vitro and in vivo indicate the
tential for IL-6 to induce EMT and enhance the migratory and
vasion capabilities of breast cancer cells [11,86,87]. Most
terestingly, adipose stromal cells co-cultured with ER-negative
DA-MB-231 breast cancer cells enhanced their migratory and
vasion capabilities. Co-injecting adipose stromal cell with
DA-MB-231 cells exhibited a more aggressive phenotype compared
MDA-MB-231 cells alone in mouse models [38,88]. Depletion of
-6 from adipose stromal cells (ASC)–conditioned medium
rogated the stimulatory effect of ASCs on the migration and
vasion of breast tumor cells [38]. (See Table 1). Collectively, these
udies demonstrate that adipocytes can induce EMT and enhance
e aggressive behavior of breast cancer cells, potentially via IL-6
cretion. Using human-derived adipocytes in co-culture with breast
ncer cells, we demonstrated similar adipocytes-enhanced prolifer-
ion, migration, and invasion in MCF-7 and MDA-MB-468 breast
ncer cells. Human adipocytes also reduced E-cadherin expression
d increased vimentin and ZEB1, which are characteristics of cells in
MT. We also showed that neutralizing adipocytes-derived IL-6 with
blocking antibody reduced the proliferation, migration, and
vasion capabilities of MCF-7 and MDA-MB-468 breast cancer
lls. Furthermore, blocking IL-6 decreased the expression of
MT-regulated transcription factors such as TWIST and SNAIL.
hese findings indicate that adipocyte-secreted IL-6 can induce
MT in breast cancer cells. Collectively, these findings indicate
e increased secretion of IL-6 by adipocytes and of interleu-
n-6 highlights the potential role of IL-6 in the adipocyte–
reast cancer interaction specifically in inducing EMT, which
hances the migratory and invasion capabilities of breast cancer
lls.
Role of Adipocyte-Derived IL-6 in Breast Cancer Stem Cell. Can-
r stem cells (CSCs; also called tumor initiating cells) are essential
ayers in tumorigenesis; they are considered as “tumor-initiating
lls” because of their ability to self-renewal and initiate a new whole
mor, like normal stem cells [89]. CSCs are highly tumorigenic cells
at exist within tumors; they produce daughter cells that form the
lk of the tumor cells while maintaining their unique ability of
lf-replication [89]. Characteristics of CSCs identified include their
ility to self-renew under nondifferentiation conditions and
ifferentiate into non–stem cancer cells, they have a high
morigenicity, and they form spheres (e.g., mammospheres for
east CSCs) and are resistant to chemotherapeutic drugs [89]. CSCs
ually constitute only a small proportion (0.05%-1%) of the tumor
ass and are present in a variety of cancers including breast cancer
ermed breast cancer stem cells (bCSCs)] [90]. The acquisitions of
em cell traits that influence the tumor initiation capability by breast
ncer cells has been linked to the induction of EMT programs
1,92]. Recent evidence supports a link between induction of EMT
d the acquisition of molecular and functional properties of stem
lls. In immortalized and transformed human mammary epithelial
lls, induction of EMT enhances their self-renewal and tumor-
itiating capabilities characterized by the expression of various
arkers associated with bCSCs [93,94] (a more detailed relationship
tween EMT and bCSCs is discussed in May et al. [95]). Breast
ncer stem cells influence cancer growth and the formation of
etastasis and have been hypothesized to be key drivers of cancer
0]. BRCA1 gene mutations are associated with an increased risk of
east cancer, and mutation in BRCA1 may contribute to the
cumulation of genetically unstable breast cancer stem cells [96].
arious biomarkers have been identified in BCSCs, such as high
pression of CD44, aldehyde dehydrogenase 1, CD133 (prominin-1),
D49f, and ITGA6 and low or undetectable levels of CD24 [96–98].
hese markers are not expressed universally across bCSCs isolated from
fferent breast cancer subtypes, but are expressed differentially according
subtype and are influenced by signals from the TME [96–98]. There is
eat interest in identifying factors that activate the development of
SCs and the role of bCSCs in metastasis. As no conventional therapy
esently targets CSCs, CSCsmay be potentially responsible for resistance
therapy and tumor recurrence.
