Skip to main content
. 2017 Dec 19;3(1):20–33. doi: 10.1016/j.synbio.2017.12.002

Table 2.

Cellular metal incorporations - Microorganisms can interact with a large variety of metals. This table presents select examples of metal incorporation and applications, organized by element.

Element Description Application Organism(s) References
Cobalt Recovery from laterite tailings Bioleaching Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans Marrero et al. [172]
Intracellular, 550 nm average, flakes Biomining and nanomaterials Pseudomonas aeruginosa Srivastava and Constanti [173]
Copper Copper bioleaching performed industrially Bioleaching Consortium of bacteria, archea, mesophiles, and thermophiles. Gentina and Acevedo [174]
Extracellular nanoparticles, 3–10 nm, spherical Nanomaterials - Antifungal Stereum hirsutum Cuevas et al. [175]
Dysprosium Intracellular accumulation of Dy Biomining and bioremediation Penidiella sp. T9 Horiike and Yamashita [176]
Europium Accumulation on cell surface Biomining and bioremediation Chlorella vulgaris Ozaki et al. [177]
Gold Ultra-efficient recovery from acidic leachate obtained from jewelry waste Biomining E. coli, Desulfovibrio desulfuricans Deplanche and Macaskie [151]
Nanoclusters of various sizes and shapes depending on conditions Nanomaterials – catalytic and medicinal Shewanella haliotis Zhu et al. [153]
Iron Recovery of iron from iron-containing minerals Bioleaching Acidithiobacillus thiooxidans Marrero et al. [178]
Extracellular, 20 nm average, flakes Nanomaterials Pseudomonas aeruginosa Srivastava and Constanti [173]
Lithium Lithium solubilization from various ores Bioleaching Aspergillus niger and Rhodotorula rubra Marcincakova et al. [138], [139]
Lithium nanoparticles formed intracellularly, 750 nm average size Biomining and nanomaterials Pseudomonas aeruginosa Srivastava and Constanti [173]
Nickel Recovery from laterite tailings Bioleaching Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans Marrero et al. [172]
Extracellular, 3 nm average, dense polygons Nanomaterials Pseudomonas aeruginosa Srivastava and Constanti [173]
Palladium Monodisperse, small (4–5 nm) nanoparticles were observed Nanomaterials - catalytic E. coli Zhu et al. [149]
Intracellular accumulation of palladium nanoparticles Biomining Desulfovibrio desulfuricans, Bacillus benzeovorans Omajali et al. [150]
Platinum Extracellular nanoparticles, 5–30 nm Nanomaterials - catalytic Fusarium oxysporum Syed and Ahmad [145]
Intracellular accumulation of platinum nanoparticles Biomining Acinetobacter calcoaceticus Gaidhani et al. [147]
Rhodium Extracellular, 10 nm average, spherical Nanomaterials – catalytic Pseudomonas aeruginosa Srivastava and Constanti [173]
Ruthenium Extracellular, 3 nm average, dense polygons Nanomaterials – catalytic Pseudomonas aeruginosa Srivastava and Constanti [173]
Selenium Extracellular, rod-shaped Se nanoparticles, average size 17 nm Nanomaterials Streptomyces bikiniensis Ahmad et al. [179]
Silver Extracellular nanoparticles, 10–100 nm, protein functionalized Nanomaterials – catalytic and medicinal Cladosporium cladosporioides Balaji et al. [180]
Silver uptake capabilities of up to 153 mg/L were observed Biomining Trichoderma harzianum Cecchi et al. [181]
Technetium Reduction of Tc(VII) to Tc(IV) via various reducing agents Biomining and bioremediation Fe(III)-reducing, sulfate-reducing, fermentative, aerobic, and anaerobic bacteria Chernyh et al. [182]
Tellurium Intracellular, rod-shaped Te nanoparticles, 20 × 180 nm Nanomaterials and biomining Bacillus sp. Zare et al. [124]
Uranium Uranium bioprecipitation engineered for different cellular loci Biomining Deinococcus radiodurans, E. coli Kulkarni et al. [142]
Ytterbium Accumulation on cell surface Biomining and bioremediation S. cerevisiae Jiang et al. [183]
Zinc A 75% Zn extraction was obtained from Zn-plant leach residues under optimized conditions Bioleaching Acidithiobacillus thiooxidans Sethurajan et al. [184]