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Abstract

Timely and spatially-regulated injectable hydrogels, able to suppress growing tumors in

response to conformational transitions of proteins, are of great interest in cancer research

and treatment. Herein, we report rapidly responsive silk fibroin (SF) hydrogels formed by a

horseradish peroxidase (HRP) crosslinking reaction at physiological conditions, and demon-

strate their use as an artificial biomimetic three-dimensional (3D) matrix. The proposed SF

hydrogels presented a viscoelastic nature of injectable hydrogels and spontaneous confor-

mational changes from random coil to β-sheet conformation under physiological conditions.

A human neuronal glioblastoma (U251) cell line was used for screening cell encapsulation

and in vitro evaluation within the SF hydrogels. The transparent random coil SF hydrogels

promoted cell viability and proliferation up to 10 days of culturing, while the crystalline SF

hydrogels converted into β-sheet structure induced the formation of TUNEL-positive apopto-

tic cells. Therefore, this work provides a powerful tool for the investigation of the microenvi-

ronment on the programed tumor cells death, by using rapidly responsive SF hydrogels as

3D in vitro tumor models.

Introduction

Hydrogels are hydrophilic networks with high capacity to absorb and retain high quantities of

water, while keeping its original structure [1]. Smart hydrogels, or stimuli-responsive hydro-

gels, are more appealing for cell encapsulation in a three-dimensional (3D) microenvironment,

drug delivery systems and tissue engineering (TE) scaffolding. In fact, the possibility to
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creating such smart hydrogels capable of harboring cell ingrowth/organization and at the same

time promoting the delivery of biologically active molecules due to the rapid response to envi-

ronmental stimuli and high elasticity, was a great achievement in the biomedical field [2]. In

the last years, several physical and chemical crosslinking methods have been developed to pro-

duce artificial hydrogel matrices temporally and spatially regulated [3]. The production of

injectable hydrogels for minimally invasive clinical applications has been receiving special

attention [4]. The in situ formation of these hydrogels is based on the aqueous mixture of poly-

mer solutions with bioactive agents that when injected into the body will form a desired hydro-

gel shape into the defect site, even oddly shaped ones. The precursor hydrogel solutions can

also be combined with cells, drugs and growth factors, and subsequently injected into the

application site [5]. Recently, an increasing interest has been devoted to enzymatically cross-

linked hydrogels to be applied as injectable matrices for the generation of functional tissue

substitutes able to maintain cell phenotype of the native tissue, which is highly important for

tissues like cartilage [6]. These in situ forming hydrogels are produced through mild reactions

that in many cases are catalyzed by enzymes naturally existing in our body [7]. The specificity

of these substrates avoids toxic effects that are often observed on organic solvents or photo-ini-

tiators mediated reactions [8]. Another major advantage of the enzymatic crosslinking reac-

tions is that they can be easily applied with natural polymers that hardly support more adverse

chemical or physical reactions. Moreover, the polymerization reaction can be controlled by

modulating the enzyme activity, affecting the gelation rate and the hydrogels mechanical prop-

erties [8, 9].

Hydrogels derived from natural polymers have been attracting special attention since they

can more closely simulate the natural extracellular matrix (ECM) environment. Some of the

most studied natural hydrogels include alginate, fibrin, collagens, gelatin, chitosan and hyal-

uronic acid [10]. Silk fibroin (SF) derived from Bombyx mori silkworm is a biodegradable and

biocompatible natural material that has been extensively studied for TE applications using dif-

ferent forms, including as membranes [11], films [12], fibres [13, 14], sponges [15] and textiles

[16]. SF hydrogels have been developed by the protein conformation transition from amor-

phous to β-sheet induced by physical or chemical crosslinking methods involving external sti-

muli and long gelation times [17, 18]. In this sense, an enzyme mediated crosslinking may be

the ideal method to produce fast-gelled SF-based injectable hydrogels at physiologic condi-

tions. Our group proposed SF hydrogels preparation via a horseradish peroxidase (HRP)-

mediated crosslinking in physiological conditions [19–21]. In their first systematic study, the

authors observed that varied concentrations of SF and HRP/hydrogen peroxide (H2O2) cross-

linking solutions lead to different physicochemical properties of the SF hydrogels [19]. These

enzymatic crosslinking approach has shown great potential for preparing injectable hydrogels

from polymers containing or functionalized with phenol group-containing molecules, includ-

ing tyrosine, tyramine or aminophenol [8]. Considering that SF contains 5.3% tyrosine mole-

cules with the required phenol groups [22], such approach was explored to produce in situ
fast-formed hydrogels (S1 Fig) [23–25]. These SF hydrogels can exhibit a spontaneous confor-

mation change under physiological conditions. Therefore, understand if and how the protein

conformation changes affect cell behavior and tissue ingrowth was another major concern in

applying this enzymatic crosslinking mechanism.

