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Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In
rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal
formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans,
boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature,
we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed
a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near
and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscilla-
tions than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial
length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in
humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate
that this system can represent attended locations that rather than the position of one’s own body.
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Spatial computations using environmental boundaries are an integral part of the brain’s spatial mapping system. In rodents, border/
boundary cells in the subiculum and entorhinal cortex reveal boundary coding at the single-neuron level. Although there is good reason
to believe that such representations also exist in humans, the evidence has thus far been limited to functional neuroimaging studies that
broadly implicate the hippocampus in boundary-based navigation. By combining intracranial recordings with high-resolution imaging
of hippocampal subregions, we identified a neural marker of boundary representation in the human subiculum. j
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memory and cognition (Lee, 2017). When animals lose track of
where they are, they rely heavily on boundary structures to find

Introduction
Research across a wide range of disciplines has converged on the
notion that environmental boundaries strongly influence spatial
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their way back to the goal (for review, see Cheng and Newcombe,
2005; Lee and Spelke, 2010; Tommasi et al., 2012). Nonboundary
features such as objects and surface properties also influence naviga-
tion but are used primarily as beacons (Lee et al., 2006), contextual
cues (Julian et al.,, 2015), and error-correcting landmarks in path
integration (Etienne et al., 1996). To explain the effect of boundaries
in behavior, theorists have proposed that the 3D structure of the
environment provides a reliable basis for metric distance computa-
tions in spatial mapping (Cheng, 1986; Gallistel, 1990).

Electrophysiological recordings in the rodent hippocampal
formation have shown that the spatial coding by place cells and
grid cells is highly influenced by environmental boundaries (O’Keefe
and Burgess, 1996; Lever et al.,, 2002; Hardcastle et al., 2015;
Krupicetal., 2015; Stensola et al., 2015). Boundary-based models
of place mapping (Hartley et al., 2000; Barry et al., 2006) explain
the firing fields of place cells as a sum of distance inputs from
nearby boundaries and the existence of boundary cells in the
rodent subiculum (Lever et al., 2009) and border cells in the
entorhinal cortex (EC) (Solstad et al., 2008) provide evidence of
boundary representations at the single-neuron level. Although a
small percentage of boundary cells encode boundaries from dis-
tances up to ~20-30 cm, they are most often characterized by
their increased firing in response to nearby boundary structures,
such as walls, drop-offs, and traversable gaps on the floor (Lever
et al., 2009; Stewart et al., 2014). Like other spatial cells, they are
theta modulated and they develop in rat pups at the same time as
place cells and earlier than grid cells (Bjerknes et al., 2014; Mues-
sig et al., 2015).

Despite the fact that boundary cells have yet to be found in the
human brain, behavioral experiments suggest that we share
similar boundary-based navigational mechanisms with other
animals. For an extended period in human development, bound-
aries exert a dominant influence on spatial mapping (Hermer-
Vazquez et al., 2001). Such boundaries are not limited to large
walls, but also include subtle 3D structures such as traversable
ridges and curbs (Lee and Spelke, 2008, 2011), similar to the
characteristics of boundary cells in rodents discussed above. The
use of environmental boundaries can also be seen in adults
(Hermer-Vazquezetal., 1999; Hartley et al., 2004) and functional
neuroimaging studies have established that boundary-based nav-
igation or imagery engages the hippocampus (Doeller et al., 2008;
Bird et al., 2010). Other studies have identified boundary repre-
sentation of visual scenes and its role in navigation upstream
from the hippocampus (Park et al., 2011; Ferrara and Park, 2016;
Julian et al., 2016).

