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Abstract
OBJECT: Our purpose was to provide data regarding relationships between different imaging and histopathological
parameters in HNSCC. METHODS: MEDLINE library was screened for associations between different imaging
parameters and histopathological features in HNSCC up to December 2017. Only papers containing correlation
coefficients between different imaging parameters and histopathological findings were acquired for the analysis.
RESULTS:Associationsbetween 18F-FDGpositron emission tomography (PET) andKI 67were reported in 8 studies (236
patients). The pooled correlation coefficient was 0.20 (95% CI = [−0.04; 0.44]). Furthermore, in 4 studies (64 patients),
associations between 18F-fluorothymidine PET and KI 67 were analyzed. The pooled correlation coefficient between
SUVmax andKI 67was 0.28 (95%CI= [−0.06; 0.94]). In 2 studies (23 patients), relationships between KI 67 and dynamic
contrast-enhancedmagnetic resonance imagingwere reported. Thepooled correlationcoefficient between Ktrans andKI
67was−0.68 (95%CI= [−0.91;−0.44]). Two studies (31 patients) investigated correlation between apparent diffusion
coefficient (ADC) and KI 67. The pooled correlation coefficient was−0.61 (95% CI = [−0.84;−0.38]). In 2 studies (117
patients), relationships between 18F-FDG PET and p53 were analyzed. The pooled correlation coefficient was 0.0 (95%
CI= [−0.87; 0.88]). Therewere 3 studies (48 patients) that investigated associations betweenADCand tumor cell count
inHNSCC. Thepooled correlation coefficientwas−0.53 (95%CI= [−0.74;−0.32]). Associationsbetween 18F-FDGPET
and HIF-1αwere investigated in 3 studies (72 patients). The pooled correlation coefficient was 0.44 (95% CI = [−0.20;
1.08]). CONCLUSIONS: ADC may predict cell count and proliferation activity, and SUVmax may predict expression of
HIF-1α in HNSCC. SUVmax cannot be used as surrogate marker for expression of KI 67 and p53.
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troduction
ead and neck squamous cell carcinoma (HNSCC) is one of the most
equent malignancies [1]. HNSCC shows often a worse prognosis,
ith a 5-year survival rate of 50% [2]. Multiple factors influence tumor
ology in HNSCC. According to the literature, different molecular
arkers play a key role here [3]. Previous reports investigated numerous
omarkers and suggested that some histopathological parameters can
edict tumor behavior in HNSCC [3,4]. It has been shown that they
ovide information about tumor aggressiveness, prognosis, and
erapy response [3–5]. For instance, proliferation index KI 67 predicts
mor aggressiveness in HNSCC [3]. Another biomarker,
poxia-inducible factor (HIF)-1α, has been reported as predictor of
orse prognosis of HNSCC [5].
Previously, some reports described significant associations between
aging parameters and histopathological features in HNSCC [6–8]. It
s been shown that parameters of positron emission tomography
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Table 1. Involved Studies and Analyzed Parameters

Author, Year Included
Patients

Study
Design

Imaging
Modality

Analyzed Imaging
Parameters

KI 67
Surov et al., 2016 [8] 11 Prospective 18F-FDG PET SUVmax

Rasmussen et al., 2015 [15] 102 Retrospective 18F-FDG PET SUVmax

Grönroos et al., 2014 [10] 15 Retrospective 18F-FDG PET SUVmax

Hoshikawa et al., 2011 [20] 31 Prospective 18F-FDG PET
18F-FLT PET

SUVmax

Deron et al., 2011 [17] 25 Retrospective 18F-FDG PET SUVmax

Linecker et al., 2008 [11] 18 Retrospective 18F-FDG PET
18F-FLT PET

SUVmax

Kitagawa et al., 2003 [21] 20 Retrospective 18F-FDG PET SUVmax

Jacob et al., 2001 [7] 14 Retrospective 18F-FDG PET SUVmax

Hoeben et al., 2014 [19] 5 Prospective 18F-FLT PET SUVmax

Troost et al., 2007, [22] 10 Retrospective 18F-FLT PET SUVmax

Surov et al., 2017 [9] 11 Prospective DCE MRI Ktrans

Jansen et al., 2012 [14] 12 Retrospective DCE MRI Ktrans

Surov et al., 2016 [8] 11 Prospective MRI DWI ADC
Swartz et al., 2018 [23] 20 Retrospective MRI DWI ADC
P53
Rasmussen et al., 2015 [15] 102 Retrospective 18F-FDG PET SUVmax