The 3D cell culture plays an important role in tumor biology since it enables to create an in
vivo like microenvironment. Among the existing tools of experimental cancer research, spher-

oids represent an advanced in vitro model compared to the standard 2D cell culture, and less

invasive as compared to the animal tumor models [26]. At the same time, the 3D spheroids

can be expensive, time consuming and hard to obtain in more complex tumor-like model

approaches [27]. Recently, cancer cell culture on 3D platforms have been attracting much

Silk fibroin hydrogels and tumor cells death

PLOS ONE | https://doi.org/10.1371/journal.pone.0194441 April 4, 2018 2 / 21

BPD/94277/2013 (CG), SFRH/BPD/108763/2015

(SP), SFRH/BPD/100957/2014 (HR); PhD

scholarship PD/BD/113806/2015 attributed to VPR

under the financial support from FCT/MCTES and

FSE/POCH, PD/59/2013. An internal R&D grant of

Anasys Instruments Corp provided support in the

form of salary for author AR, but did not have any

additional role in the study design, decision to

publish, or preparation of the manuscript. The

specific role of this author is articulated in the

“author contributions” section. The remaining co-

authors did not receive any funding from Anasys

Instruments Corp.

Competing interests: The “Anasys Instruments

Corp” does not alter our adherence to PLOS ONE

policies on sharing data and materials. The authors

have declared that no competing interests exist.

https://doi.org/10.1371/journal.pone.0194441


attention. The use of 3D matrices has shown to closely mimic the natural tumor ECM, allow-

ing cells to grow and show similar properties to those of cells growing under physiological

conditions. In the literature, biomimetic scaffolds made of branched hollow silica microfibers

were proposed to culture cancer cells in a 3D environment [28], showing that the proposed

scaffolds mimic the fibrous ECM of real tumors and allowed cells to form tumor-like multicel-

lular spheroids in vitro and promote tumor growth in vivo. Macroporous polymeric scaffolds

of nanofibrous bacterial cellulose have also been successfully proposed as in vitro models for

the culture of breast cancer cells [29].

Among the different 3D platforms established for cancer therapy studies, hydrogels demon-

strate some peculiarities in terms of response to therapeutic agents [30, 31]. For example,

microfluidic 3D hydrogel models were proposed to assess anti-cancer drugs interactions for

bone cancer research and therapy [32]. Previous studies, have also shown that hydrogels can

be effective in studies of tumor-host interactions that regulate tumor formation and progres-

sion [33, 34]. Using a different approach, SF-based hydrogels were proposed for the controlled

delivery of plasmid DNA for specific cancer gene therapy applications [35]. Another reason

that promotes the use of hydrogel systems for cancer research is because they can be applied in

a minimally invasive manner and over a wide range of temporal profiles. The injectable in situ
crosslinked hydrogels ensure the localized and painless administration of cytotoxic drugs that

are usually applied systemically in conventional chemotherapy, producing generalized side

effects [36]. For example, in different studies anticancer-loaded injectable hydrogels have been

tested as platform for the local delivering of chemotherapeutic drugs after glioblastoma resec-

tion, that is the most common, aggressive and inaccessible primary brain tumor in adults [37].

Considering the suitable properties of SF as a natural polymer platform and its applicability for

producing injectable and non-toxic hydrogels, this would be an advantageous model system

for cancer therapy applications.

Herein, we deeply investigate the conformational transitions of rapidly responsive SF

hydrogels from random coil to β-sheet and its potential use as a biomimetic matrix for the pro-

grammed tumor cells death in 3D in vitro tumor models. An enzyme-mediated crosslinking

method using HRP and H2O2 was used to produce in a few minutes in situ formed SF hydro-

gels at physiological conditions [20] (S1 and S2a Figs). The spontaneous β-sheet conformation

transition on the protein-based hydrogels was morphological and chemically investigated at

multi-scale, and the rheological properties determined. We further explored the in vitro cell

encapsulation within the proposed hydrogels. A human neuronal glioblastoma (U251) cell line

was used to evaluate how the cells respond to the protein conformational changes, up to 14

days of culturing (S2b and S2c Fig).