The myriad of regulatory factors in the TME can modulate the
tivities of transcription factors and genes involved in the
velopment of CSCs. Emerging studies indicate that IL-6 has
tential to regulate CSCs self-renewal and may be responsible for
aintaining a stable balance between CSCs and non–stem cancer cell
3,99]. Several signaling pathways such as Notch, Hedgehog, Wnt,
d Oct-4/SOX2/Nanog axis have been identified as regulators of
SCs survival and proliferation [48,84,100]. IL-6 secretion is linked
all four pathways, and these pathways are frequently dysregulated
human cancers [84,100]. In a recent study, Kim et al. using
DA-MB-231 and MDA-MB-453 breast cancer cells expressing
emness genes and control cells demonstrated that nonstem cells but
t CSC-like cells produced IL-6, which activated the JAK1-STAT3
gnal transduction pathway, resulting in the conversion of nonstem
lls into stem-like cells through upregulation of Oct-4 [13], (See
able 1). This study indicates that IL-6 secreted from nonstem cells
ays an important role in the conversion of non-CSCs to CSCs
rough activation of the JAK1-STAT3-Oct-4 signal transduction
thway. Picon-Ruiz et al. present the strongest evidence in support
a role of adipocyte-derived IL-6 in driving breast cancer stem cells.
hey demonstrated that co-culturing matured adipocytes with breast
ncer cells (MCF-7, MDA-MB-231, and T47D) with different
olecular traits resulted in an increased secretion of proinflammatory
tokines by adipocytes [36]. Prolonged co-culture of cancer cells
ith adipocytes increased the proportion of mammosphere-forming
lls and of cells expressing stem-like markers in vitro [36]. Hence,
ey proposed an increased secretion of cytokines such as IL-6 in
ipocyte co-cultured cancer cells and activated Src, thus promoting
x2, c-Myc, and Nanog upregulation resulting in the emergence of
em cell traits [36]. This demonstrates the potential for adipose-der-
ed IL-6 to activate various signal pathways linked to the
velopment of breast cancer stem cells. However, further studies
e required clearly elucidate the role of adipocytes in promoting
SC characteristics.
Role of Adipocyte-Derived IL-6 in Cancer-Associated Cachexia. -

achexia is a life-threatening condition associated with several
thologies, including cancer, acquired immunodeficiency syndrome,
rgery, malabsorption, and severe sepsis [101]. Understanding of the
llular and physiological mechanism of cachexia is particularly key in
ncer since it occurs in approximately 80% of all cancers and
counts for 20% of cancer-associated deaths [102]. Depletion of
ipose tissue stores, loss of skeletal mass in several organs, and weight
ss are key features of cachexia [101,102]. Symptoms of cachexia
clude loss of total body mass, anorexia, general inflammation, and
onounced muscle wasting [101,102]. Muscle wasting in cachexia
volves chest, diaphragm, and cardiac muscle, accounting for the
gh levels of respiratory or cardiac failure deaths associated with
chexia [101,102]. Cancer-associated cachexia patients are usually
ss tolerant to radio- and chemotherapy, limiting therapeutic options
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r patients. Hence, a detailed understanding of the molecular and
gulatory mechanism of cancer-associated cachexia is needed to
velop potential therapies [101–103]. Cachexia is a considered a
neralized inflammatory state, with several inflammatory cytokines
plicated including IL-6, TNF-α, IL-1β, and interferon-γ [104].
mong the different cytokines associated with cachexia, IL-6 is
entified as an essential regulator in the maintenance of body mass
ring disease and a key regulator of cancer cachexia [104]. The
tential role of IL-6 in cancer cachexia stems from its potential role
WAT browning, as shown in Figure 1. WAT browning is the
velopment of BAT markers in WAT in response to specific
gulatory stimuli [105]. It has been demonstrated that with an
propriate stimulus such as chronic cold exposure, hormonal
imuli, and pharmacological treatment, brown fat–like genes can
expressed in WAT, inducing a BAT phenotype [105,106]. This
enomenon is reported in cancer cachexia, the progressive
ansdifferentiation of WAT into BAT, which expresses UCP-1,
omotes thermogenesis, and results in the loss of adipose tissue [31].
hite adipose tissue browning strongly contributes to the increased
ergy expenditure and loss of adipose tissue common in cachectic
tients [107]. Proinflammatory factors such as IL-1, IL-6, and
NFα derived from the host immune system or the tumor have been
own to contribute WAT browning [104].