Grönroos et al., 2014 [10] 15 Retrospective 18F-FDG PET SUVmax

Cell count
Surov et al., 2016 [8] 11 Prospective MRI DWI ADC
Driessen et al., 2014 [12] 16 Prospective MRI DWI ADC
White et al., 2006 [13] 21 Retrospective MRI DWI ADC
HIF-1α
Grönroos et al., 2014 [10] 15 Retrospective 18F-FDG PET SUVmax

Han et al., 2012 [18] 33 Retrospective 18F-FDG PET SUVmax

Zhao et al., 2014 [16] 24 Prospective 18F-FDG PET SUVmax

18F-FDG PET, fluorine-18 fluorodeoxyglucose positron emission tomography; 18F-FLT PET,
fluorine-18 fluorothymidine positron emission tomography; SUVmax, maximal standardized uptake
value; DCE MRI, dynamic contrast-enhanced magnetic resonance imaging; DWI, diffusion-
weighted imaging; ADC, apparent diffusion coefficient.
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ET) like standardized uptake values (SUVs) correlated with KI 67 [7].
rthermore, some reports indicated that apparent diffusion coefficient
DC) as quantitative parameter of diffusion-weighted imaging (DWI)
associated with several biomarkers in HNSCC [8]. Finally, also some
rameters of dynamic contrast-enhanced magnetic resonance imaging
CE MRI), especially volume transfer constant Ktrans, have been
ported to be associated with different histopathological features in
NSCC [9]. However, the reported data were inconsistent. While
me authors found an association between imaging parameters and
stological findings in HNSCC, others did not [6–12]. Furthermore,
ost studies investigated small number of patients only.
Therefore, the purpose of this meta-analysis was to provide data
garding relationships between different imaging and histopathological
rameters in HNSCC.

aterial and Methods

ata Acquisition
MEDLINE library was screened for associations between different
aging parameters and histopathological features in HNSCC up to
ecember 2017. Firstly, for association between PET and histopathol-
y, the following search words were used: “PET or positron emission
mography AND neck AND squamous cell carcinoma”. Overall, 1044
cords were identified. Review articles (n=190), case reports (n=75), and
n-English publications (n=30) were excluded. Thereafter, abstracts of
e remaining 749 articles were checked, and only papers containing
rrelation coefficients between PET and histopathological parameters
ere acquired for further analysis. There were 12 publications.
Secondly, for associations betweenDWIMRI and histopathology, the
llowing search words were used: “DWI or diffusion weighted imaging
ADC or apparent diffusion coefficient or positron emission

mography AND neck AND squamous cell carcinoma”. Here, 107
cords were found. After exclusion of reviews (n=9), case reports (n=2),
d non-English publications (n=1), abstracts of 95 publications were
alyzed. Papers (n=91) which did not contain correlation coefficients
tween ADC and histopathology were excluded. Therefore, four articles
ere included into this meta-analysis.
Thirdly, data about associations between DCE MRI parameters and
stopathological findings were acquired. For this search, the following
ords were used: “DCE or dynamic contrast enhancement AND neck
ND squamous cell carcinoma”. Overall, 64 records were identified.
eviews (n=5) and non-English publications (n=1) were excluded.
hereafter, we checked abstracts of the remaining 59 publications. In 57
ticles, no correlation coefficients between DCEMRI and histopatholog-
al parameters were reported, and these publications were also excluded.
herefore, only two articles were included into the meta-analysis.
One article contained correlation coefficients both between ADC
rsus histopathology and PET versus histopathology (n=9). Therefore,
e present meta-analysis involved 17 publications [7–23]. In these
ticles, correlations between different imaging and histopathological
atures were analyzed (Table 1).
The following data were extracted from the literature: authors, year of
blication, number of patients, imaging parameters, histopathological
rameters, and correlation coefficients.
The Preferred Reporting Items for Systematic Reviews and
eta-Analyses statement was used for the research [24].