Material and methods

Materials

Silk derived from the silkworm Bombyx mori in the form of coccons was provided by the Por-

tuguese Association of Parents and Friends of Mentally Disabled Citizens (APPACDM, Cas-

telo Branco, Portugal). All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA)

unless otherwise stated.

Preparation of silk fibroin aqueous solution and hydrogels

Purified silk fibroin (SF) was prepared by removing the glue-like protein sericine from the

cocoons in a 0.02 M boiling sodium carbonate solution for 1 hour, followed by rising with dis-

tilled water in order to fully remove the degumming solution [16]. A 9.3 M lithium bromide

solution was used to dissolve the purified SF for 1 hour at 70˚C and dialyzed in distilled water
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for 48 hours using the benzoylated dialysis tubing (MWCO: 2 kDa). In the last 12 hours, SF

was dialyzed in phosphate buffer saline solution (PBS, without calcium or magnesium ions)

and then concentrated against a 20 wt.% poly(ethylene glycol) solution for at least 6 hours.

The final concentration of SF was determined by measuring the dry weight of the SF solution

placed in the oven at 70˚C overnight. Meanwhile, the prepared SF solution was stored at 4˚C

until further use.

SF hydrogels were prepared according to the procedure described by Yan et al. [20]. Briefly,

the stored SF solution was diluted to 16 wt.% in PBS and combined with horseradish peroxi-

dase solution (HRP type VI, 0.84 mg/mL) and hydrogen peroxide solution (H2O2, 0.36 wt.%;

Panreac, Barcelona, Spain), both also prepared in PBS. A mixture of 1 mL SF solution, 100 μL

HRP solution and 65 μL H2O2 solution (1/0.52‰/1.45‰) was prepared in a 1.5 mL centrifuge

tube (Eppendorf, Hamburg, Germany), and warmed in a water bath of 37˚C. This formulation

was chosen after some optimization process [20]. SF hydrogels were prepared by the deposi-

tion of 100 μL of mixture in tissue culture polystyrene (TCPS) coverslips (22 mm diameter,

Sarstedt, Nümbrecht, Germany), unless otherwise mentioned, followed by the complete gela-

tion in the oven at 37˚C. The prepared hydrogel discs were used for further characterization

tests performed after 1, 3, 7, 10 and 14 days of hydrogels formation.

Structural analysis of the SF hydrogels

Transmission electron microscopy. Transmission electron microscopy (TEM) was used

to evaluate the natural ability of SF to form β-sheet fibrils. SF hydrogel discs were contrasted

through negative staining using 2% uranyl acetate for 5 seconds. TEM images were acquired

using a JEOL JEM 1400 TEM (Tokyo, Japan) and digitally recorded using a CCD digital cam-

era Orious 1100W Tokyo, Japan.

Thioflavin T staining. The qualitative evidence of the β-sheet structure on SF hydrogels

was tested using the dye thioflavin T. A 1% (w/v) thioflavin T solution was used to stain the SF

hydrogels for 10 minutes followed by rinse with 70% ethanol solution and then washed with

distilled water three times. Stained samples were observed under transmitted and fluorescence

microscopy (ex/em 495/515 nm) using a transmitted and reflected light microscope (Axio

Imager Z1m, Zeiss, Jena, Gernamy). Images were acquired using the digital cameras AxioCam

MRc5 or MR3 (Zeiss, Jena, Germany), respectively, connected to the Zen microscope process-

ing software (Zeiss, Jena, Germany).

Physicochemical characterization of the SF hydrogels

X-ray diffraction. The qualitative analysis of crystalline phases presented on the SF

hydrogels was performed by X-ray diffraction (XRD) using a high-resolution Bragg–Brentano

diffractometer (Bruker D8 Advance DaVinci, Karlsruhe, Germany) equipped with CuKα radi-

ation (λ = 1.5418 Å), produced at 40 kV and 40 mA. SF hydrogel discs were prepared by add-

ing 100μL of the SF/HRP/H2O2 mixture in polydimethylsiloxane (PDMS; Sylgard 184 Silicone

Elastomer Kit, Dow Corning, Belgium) silicone molds (8 mm diameter and 2 mm height).

Data sets were collected in the 2θ range of 10–50˚ with a step size of 0.02˚ and 1s for each step.

XRD measurements were repeated three times independently.