Challenges to single-cell recording in humans can be partially
bypassed by looking for signatures of neural activity that would
be visible at the population level. An example of this is the hex-
agonally symmetrical fMRI response in the entorhinal cortex that
might be attributed to populations of grid cells (Doeller et al., 2010).
Similarly, neural signals of boundary representations could also be
visible at the population level because of their clustered activity
when an animal is near a boundary (Solstad et al., 2008; Lever et
al., 2009). Despite the availability of direct intracranial EEG record-
ings from the human medial temporal lobe during computer-based
navigation tasks (Ekstrom et al., 2005; Watrous et al., 2011; Miller et
al., 2013; Vass et al., 2016), no studies thus far have shown direct
neural signatures of boundary representation in humans. In the
present study, we recorded the local field potential (LFP) from sur-
gical epilepsy patients engaged in a computer-based navigation task,
combined with a high-resolution electrode localization method, to
investigate boundary-related signals in the human brain in specific
subregions of the hippocampal formation (i.e., CAl, dentate
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gyrus, subiculum, EC, and perirhinal cortex). We capitalized on
the fact that boundary cells, like other spatial cells, are theta mod-
ulated (Lever et al., 2009) and that most boundary cells respond
to locations near boundaries. Because hippocampal neurons rep-
resent intended target locations (Hok et al., 2007; Howard et al.,
2014; Chadwick et al., 2015), the strength of theta oscillations
while subjects encode a single target location over an extended
period (over the course of an entire trial) could indicate the neu-
ral representation of its spatial location (McFarland et al., 1975;
McNaughton et al., 1983; Rivas et al., 1996; Czurké et al., 1999;
Terrazas et al., 2005). Therefore, in the present study, we com-
pared oscillatory power in three frequency ranges that have been
previously implicated in spatial navigation and memory in hu-
mans (Nyhus and Curran, 2010; Watrous et al., 2013; Jacobs,
2014), 1-4 Hz (“low-theta” or “delta”), 4—10 Hz (“theta”), and
30-90 Hz (“gamma”), as subjects attended to target locations
near or far from the boundaries of the virtual environment over a
5-s-long encoding period.

Materials and Methods

Participants. The subjects in our study were 58 epilepsy patients (27
males, 31 females) between the ages 18 and 65 who had electrodes surgi-
cally implanted to localize seizure foci and to guide potential surgical
treatment. Subjects performed a virtual navigation task on a laptop com-
puter as their neural activity was recorded at a sampling rate of 500 Hz or
above (Jacobs and Kahana, 2010). Electrodes were implanted in various
brain regions as dictated by clinical needs; for analysis of neural measure-
ments, we selectively analyzed 39 of the patients who had electrodes in
our five regions of interest: CAl, dentate gyrus, subiculum, EC, and
perirhinal cortex. These regions were chosen because they were the top
five hippocampal subregions with the most number of electrodes im-
planted; 39 subjects had electrodes in those regions. The same methods
were applied at seven testing sites: Thomas Jefferson University Hospital
(Philadelphia, PA), Mayo Clinic (Rochester, MN), University of Texas
Southwestern (Dallas, TX), Dartmouth-Hitchcock Medical Center (Leb-
anon, NH), University of Pennsylvania Medical Center (Philadelphia,
PA), Emory University Hospital (Atlanta, GA), and Columbia University
Medical Center (New York, NY). Each subject provided informed con-
sent before participation. Our multisite study was approved by local
institutional review boards, as well as the institutional review board of the
University of Pennsylvania (data coordination site) and the Human
Research Protection Office at the Space and Naval Warfare Systems
Command Systems Center Pacific. Data from five subjects who re-
sponded randomly in the task (see below for details) were excluded from
our analysis.