eta-Analysis
The methodological quality of the acquired 15 studies was
dependently checked by two observers (A.S. and H.J.M.) using
e Quality Assessment of Diagnostic Studies (QUADAS) instrument
cording to previous descriptions [25]. Table 2 shows the results of
UADAS proving.
Associations between imaging parameters and histopathological
dings were analyzed by Spearman's correlation coefficient. The
ported Pearson's correlation coefficients in some studies were
nverted into Spearman's correlation coefficients according to the
evious description [26].
Furthermore, the meta-analysis was undertaken by using RevMan
3 (Computer program, version 5.3. Copenhagen: The Nordic
ochrane Centre, The Cochrane Collaboration, 2014). In addition,
terogeneity was calculated by means of the inconsistency index I2

7,28]. Also DerSimonian and Laird random-effects models with
verse-variance weights were used without any further correction [29].

esults

I 67
Associations between 18F-FDG PET and KI 67were reported in
studies (236 patients) (Table 1). Here, the calculated correlation
efficients between SUVmax and KI 67 ranged from −0.11 to 0.77
igure 1). The pooled correlation coefficient was 0.20 (95% CI =
0.04; 0.44]).
Furthermore, in 4 studies (64 patients), associations between
F-fluorothymidine (FLT) PET and KI 67 were analyzed (Table 1).
he pooled correlation coefficient between SUVmax and KI 67 was
28 (95% CI = [−0.06; 0.94]) (Figure 2).
In 2 studies (23 patients), relationships between KI 67 and DCEMRI
trans) were reported (Table 1). The pooled correlation coefficient
tweenKtrans andKI 67was −0.68, (95%CI = [−0.91; −0.44]) (Figure 3).
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Table 2. Methodological Quality of the Involved Studies According to the QUADAS Criteria

Study Patient
Spectrum

Selection
Criteria

Reference
Standard

Disease
Progression
Bias

Partial
Verification
Bias

Differential
Verification
Bias

Incorporation
Bias

Text
Details

Reference
Standard
Details

Text
Review
Details

Diagnostic
Review
Bias

Clinical
Review
Bias

Uninterpretable
Results

Withdrawals
Explained

Deron et al., 2011 [17] Yes Unclear Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Driessen et al., 2014 [12] Yes Yes Yes Yes Yes Yes Yes Yes Yse No No Yes Yes Yes
Grönroos et al., 2014 [10] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Han et al., 2012 [18] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Hoeben et al., 2014 [19] Yes Yes Yes Unclear Yes Yes Yes Yes Yes Unclear Unclear Yes Yes yes
Hoshikawa et al., 2011 [20] Yes Unclear Yes Unclear Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Jacob et al., 2001 [7] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Jansen et al., 2012 [14] Yes Unclear Yes Yes Yes Yes Yes Yes Yes Unclear Unclear Yes Yes Yes
Kitawaga et al., 2003 [21] Yes yes Yes Unclear Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Linecker et al., 2008 [11] Yes Unclear Yes Unclear Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Rasmussen et al., 2015 [15] Yes Unclear Yes Unclear Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Swartz et al, 2018 [23] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Surov et al, 2016 [8] Yes Unclear Yes Unclear Yes Yes Yes Yes Yes No No Yes Yes Unclear
Surov et al, 2017 [9] Yes Unclear Yes Unclear Yes Yes Yes Yes Yes No No Yes Yes Unclear
Troost et al., 2007 [22] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
White et al., 2006 [13] Yes Unclear Yes Yes Yes Yes Yes Yes Yes Unclear Unclear Yes Yes yes
Zhao et al., 2014 [16] Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes yes
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Finally, in 2 studies (31 patients), associations between ADC and KI
were analyzed (Table 1). The pooled correlation coefficient between
e investigated parameters was −0.61, (95% CI = [−0.84; −0.38])
igure 4).