Fourier transform infrared spectroscopy. The chemical composition and structural con-

formation of the SF hydrogels were analyzed by Fourier transform infrared (FTIR) spectros-

copy (Perkin-Elmer 1600 series equipment, CA, USA) under an attenuated total reflectance

(ATR) model (IRPrestige-21, Shimadzu, Japan). SF hydrogel discs were prepared as described

above. All spectra were obtained between 4600 to 800 cm-1 at a 4 cm-1 resolution with 50

scans. Each specimen was examined for at least 3 times and PBS was used as background.
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Atomic force microscopy and infrared spectroscopy. The chemical characterization of

the SF hydrogels was also performed combining atomic force microscopy (AFM) and IR spec-

troscopy at a nanoscale spatial resolution using a Resonance enhanced mode on a NanoIR-2

system by Anasys Instruments (CA, USA), equipped with a Quantum Cascade Laser (QCL) as

the IR source. Samples were prepared by spin-coating (Spin Coater Model WS-650-23, Laurell

Technologies, PA, USA) ZnS sampling flat substrates (Anasys Instruments, CA, USA) with the

SF/HRP/H2O2 mixture. The spectra were acquired in a 1000–1800 cm-1 range with a spectral

resolution of 2 cm-1. Multiple spectra were acquired for each sample, averaged and smoothed

using Savitzky-Golay filter.

Rheological properties. Rheological analysis was performed using a Kinexus pro+ rhe-

ometer (Malvern Instruments, UK), using the acquisition software rSpace (Malvern Instru-

ments, UK). For the oscillatory experiments the measuring system was equipped with

stainless steel (316 grade) parallel plates: an upper measurement geometry plate (8 mm

diameter) and a lower pedestal (20 mm diameter) with roughened finish. Frequency sweep

experiments were performed using SF hydrogel discs prepared in silicone molds (8 mm

diameter and 2 mm height), as described above. The measurements were obtained by plot

the frequency (Hz) as function of modulus (Pa) and with a predefined shear strain (0.53%).

Temperature and time sweep experiments were performed to the SF/HRP/H2O2 mixture,

using a large upper geometry plate (20 mm diameter) and the oscillatory experiments were

performed at 1 Hz of frequency, 0.53% of shear strain and during 100 minutes (6000 s). The

temperature sweep curve was obtained for the range of 25˚C to 45˚C and the time sweep

curve with a fixed temperature of 37˚C. For the rotational experiments the measuring system

was equipped with an upper measurement geometry cone (40 mm diameter and 4˚ angle).

Shear viscosity and shear stress were determined for the SF/HRP/H2O2 mixture, as a func-

tion of the shear rate (0.01 s−1 to 100 s−1). These experiments were performed at 37˚C and all

plots are the average of at least 3 samples.

Cell culture and encapsulation in the SF hydrogels

U251 glioma cell line culture. Human neuronal glioblastoma (U251) cell line was

generously donated by Prof. Joseph Costello (California University, Neurosurgery Depart-

ment, San Francisco, USA) and further provided by Prof. Rui M. Reis (Life and Health

Science Research Institute, University of Minho, ICVS/3B’s—PT Government Associate

Laboratory, Portugal). All experiments and protocols related to U251 cell line were

approved by the Ethics Committee of University of Minho. U251 cell line was expanded in

Dulbecco’s modified Eagle’s medium (DMEM) with phenol red, supplemented with 10%

fetal bovine serum (FBS; Life Technologies, Carlsbad, CA, USA) and 1% antibiotic–antimy-

cotic (Life Technologies, Carlsbad, CA, USA). Cells were cultured until confluence in a CO2

incubator with an atmosphere of 5% CO2 at 37˚C, and the culture medium was changed

every 2–3 days.

Hydrogel encapsulation of U251 cells. A mixture of 1 mL SF solution, 100 μL HRP solu-

tion and 65 μL H2O2 solution, was warmed in a water bath (37˚C) for about 6 minutes. Then,

1 mL of the warmed mixture was homogeneously mixed with a U251 cell pellet containing

1×106 cells and 100 μL of cell suspension were transferred into TCPS coverslips (22 mm diam-

eter) in a 12-well suspension cell culture plate (Corning Incorporated, Life Sciences, NC,

USA), unless otherwise mentioned. The plate was then incubated for 15 minutes at 37˚C in the

CO2 incubator, to complete gelation. After the gel formation, 3 mL of basal DMEM medium

were added to each well and the culture medium was changed every 2 days. Samples were col-

lected for analysis at day 1, 7, 10 and 14.