IL-6–induced development of cachexia is also attributed to the
tered metabolism that occurs in adipocytes co-cultured with cancer
lls. CAAs exhibit inhibiting lipid biosynthesis and an increase the
te of lipid catabolism [11,30,32]. IL-6 is also associated with
rophy and increased catabolism of muscle protein [108]. Cachectic
ncer patients and weight-losing patients have elevated systemic IL-6
vels compared to control groups [15]. A study by Iwase et al.
ported IL-6 as the only cytokine elevated in 28 cachectic patients
d the levels of IL-6 further increased as the patients approached
ath [15]. While this study does not establish adipocytes as the sole
urce of increased IL-6, the increased secretion of IL-6 by adipocytes
akes them a prime candidate. A more confirmatory role of IL-6 in
ncer-associated cachexia comes from a recent study by Petruzzelli et
. In their elegant study, they showed that IL-6 from C26 tumor cells
duced a rapid weight loss and cachexia in xenograft mouse models;
ocking IL-6 secretion with shRNA rescued the cachectic phenotype
1] (See Table 1). More importantly silencing IL-6 blocked
creased UCP1 expression in adipose tissue and reduced the
creased mitochondrial respiration induced by IL-6–secreting
mor cells [31]. In another study, removal of tumors from cachectic
dents resulted in body mass returning to normal and circulating
-6 levels significantly decreasing [109]. These studies illustrate the
tential role of adipocyte-derived IL-6 in cachexia development via
tivation of IL-6 signaling. Agents like Suramin, a polysulfonated
phthyl urea, inhibit the binding of IL-6 to cell surface receptor
bunit, and inhibit the development of cachexia cancer models,
dicating the potential for agents targeting IL-6 to inhibit cachexia
01]. These studies indicate that IL-6 may play an active role in the
chectic process; however, further research is needed to understand if
-6 acts alone or functions in synergy with other inflammatory
ctors to induce cachexia development.
Potential Role of Adipocyte-Derived IL-6 in Therapeutic Resistan-

. The emergence of evidence that the TME influences cancer
itiation, progression, and metastasis has raised interest in the
tential role of the TME and its stromal cell populations in targeted
ug resistance. Therapeutic resistance has been linked to the
creased production of inflammatory cytokines including IL-6, IL-8,
d TNFα [110]. In various cancers, increased IL-6 levels contribute
poor therapeutic gain, tumor relapse, and aggressive tumor growth
10,111]. In ovarian cancer, patients with reduced levels of IL-6
spond better to therapy than those with higher levels [112]. In
ostate cancer, inhibition of IL-6 secretion increased the sensitivity
cancer cells to anticancer drugs [113]. These studies indicate that
creased IL-6 production by tumor cells may offer a protective
echanism against drug-induced cell death. In breast cancer patients,
evated serum levels of IL-6 have been associated with poorer
ognosis and therapeutic resistance [114]. The role of IL-6 in
erapeutic resistance in breast cancer is supported by the observation
at multidrug-resistant cancer cells produced high levels of IL-6,
hereas drug-sensitive counterparts do not express IL-6 [115].
reatment with exogenous IL-6 rendered drug-sensitive cells resistant
several chemotherapy agents (doxorubicin, vincristine, and taxol),
dicating that the expression of IL-6 in cancer cells may be key to
ncer cells becoming resistant to multiple therapeutic agents [116].
he exact mechanism by which IL-6 induced resistance has not been
lly elucidated; however, it seems that IL-6–mediated STAT3
tivation induces increased expression of the multidrug resistance
nes MDR1 and C/EBPβ and C/EBPδ (CCAAT enhancer-binding
otein family of transcription factors) [111]. These findings clearly
dicate a role of IL-6 in therapeutic resistance but not directly linked
adipocyte-derived IL-6. In a recent study, co-culture of

eadipocytes and mature human adipocytes with HER2-expressing
east cancer cells inhibited trastuzumab-mediated antibody-depen-
nt cellular cytotoxicity (ADCC) via the secretion of soluble factors
vitro and was also validated in vivo in a mouse xenograft model
17]. The study, however, did not identify IL-6 as the main factor
sponsible for the effect but underlines the potential role of
ipocytes in breast cancer cell resistance to trastuzumab [117]. In a
milar study, Bochet et al. demonstrated using a 2D co-culture
stem mature adipocyte-induced radioresistance in breast tumor cells
18]. Interestingly, radioresistance in breast cancer cells was
sociated with adipocyte-induced increase in IL-6 expression in
mor cells, and postincubation of irradiated tumor cells with
combinant IL-6 was able to reproduce the radioprotective effect
18]. (See Table 1). These observations, although not conclusive,
ighten the potential role of adipocyte-derived secretory factors
articularly IL-6) in adipocytes-induced therapeutic resistance
breast cancer cells. Hence, targeting IL-6 may offer an

ternative approach to minimizing therapeutic resistance, and
e levels of IL-6 could serve as a key marker for the development
resistance.