53
In 2 studies (117 patients), relationships between 18F-FDGPET and
3 were analyzed (Table 1). The pooled correlation coefficient
tween these parameters was 0.0 (95%CI = [−0.87; 0.88]) (Figure 5).

ell Count
There were 3 studies (48 patients) that investigated associations
tween ADC and tumor cell count in HNSCC (Table 1). The reported
rrelation coefficients ranged from −0.57 to 0.40 (Figure 6). The pooled
rrelation coefficient was −0.53 (95% CI = [−0.74; −0.32]).

IF-1α
Associations between 18F-FDG PET and HIF-1α were investigated
3 studies (72 patients) (Table 1). The reported correlation coefficients
nged from −0.19 to 0.99 (Figure 7). The pooled correlation
efficient was 0.44 (95% CI = [−0.20; 1.08]).
Study or Subgroup
Deron 2011

Grönroos 2014

Hoshikawa 2011a

Jacob 2001

Kitagawa 2003

Linecker 2008a

Rasmussen 2015

Surov 2016

Total (95% CI)
Heterogeneity: Tau² = 0.08; Chi² = 25.73, df = 7 (P = 0.0006); I² = 7

Test for overall effect: Z = 1.60 (P = 0.11)

correlation
0.19

0.08

-0.11

0.77

-0.03

0.13

0.16

0.25

SE
0.2

0.27

0.18

0.12

0.23

0.24

0.1

0.3

Weight
12.6%

9.9%

13.4%

15.9%

11.4%

11.0%

16.7%

9.0%

100.0%

IV, Random
0.19 [-0.2

0.08 [-0.4

-0.11 [-0.4

0.77 [0.5

-0.03 [-0.4

0.13 [-0.3

0.16 [-0.0

0.25 [-0.3

0.20 [-0.0

oitalerroc

Figure 1. Forest plots of correlation coefficients betwee
iscussion
o the best of our knowledge, this is the first meta-analysis about
lationships between different imaging parameters and histopathology
HNSCC.
Previously, only few reports investigated this question. Our
eta-analysis showed that different imaging parameters reflect different
stopathological features. Furthermore, some findings are very
rprisingly. As seen, neither 18F-FDG nor 18F-FLT PET reflects
oliferation activity in HNSCC estimated by KI 67 expression. KI 67 is
nonhistone nuclear protein synthesized throughout the whole cell cycle
cept the G0 phase and has been shown to be responsible for cell
oliferation [3,4]. It is an established biomarker in HNSCC. Our
ding is difficult to explain. Theoretically, PET parameters, reflecting
etabolic activity, should be associated with the proliferation index.
owever, almost all reports involved in the present work did not identify
atistically significant correlations between SUVmax and KI 67.
reviously, this phenomenon was observed also in other malignancies
e thyroid cancer, esophageal carcinoma, gastric cancers, andmalignant
elanoma [30]. Overall, our meta-analysis suggests that SUVmax cannot
used as a surrogate marker for proliferation activity in HNSCC.
3%

, 95% CI
0, 0.58]

5, 0.61]

6, 0.24]

3, 1.01]

8, 0.42]

4, 0.60]

4, 0.36]

4, 0.84]

4, 0.44]

noitalerrocn
IV, Random, 95% CI

-1 -0.5 0 0.5 1

negative positive

n SUVmax retrieved from 18F-FDG PET and KI 67.

Image of Figure 1
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Study or Subgroup
Hoeben 2014

Hoshikawa 2011b

Linecker 2008b

Troost 2007

Total (95% CI)
Heterogeneity: Tau² = 0.18; Chi² = 15.23, df = 3 (P = 0.002); I² = 80%

Test for overall effect: Z = 1.16 (P = 0.25)

correlation
0.8

-0.1

-0.06

0.45

SE
0.18

0.18

0.24

0.26

Weight
26.7%

26.7%

23.8%

22.9%

100.0%

IV, Random, 95% CI
0.80 [0.45, 1.15]

-0.10 [-0.45, 0.25]

-0.06 [-0.53, 0.41]

0.45 [-0.06, 0.96]

0.28 [-0.19, 0.74]

noitalerrocnoitalerroc
IV, Random, 95% CI

-1 -0.5 0 0.5 1

negative positive

Figure 2. Forest plots of correlation coefficients between SUVmax retrieved from 18F-FLT PET and KI 67.