Spatial navigation task. Subjects performed a computer-based spatial
memory task (Jacobs et al., 2016) in a virtual rectangular arena (approx-
imately equivalent to 19 m X 10.5 m) with 4 distal visual cues for orient-
ing. Each 5 s encoding trial (96 trials per session, 1-3 sessions per subject)
was preceded by a 2 s period during which subjects were presented with a
still scene of the environment. At the start of the trial, a target object
appeared on screen and subjects were automatically rotated (1 s dura-
tion) and driven toward it (3 s duration, constant speed) until they were
stopped at the target location (1 s duration). This 5-s-long encoding
period took place twice and from two different viewpoints in the envi-
ronment (chosen randomly from a range of locations that would fit the
3 s of driving and 1 s of rotating). The two encoding periods were sepa-
rated by a 5 s black screen. After another 5 s delay, subjects were trans-
ported to a different randomly chosen location from which they had to
drive themselves back using a joystick to the now hidden target and press
a response button. Subjects received feedback on their responses by
means of a simple rectangular depiction of the environment with the
target and response locations marked as circular points (see Fig. 1A). The
automatized design of the encoding phase ensured that all aspects of a
subject’s movement (time, speed, distance, visual flow, and movement)
were identical across trials (and across target locations) while maximiz-
ing the number of trials.
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Figure 1. A, Each trial began with a 2 s stationary wait period during which the subject viewed the environment. Once the target object appeared, the subject had 5 s of encoding, during which
the subject (in the virtual reality environment) was automatically rotated toward and then driven to the target location. This was repeated from a different starting point such that there were two
encoding trials for each target location. After the encoding trials, subjects were transported to a new starting point for the test phase and asked to drive themselves back to the target location and
respond by pressing a button. Feedback was provided by displaying a map of the target and response location, along with game points that correlated with distance error. B, We computed an MS
based on the accuracy percentile with respect to the chance distribution of responses for each target location. C, Target locations were categorized as being boundary or inner by dividing the
rectangular environment into two equal areas with equal aspect ratios. D, Subjectwise distributions of memory scores for boundary and inner trials, which indicate that subjects performed better

on boundary trials overall.

Electrode localization. Before surgical electrode implantation, we ac-
quired high-resolution structural magnetic resonance imaging (MRI)
scans of the hippocampus and medial temporal lobe from each subject
(0.5 mm by 0.5 mm by 2 mm). The hippocampal subregions and extra-
hippocampal cortical regions were automatically defined and labeled on
these scanned images using a multi-atlas-based segmentation technique
(Wang et al., 2013; Yushkevich et al., 2015). After the electrode implan-
tation, a neuroradiologist identified each electrode contact using a post-
implant CT scan. The MRI and CT scans were coregistered using
Advanced Normalization Tools (Avants et al., 2008) and the neuroradi-
ologist visually confirmed and provided additional detail on the localiza-
tion and anatomical label for each contact (Duvernoy, 2005).

Statistical analysis of behavior. We measured patients’ memory perfor-
mance in a way that accounted for unequal distribution of possible dis-
tance errors across the environment. An example of this issue is that
objects at the far ends of the environment have a larger maximum pos-
sible error distance compared with objects in the center. In our approach,
we measured performance for each response by computing a memory
score (MS), which normalizes for overall difficulty across target locations
by computing the actual response’s rank relative to a distribution of a
chance distribution based on 100,000 randomly generated response lo-
cations. This means that an MS of 1 corresponds to a perfect response (0
error), an MS of 0 corresponded to the worst possible response, and an
MS of 0.5 was chance). We then divided the environment into two equal
regions, an outer rectangular ring (“boundary”) and a central area (“in-
ner”), and compared subjects’ mean MS between the two zones (see Fig.
1C,D). To select only those subjects who understood and were able to
perform the task, we discarded data from five subjects who performed
overall at chance level (t tests against chance MS of 0.5, n.s.).

Statistical analysis of neural signals. To examine neural activity for
successfully encoding of both boundary and inner locations selectively,
we discarded all trials in which subjects scored below the mean MS across
all subjects (MS < 0.73) to reduce noise from trials in which the subject
was inattentive or disoriented. As mentioned in the previous section, we
discarded subjects who performed overall at chance; additionally, we
only included subjects who had at least five trials in each category
(boundary/inner) to ensure sufficient sampling. This left us with 37 sub-

jects, all with at least 20 trials in each category (average of 64.5 boundary
trials and 65.2 inner trials).

First, the raw data were notch filtered using a Butterworth filter at 60
Hz and the oscillatory power at each electrode in three frequency bands,
low-theta (1-4 Hz), theta (4—10 Hz), and gamma (30-90 Hz), was ex-
tracted through a Hilbert transform (Freeman, 2007). We then com-
puted the time-averaged power in each band across the 5 s encoding
period. The power values were then z-scored according to the mean
power in that electrode over all encoding periods in the session.