Potential Role of Adipocyte-Derived IL-6 in Angiogenesis. In
dition to the catalog of tumor-promoting functions played by IL-6,
has also been reported to play an active role in angiogenesis and
scular remodeling in the TME [119]. The downstream signaling
thways associated with IL-6, particularly the targets of STAT3,
ve been linked to angiogenesis [120]. Tumor neoangiogenesis is
sential for the growth of tumors beyond 1 mm; the formation of
ese vessels is regulated by both pro- and antiangiogenic factors
21]. The presence of high levels of proangiogenic molecules over
tiangiogenic molecules, coupled with the hypoxic and inflamma-
ry conditions in the TME, causes a switch in favor of proangiogenic
ate [121]. The resulting effect is the development of new vasculature
support the tumor growth. A key player in the angiogenesis process
vascular endothelial growth factor (VEGF). a 45-kDa glycoprotein
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idely accepted to be the essential driver of angiogenesis [121].
EGF also increases tumor vessel dilatation, permeability, and
aking [121]. The effects of VEGF are potentiated by the hypoxic
ndition present in the tumor, where the low oxygen level results in
creased expression of HIF-1α, which upregulates the expression of
EGF mRNA, promoting angiogenesis. Induction of HIF-1α and
EGF upregulation have been shown to occur under inflammatory
nditions, which are common in tumors [120,122]. Hence, it is
gical to think that mediators of inflammation in the tumor
icroenvironment may be key regulators of HIF-1α and VEGF. The
eiotropic role played by IL-6 in tumorigenesis makes it an ideal
ndidate in this relationship, and various studies have revealed the
ility of IL-6 to regulate HIF-1α and VEGF expression through the
K/STAT3 signaling [123]. Studies in malignant cell lines showed that
-6 can stimulate VEGF signaling, andRNA-seq experiments reported a
sitive association between IL-6 and VEGF mRNA levels [119].
Niu et al. showed by chromatin immunoprecipitation that the
wnstream target of IL-6, STAT3, binds directly to the VEGF
omoter, upregulates VEGF, and influences tumor angiogenesis.
he study also demonstrated that treatment of cells with IL-6
gnificantly induced VEGF mRNA [122]. The effects of IL-6 on
giogenesis are also associated with several other processes including
omoting endothelial progenitor cell migration, regulation of bFGF,
imulation of vascular smooth muscle cell (VSMC) migration, and
duction of platelet-derived growth factor–mediated VSMC prolif-
ation [14]. The notch signaling pathway and its ligands jagged-1
d Delta-like ligand 4 also regulate various aspects of tumor
giogenesis [14], Sansone et al. showed in breast cancer cells that
-6 is able to stimulate notch-dependent upregulation of jagged-1
sulting in their aggressive phenotype; hence, IL-6 may regulate
giogenesis via the Notch-dependent signaling [124]. In ovarian
ncer xenografts models treated with anti–IL-6 antibody, tumor
sculature was reduced significantly with the inhibition of the Notch
and Jagged-1 [112]. In clinical studies in ovarian cancer,
erapeutic neutralizing anti–IL-6 antibody reduced systemic
EGF levels [112]. Collectively, studies in humans and animal
odels indicate the potential for IL-6 to drive abnormal angiogenesis
d that the anti–IL-6 antibody holds potential as an antiangiogenic
ent. Correlating these independent functions of IL-6 to the
creased secretion of IL-6 from adipocytes in breast cancer, it is
gical to assume a similar function for adipocyte-derived IL-6. The
quisition of an inflammatory state with increased IL-6 secretion in
ipocytes, combined with the hypoxic microenvironment, creates an
eal environment for adipocyte IL-6 to drive angiogenesis via
regulation of STAT3 and VEGF expression.