Study or Subgroup
Jansen 2012

Surov 2017

Total (95% CI)
Heterogeneity: Tau² = 0.00; Chi² = 0.14, df = 1 (P = 0.71); I² = 0%

Test for overall effect: Z = 5.74 (P < 0.00001)

correlation
-0.71

-0.62

SE
0.15

0.19

Weight
61.6%

38.4%

100.0%

IV, Random, 95% CI
-0.71 [-1.00, -0.42]

-0.62 [-0.99, -0.25]

-0.68 [-0.91, -0.44]

noitalerrocnoitalerroc
IV, Random, 95% CI

-1 -0.5 0 0.5 1

negative positive

Figure 3. Forest plots of correlation coefficients between Ktrans and KI 67.
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Furthermore, we found thatKtrans correlated inversely strong with KI
. According to the literature, Ktrans represents vessel permeability and
flects the diffusion of contrast medium from the plasma through the
ssel wall into the interstitial space [9]. It has been shown that this
rameter can distinguish malignant and benign lesions. For instance,
nign breast lesions showed statistically significant lower Ktrans values
an malignant tumors [31]. Furthermore, Ktrans correlated also with
mor grading and can discriminate low-grade and high-grade tumors
1]. Based on these data, presumably, Ktrans should correlate positively
ith proliferation activity of several tumors, in particular, in HNSCC.
owever, our results did not confirm this assumption. Furthermore,
th involved studies showed inverse statistically significant correlations
tween Ktrans and KI 67 in HNSCC [9,14]. The exact cause of this
enomenon is unclear. Hypothetically, high proliferative lesions may
ve a small number of vessels in relation to tumor cells and/or
oliferation index. This may result in the calculated inverse correlation
tweenKtrans and KI 67. Independent of possible pathomechanisms of
teraction between Ktrans and KI 67, our meta-analysis showed that
trans may be used as a surrogate marker for proliferation potential in
Study or Subgroup
Surov 2016

Swartz 2018

Total (95% CI)
Heterogeneity: Tau² = 0.00; Chi² = 0.81, df = 1 (P = 0.37); I² = 0%

Test for overall effect: Z = 5.25 (P < 0.00001)

correlation
-0.5

-0.71

SE
0.17

0.16

Weight
47.0%

53.0%

100.0%

IV, Random
-0.50 [-0.83

-0.71 [-1.02

-0.61 [-0.84

oitalerroc

Figure 4. Forest plots of correlation coe
NSCC.However, our statement is based on 2 studies with 23 patients
ly. Therefore, further studies are needed to proof our results.
Furthermore, our analysis identified that ADC values may be used
a surrogate marker for tumor cellularity and proliferation activity.
his finding seems to be logical. In fact, ADC reflects diffusion of
ater molecules in tissues and depends on tissues barriers like cell
embranes [32]. Previously, numerous studies showed that ADC
lues inversely correlated with cell count and expression of KI 67 in
veral tumors [33,34]. However, these results are based on small
mber of patients and should be proven in further studies.
Our meta-analysis did not find significant associations between
mor suppressor protein p53 and SUVmax. There were only two
ports regarding relationships between SUVmax and p53 [10,15].
his protein plays an important role in the development of cancer
5]. It regulates the activity of several pathways, which lead variously
cell cycle arrest, DNA repair, senescence, or apoptosis following
posure of cells to endogenous or exogenous cellular stresses [35].
owever, according to the literature, current data regarding the role
p53 in HNSCC are inconclusive [35].
, 95% CI
, -0.17]

, -0.40]

, -0.38]

noitalerrocn
IV, Random, 95% CI

-1 -0.5 0 0.5 1

negative positive

fficients between ADC and KI 67.