We averaged the power over all electrodes from the same hemisphere
of a single patient, such that we took one measurement from each hemi-
sphere and used these as the input to our ANOVA. This was done to
prevent double-sampling from shared signal sources within different
contacts on a subject’s medial temporal lobe within one hemisphere.
Using this method, we had 18 subiculum hemispheric samples (12 in left
hemisphere, LH) from 15 patients (i.e., 3 patients with bilateral subicu-
lum electrodes), 18 entorhinal samples (13 in LH) from 14 patients, 43
CA1lsamples (25in LH) from 37 patients, 23 dentate gyrus samples (15 in
LH) from 21 patients, and 29 perirhinal samples (20 in LH) from 22
subjects.

Results

Behavior

If boundaries are crucial to the neural representation of spatial
location, then subjects should generally be more accurate in their
performance for target locations near boundaries than for loca-
tions far from boundaries (Hartley et al., 2004). To test the degree
to which subjects rely on the environmental boundaries to per-
form our task, we divided the environment into two regions with
equal areas, the boundary and the inner areas (Fig. 1C) and com-
pared subjects’ performance as quantified by their MS (see Ma-
terials and Methods for details). A repeated-measures ANOVA
with target location (boundary vs inner) as the within-subjects
variable and sex as the between-subjects variable found significantly
better performance for boundary than inner trials (F(, 55, = 9.94,
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A, Electrodes were localized by combining presurgical high-resolution structural MRI and postimplant T scans. The hippocampal subregions are labeled and shaded in color and the

bipolar electrode contact pairs (distance 1.5 mm) centered at each subregion are marked with white dots. Images are from Patient 1066P. B, Encoding boundary locations elicited higher power in
low-frequency oscillations than inner locations. Z-scored power differences between boundary and inner target locations are plotted for three frequency bands: low-theta (1- 4 Hz), theta (4 —10 Hz),
and gamma (30 90 Hz). There was a significant boundary X frequency interaction that was specific only to the subiculum (F, 5,) = 4.71, p = 0.016) and present in no other region.

p = 0.003; Fig. 1D). These results are consistent with the inter-
pretation that boundaries have a significant influence on the
computation of spatial location and indicate that our virtual re-
ality task sufficiently engaged those underlying navigational
mechanisms. There was no significant effect of sex (F; s¢) = 2.71,
p = 0.11) and no location X sex interaction (F < 1, n.s.).

Neural results

A repeated-measures ANOVA was conducted to determine at the
population level whether neural signals at three frequency ranges
(1-4, 4-10, and 30-90 Hz) varied according to the presence of a
nearby boundary across five different subregions of the hippocam-
pus (CA1, dentate gyrus, subiculum, EC, perirhinal cortex; Fig. 2A).
Critically, we found that LFP power across all electrodes signifi-
cantly varied according to whether the patient encoded a target
location near or far from a boundary, at particular frequency
ranges and localized to a particular region (boundary X fre-
quency X region interaction: Fg ,,4) = 1.99, p = 0.047) (Fig. 2B).
There was no main effect (nor significant interactions) of sex
(F(1,119) = 1.11, p = 0.30). Upon closer inspection of each region,
the boundary X frequency effect was specific to the subiculum
(F(2,34y = 4.71,p = 0.016, n-squared = 0.22) and significant in no
other region (all F < 2, p > 0.2).

Focusing on the subiculum, an average power spectrum dif-
ference plot of boundary—inner trials across all subjects (Fig. 3A)
revealed two peaks in the frequencies in which boundary trials
elicithigher power than the inner trials. ¢ tests for our three frequency
bands revealed that encoding target locations near boundaries
elicited greater theta power than encoding inner locations (4-10
Hz: t,,, = 3.22, p = 0.015, Bonferroni-corrected; Fig. 3B), but
that this effect was only marginally significant in the 1-4 Hz
low-theta band (t(,,, = 2.58, p = 0.057, Bonferroni-corrected)
and not significant in the 30—90 Hz gamma band (¢,,) < 1, n.s.).