Potential for Targeting the IL-6 Pathways for Targeted Therapy in

reast Cancer. The plethora of regulatory and modulatory functions
ayed by IL-6 in cancer makes it a potential target for targeted
erapy. This potential has resulted in the development of various
ti–IL-6 agents, including the anti–IL-6R mAb tocilizumab, as a
bust inhibitor of IL-6/STAT3 activity [125]. Overexpression of
th IL-6 and its receptors (IL-6R and sIL-6R) occurs in several
ncers including multiple myeloma, lung cancer, colorectal cancer,
rvical cancer, breast cancer, and ovarian carcinoma [126]. Elevated
vels of IL-6 have been found in the serum of cancer patients and the
lture supernatant of multidrug-resistant cell lines [50]. Hence,
ocking IL-6 may serve as a therapeutic option for cancer with
creased expression of IL-6. Various cancer clinical trials (in ovarian
ncer, breast cancer, and multiple myeloma) indicate a potential for
rgeted anti–IL-6 antibody therapy [127]. These studies used various
rgeted agents against IL-6, including IL-6–conjugated toxins and
urine or humanized monoclonal antibodies (mAbs) against IL-6
d IL-6R. IL-6–conjugated toxin therapy involved conjugating the
-6 gene to a pseudomonas exotoxin or diphtheria toxin genes [125].
he approach may not be viable since normal cells expressing IL-6R
e also targeted. An alternative approach includes using mAbs against
-6, either a murine humanized anti–IL-6 monoclonal antibody or a
man anti–IL-6 monoclonal antibody [128]. CNTO 328 (Siltux-
ab), a human-mouse chimeric antibody, has shown considerable
nefit clinically. CNTO 328 is constructed from the variable
tigen-binding region of a murine anti–IL-6 mAbs (with antitumor
d anti-inflammatory activities) containing the antigen binding
gion of the human immunoglobulin G kappa (IgG κappa)
munoglobulin [128–130]. CNTO 328 has been shown to be
ithout any significant immunogenicity and with a long half-life
pproximately 2 weeks) [129]. CNTO 328 effectively inhibited
nding of IL-6 to the IL-6R; suppressing IL-6 induced JAK/Stat3
gnaling, effectively blocking IL-6/IL-6R/gp130 signal transduction
25,130,131], as shown in Figure 1. Treatment with CNTO 328
creases activation of Stat3 downstream proteins, including MCL-1
d Bcl-XL. CNTO 328 thus successfully neutralizes the function of
-6, offering an antitumor and anti-inflammatory effect, and reduces
ncer-related anorexia and cachexia [125,130,131]. These beneficial
fects of CNTO 328 antibody have been shown in different cancers
cluding multiple myeloma, ovarian cancer, and prostate cancer
31]. In a CNTO 328 ovarian cancer trial, patients treated for 6
onths have a significant decline in plasma levels of IL-6–regulated
CL2, CXCL12, and VEGF [132]. CNTO 328 was well tolerated
d stabilized disease in N50% of progressive metastatic renal cell
ncer patients [133,134]. No adverse events related to CNTO 328
eatment were observed in prostate cancer patients, with patients
ceiving CNTO 328 showing higher levels of apoptosis markers,
ith a decrease in pStat3 and p44/p42 mitogen-activated protein
nases [135,136]. Tocilizumab (namely, MRA) has emerged as a
bust inhibitor of IL-6/STAT3 activity since it inhibits both the
assical and trans–IL-6 signaling [137]. Tocilizumab is a humanized
ti–human IL-6R antibody engineered by complexing the comple-
entarily determining regions of a mouse anti-human IL-6R
tibody into human IgG1k to create a human antibody with a
man IL-6R binding site [127,137]. Therapies strictly targeting
-6R using tocilizumab have been shown to be effective in treating
al squamous cell carcinoma through inhibiting angiogenesis
27,138]. The success of the various anti–IL-6 therapies emphasizes
e central role of IL-6 in cancers; however, more research is still
quired to better understand the mechanism of action of these
erapies and the likelihood of patients developing resistance to the
erapies.

onclusion
he tumor microenvironment is composed of various components
d cells that have been demonstrated to influence breast cancer
morigenesis via paracrine interaction with the tumor cells.
dipocytes are abundant in the breast cancer microenvironment
d secrete an array of growth factors, hormones, and cytokines that
ve been implicated in cancer initiation, migration, metastasis, and
erapeutic resistance. The pleiotropic cytokine IL-6 has been
monstrated to regulate several of the processes in tumorigenesis.
s research continues to identify unique biomarkers and novel targets
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r targeted therapy, the tumor microenvironment has begun to gain
uch attention. An understanding of the functions played by the
rious components in the tumor microenvironment may provide
ternative targets for future therapy. The abundance of adipocytes in
e tumor microenvironment makes them key targets for such
udies. Much research is required to understand the heterotypic
osstalk between tumor cells and adipocytes, particularly in
derstanding the key adipokines that stimulate tumor growth and
ose that inhibit tumor progression. Such studies would serve as a
eans for screening potential candidates in tumor growth or
hibitions and provide alternative targets for breast cancer therapy.
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