Image of Figure 2
Image of Figure 3
Image of Figure 4
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Study or Subgroup
Grönroos 2014

Rasmussen 2015

Total (95% CI)
Heterogeneity: Tau² = 0.37; Chi² = 15.69, df = 1 (P < 0.0001); I² = 94%

Test for overall effect: Z = 0.01 (P = 0.99)

correlation
0.47

-0.42

SE
0.21

0.08

Weight
47.6%

52.4%

100.0%

IV, Random, 95% CI
0.47 [0.06, 0.88]

-0.42 [-0.58, -0.26]

0.00 [-0.87, 0.88]

noitalerrocnoitalerroc
IV, Random, 95% CI

-1 -0.5 0 0.5 1

negative positive

Figure 5. Forest plots of correlation coefficients between SUVmax retrieved from 18F-FDG PET and expression of p53.

Study or Subgroup
Driessen 2014

Surov 2016

White 2006

Total (95% CI)
Heterogeneity: Tau² = 0.00; Chi² = 0.29, df = 2 (P = 0.86); I² = 0%

Test for overall effect: Z = 4.95 (P < 0.00001)

correlation
-0.57

-0.4

-0.54

SE
0.17

0.27

0.16

Weight
39.6%

15.7%

44.7%

100.0%

IV, Random, 95% CI
-0.57 [-0.90, -0.24]

-0.40 [-0.93, 0.13]

-0.54 [-0.85, -0.23]

-0.53 [-0.74, -0.32]

noitalerrocnoitalerroc
IV, Random, 95% CI

-1 -0.5 0 0.5 1

negative positive

Figure 6. Forest plots of correlation coefficients between ADC and cell count in HNSCC.
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Finally, the present meta-analysis identified moderate pooled
rrelation between SUVmax and HIF-1α. According to the literature,
IF-1α characterizes cellular responses to hypoxic stress [5].
urthermore, overexpression of HIF-1α is reported to be associated
ith increased mortality and worse prognosis of HNSCC [5]. Our
nding showed that SUVmax derived from F-FDG PET may predict
pression of HIF-1α.
The present meta-analysis identified also several problems. Firstly, as
entioned above, only few reports with small number of patients
vestigated associations between different imaging parameters and
stopathological features in HNSCC. Secondly, most of the acquired
udies were retrospective. Thirdly, according the QUADAS criteria, all
volved studies showed partial verification bias, differential verification
as, and incorporation bias. Furthermore, most of the studies had
inical review bias and diagnostic review bias. In addition, the acquired
ta were obtained using different PET andMRI scanners with different
Study or Subgroup
Grönroos 2014

Han 2012

Zhao 2014

Total (95% CI)
Heterogeneity: Tau² = 0.29; Chi² = 36.57, df = 2 (P < 0.00001); I² = 9

Test for overall effect: Z = 1.34 (P = 0.18)

correlation
-0.19

0.39

0.99

SE
0.26

0.15

0.004

Weight
29.6%

33.9%

36.5%

100.0%

IV, Random
-0.19 [-0.

0.39 [0.

0.99 [0.

0.44 [-0.2

italerroc

Figure 7. Forest plots of correlation coefficients between SUVmax ret
chnical parameters like tesla strength, b values, and acquisition time.
lso, the involved studies used different ways of SUV, ADC and Ktrans

easurements. This relativizes the identified results. Clearly, further
ospective studies with more patients are needed to investigate
sociations between imaging and histopathology in HNSCC.
Recently, it has been shown that other histopathological markers
e cyclin D1, human papilloma virus, vascular endothelial growth
ctor, and epidermal growth factor receptor play also a great role in
ognosis of HNSCC [3,4]. However, there were either no data or
ch with one report about relationships between imaging parameters
d these histopathological factors. This is also the purpose for further
vestigations.
In conclusion, our meta-analysis showed that ADC may predict
ll count and expression of KI 67, and SUVmax may predict
pression of HIF-1α in HNSCC. Furthermore, SUVmax cannot be
ed as surrogate marker for expression of KI 67 and p53.
5%

, 95% CI
70, 0.32]

10, 0.68]

98, 1.00]

0, 1.08]

noitalerrocno
IV, Random, 95% CI

-1 -0.5 0 0.5 1

negative positive

rieved from 18F-FDG PET and expression of HIF-1α in HNSCC.

Image of Figure 5
Image of Figure 6
Image of Figure 7
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