We next examined this boundary-related signal at the level of
individual hemispheric measurements and subjects. Fifteen of 18
hemispheric subiculum measurements showed greater theta
power for navigating to boundary locations than inner locations
(binomial test, p = 0.008) in 12 of 15 subjects (binomial test, p =
0.035). Across all subjects, there was a significant negative corre-
lation between LFP power on each trial and distance from the
target location to the closest boundary for both low-theta (1-4 Hz,
mean 3 weight = —0.016, t,,) = 2.54, p = 0.042, Bonferroni-
corrected) and theta (4—10 Hz, mean 8 weight = —0.019, t,,, =
2.54, p = 0.041, Bonferroni-corrected), showing that the target
location’s proximity to the environmental walls elicited stronger
signals in those frequencies (Fig. 3C). This indicates that the
boundary effect found above is not an artificial consequence our
particular designation of boundary and inner regions (Fig. 3D).
In some cases, the boundary effect was significant even at the
single-electrode level (Fig. 4).

There were no sex differences in the boundary theta effect in
the subiculum (F < 1, n.s.). Because only six of the 18 subicular
samples were from the right hemisphere, we did not have suffi-
cient power to test for hemispheric differences.

As a control to ensure that the difference between boundary
and inner trials is truly driven by the target, we analyzed the LFP
signals during the first 2 s of each trial, when the subject was
standing within the virtual environment with no target object
(—2 to 0 s before the start of the encoding period; Fig. 1A). As
expected, before the target location appeared on screen, there
were no differences between the boundary and the inner region
(all # < 1, n.s.). In addition, to determine whether neural activity
was modulated with respect to the subject’s own location during
that 2 s period, we compared LFP as a function of the subject’s
position (rather than the target position) in the virtual space. We
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A, Power—frequency plot of normalized power differences in the subiculum between boundary and inner target locations. Asterisks indicate parts of the spectra where boundary and

inner trials significantly differ (f tests at each frequency, p << 0.05). B, Boundary—inner power difference in three frequency bands: low-theta (1—4 Hz), theta (4 —10 Hz), and gamma (30 -90 Hz).
Error bars indicate 95% confidence intervals. Targets near boundaries elicit stronger theta oscillations than those far from boundaries. ¢, Mean 3 coefficients for best fit lines predicting power by
distance to the nearest boundary across all hemispheric measurements. Asterisks indicate statistically significant difference from 0. D, Overhead heatmaps of the environment plotting average
z-scored power for the three observed frequency bands at each target object location. The environment was binned into a 45 X 30 rectangular grid and computed average power in each bin for each
subicular sample. Individual heat maps were smoothed with a 2D Gaussian kernel (width = 7) and then averaged across all samples. Dotted lines indicate the boundary—inner division.
E, Boundary—inner theta power across the 5 s of encoding with respect to the target location. F, Boundary—inner theta power across the 5 s of encoding, with respect to the subject location (right).

Error bars indicate 95% confidence intervals.

found no effects of boundary proximity in any frequency band
(all t < 1.5, n.s.).

We also considered the possibility that our effects may be
related to movement. Figure 3E displays the boundary—inner
theta power difference for the target location over the course of
the 5 s encoding period. Although the boundary effect for target
location seems higher during the auto drive phase (2—4s; Fig. 1A)
than the turn and stop phases (1-2's,4 -5 s), an analysis of bound-
ary—inner differences separating out these two modes of move-
ment (driving vs nondriving) shows that, whereas there was a
significant effect of boundary (F, ;;, = 8.78, p = 0.009), there
was no significant effect of movement (F, ;7 < 1, n.s.) or move-
ment by boundary interaction (F, ,;, = 1.35, p = 0.26).

In contrast to the target location, we saw no theta power mod-
ulation as a function of the subject’s own location (Fig. 3F).
There were no theta power differences for boundary and inner
subject locations across each second of the encoding period (all
t < 1.8, n.s.); an ANOVA comparing the boundary—inner differ-
ence in theta power for the target location (Fig. 3E) and the sub-
ject location (Fig. 3F) confirmed that the boundary effect was
significantly higher for the target location (boundary effect X
location: F, ;,) = 4.69, p = 0.04).

Although we excluded the trials with memory scores below
mean performance (MS < 0.73) in the above analyses, it is still
possible that the difference in theta power between the boundary
categories simply reflected performance differences between
boundary and inner locations (as opposed to boundary proxim-
ity per se). If this were true, then we should also see theta effects
related to performance within the same boundary category (i.e.,
even for just inner locations, good trials should exhibit higher
theta power than bad trials). To test this, we compared LFP power
between the “good” trials (MS > 0.73) and (the previously ex-
cluded) “bad” trials (MS < 0.73) separately for each boundary

category. We found no performance effects for either boundary
or inner trials (all + = 1.2, n.s.), suggesting that subicular theta
was not linked directly to performance. In fact, even the bad
boundary trials elicited significantly higher theta power than the
good inner trials (t,,) = 2.57,p = 0.02; ¢ < 1.1 for low-theta and
gamma).

Finally, although we had selectively chosen to analyze the
good trials to examine only successfully encoded cases with MS >
0.73, we confirmed that the boundary-related theta effect was
present even when all trials were included (MS > 0; £,,, = 2.91,
p = 0.03, corrected). Nevertheless, unlike the good trials, the
boundary effect was not significant (f <1, n.s.) for bad trials with
MS < 0.73, suggesting that the boundary effect was disrupted
when memory encoding was poor, perhaps due to reasons such as
fatigue, disorientation, or distraction.

Discussion

Our analysis of the LFP at various hippocampal subregions re-
veals for the first time in humans that the subiculum may play a
key role in boundary-based spatial mapping. This finding extends
previous neuroimaging studies implicating the human hippocam-
pus in boundary-based navigation (Doeller et al., 2008; Bird et al.,
2010) and is convergent with single-unit recording of boundary
cells in the rodent subiculum (Lever et al., 2009). Interestingly,
although rodents have boundary-related cells in both subiculum
(Lever et al., 2009) and the EC (Solstad et al., 2008), we found
boundary-related effects only in the former. One potential expla-
nation for this difference is that the subiculum is more strongly
involved than the EC in boundary-based spatial mapping. This
account is consistent with rodent studies that reported a much
higher percentage of boundary cells in the subiculum: (20-25%;
Lever et al., 2009; Olson et al., 2017) than in the EC (6-11%j;
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thickness indicates SE. Asterisks indicate parts of the spectra where boundary and inner trials significantly differ (¢ tests at each frequency, p < 0.05). Second row, Trial-by-trial plot of powerin theta
frequency oscillations for each corresponding electrode above it. Slopes of the best fit lines that negatively deviate from zero show that theta power is stronger at closer distances to a wall boundary.

Solstad et al., 2008; Boccara et al., 2010; Bjerknes et al., 2014; Tang
etal., 2014).

Could the increase in theta power for boundary encoding be
the result of increased activity from populations of human subic-
ular boundary cells? Unlike other spatial cell types, which activate
fairly evenly across an environment, the entire boundary-cell net-
work is more active overall when representing particular areas of
an environment (i.e., near boundaries). This coarse-grained spa-
tial specificity in its firing properties is essential for our identifi-
cation of boundary-related LFP activity. The theta effect that we
observed might be broadly interpreted as a manifestation of
boundary-based spatial encoding or navigation strategies. At the
same time, however, it could signify the existence and dynamic
activation of boundary-coding cells in the human subiculum.
However, this type of boundary-related LFP signal change has
not yet been analyzed in rodents, perhaps due to logistical con-
founds in performing this comparison such as the variable behav-
iors of rodents across the environment. For instance, animals run at
higher mean speeds parallel to walls (Horev et al., 2007) and theta
power increases with running speed (Rivas et al., 1996; Czurko et al.,
1999; Maurer et al., 2005), potentially making it difficult to isolate
boundary-related theta effects in rodents.

The boundary-related theta patterns that we observed ap-
peared during the encoding period of our task, when the target
location was visible for 5 s as the subject was automatically moved
toward it at a fixed velocity. Although this task design is different
from traditional tests of navigation, we implemented this fixed-
movement encoding period because it allowed us to equate for
multiple perceptual, behavioral, and motoric factors across all
trials and for all subjects (Jacobs et al., 2016). In other words, the
boundary effect here cannot be attributed to differences in path
length or shape, joystick control, speed, visual flow, timing, or

trial length, to name just a few, between trial with boundary and
inner targets. For the same reasons, we have chosen to analyze the
encoding phase rather than the freely moving response phase, in
which none of the above factors could be controlled.

The fact that our findings are specific to the target location
rather than the subject location adds to the body of evidence
suggesting a role for the hippocampal formation in goal repre-
sentation (Hok et al., 2007; Howard et al., 2014; Chadwick et al.,
2015) and attended, viewed, imagined, and planned spatial map-
ping (Rolls, 1999; Killian et al., 2012; Pfeiffer and Foster, 2013;
Bellmund et al., 2016; Horner et al., 2016) of, not only oneself,
but also other individuals (Danjo et al., 2018; Omer et al., 2018).
Under different circumstances, however, it may be possible to
detect boundary encoding with respect to self-location rather
than the target location. Our task required subjects to maximally
attend to the location of the target for the brief 5 s that it was on
screen; moreover, the automated movement during the encoding
period made it unnecessary for subjects to attend to their own
navigation through space. A different task design requiring sub-
jects to track and control their own position may detect boundary
representations with respect to self-location (Ekstrom et al., 2003;
Jacobs et al., 2013).

Past studies using human intracranial recordings have dem-
onstrated the involvement of both low-theta (1-4 Hz) and theta
(4-10 Hz) during both real and virtual navigation (M Aghajan et
al., 2017; Bohbot et al., 2017) and low-frequency oscillations
seem to be functionally involved in human memory and naviga-
tion (Watrous et al., 2013; Jacobs, 2014; Bush et al., 2017). Our
boundary-related effects were mainly seen in the conventional
4-10 Hz range, where theta oscillations are commonly found in
rodents. In contrast, we observed mixed results in the low-theta
band, with a significant negative correlation between LFP power
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and distance to the nearest boundary. It is possible that both
low-theta and theta bands may be implicated in spatial process-
ing in humans and the use of visual tasks in virtual environments
might play a role in some cases (Bohbot et al., 2017). The present
results may provide further insight that guides future work on
identifying potential functional differences between these two
frequency ranges.

Another open question for further study involves the dissoci-
ation of theta power increases in the medial temporal lobe related
to memory performance with those related to spatial representa-
tion (as we have found in this study). It is difficult to completely
disentangle spatial encoding of boundaries to spatial memory,
given that successful performance should be a functional conse-
quence of successful spatial encoding after all. Nevertheless, our
control analyses show that the theta increases that we have ob-
served in this task are not solely attributable to memory perfor-
mance. Moreover, the detailed localization of these effects to the
subiculum make it unlikely that these theta effects are actually
related to memory (which is a hippocampus-wide phenomenon)
rather than to spatial boundaries.

Spatial mapping is one of the most essential survival skills for
any self-locomoting animal and accurate metric representation
of distance is essential to accurate place mapping; environmental
boundaries, even in naturalistic terrains, provide a stable, invari-
ant cue by which distance representations can be anchored and
corrected (Gallistel, 1990). Researchers have suspected for nearly
70 years that even distantly related species such as rats and hu-
mans share cognitive and neural mechanisms that support such
abilities (Tolman, 1948; O’Keefe and Nadel, 1978) and our results
fill an important gap in the literature by identifying for the first
time a highly localized neural representation of environmental
boundaries in the human subiculum, just as in rats. Not only do
these findings inform theories of common spatial coding in the
vertebrate brain, they also give us another neural signature that
we can use to investigate the flexible application of basic hip-
pocampal representations in supporting abstract human concep-
tual knowledge (Spelke et al., 2010; Constantinescu et al., 2016;
Jacobs and Lee, 2016; Garvert et al., 2017) and the cognitive im-
pairments that result from their dysfunction (Bird et al., 2010;
Lakusta et al., 2010).
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