Silk fibroin hydrogels and tumor cells death
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Cell viability and proliferation in the SF hydrogels

ATP bioluminescence assay. Cell viability was assessed using the CellTiter-Glo1 Lumi-

nescent Cell Viability Assay (Promega, WI, USA). The cell-laden hydrogels were incubated in

a mixture consisting of serum-free cell culture medium and CellTiter-Glo1 Reagent in a 1:1

ratio, for 30 minutes at room temperature (RT). The emitted luminescence was detected in a

microplate reader (Synergy HT, BioTek Instruments, Winooski, VT, USA) using a sensitivity

of 120. The ATP concentration for each sample was calculated according to a standard curve

prepared with concentrations ranging between 0 and 2 μmol/L, relating quantity of ATP and

luminescence intensity. Hydrogels without cells were used as control.

DNA quantification. Cell proliferation was evaluated using the Quant-iT1 Pico-Green

dsDNA Assay Kit (Life Technologies, Carlsbad, CA, USA), according to the manufacturer’s

instructions. The cell-laden hydrogels were incubated at 70˚C for 30 minutes and kept in 1 mL

of ultrapure water at −80˚C until further analysis. Before analysis, samples were thawed at RT

and sonicated for 1 hour at 37˚C to induce complete membrane lysis. Supernatant fluores-

cence was measured in a microplate reader (ex/em 485/528 nm). The DNA concentration for

each hydrogel was calculated using a standard curve with concentrations ranging from 0 to

2 μg/mL, relating quantity of DNA and fluorescence intensity. Hydrogels without cells were

used as control.

Live/Dead staining. A Calcein AM and propidium iodide (PI; Life Technologies, Carls-

bad, CA, USA) staining was performed to confirm the viability of the encapsulated cancer

cells. The cell-laden hydrogels were incubated in 1 mL PBS supplemented with 1 μg Calcein

AM and 5 μg PI, for 10 minutes at 37˚C in the CO2 incubator. Samples were washed with PBS

and observed under fluorescence microscopy (Calcein AM (green): ex/em 495/515 nm; PI

(red): ex/em 495/635 nm) in a transmitted and reflected light microscope. Images were

acquired using the digital camera MR3 connected to the respective Zen microscope software.

TUNEL assay. An in situ Cell Death Detection Kit, Fluorescein (Roche, Basel, Switzer-

land) was used in cell-laden hydrogels and sections from the cell-laden hydrogels (3.5 μm

thick) to detect apoptotic cells, based on Terminal deoxynucleotidyl transferase dUTP nick

end labeling (TUNEL) reaction and according to the manufacturer’s instructions. Cell-laden

hydrogels were fixed in 10% formalin for 1 hour at RT and permeabilized with 0.1% (v/v) of

Triton X-100/0.1% (w/v) of sodium citrate (Fisher Scientific, NJ, USA). The sections from the

cell-laden hydrogels were after paraffin removal, rehydrated and submitted to heat-induced

antigen retrievel using 10 mM citrate buffer (pH 6; Panreac, Barcelona, Spain). After washed

with PBS, the TUNEL reaction mixture (50 μL/sample) was added to the hydrogel samples and

incubated for 1 hour at 37˚C, in the dark. Negative control (without terminal transferase) and

positive control (with DNase I recombinant 20 U/mL (Amresco) in 50 mM Tris(hydroxy-

methyl) aminomethane, pH 7.5, and 1 mg/mL bovine serum albumin) samples were also pre-

pared. A counterstaining was performed using 4,6-Diamidino-2-phenyindole, dilactate

(DAPI; Biotium, CA, USA). Samples were washed with PBS and observed under fluorescence

microscopy (Apoptotic cells (green): ex/em 495/515 nm; DAPI (blue): ex/em 358/461 nm) as

described above.

Optical projection tomography. Optical projection tomography (OPT) system was used

to analyze the 3D microstructure of the SF hydrogels and to evaluate the distribution of the

cell-laden SF hydrogels. SF hydrogel samples were prepared by filling fluorinated ethylene pro-

pylene (FEP) tubes with 100μL of the un-laden or cell-laden SF/HRP/H2O2 mixture. The speci-

mens were immersed in an index-matching liquid (distilled water) and rotated through a

series of angular positions. The center of rotation and the alignment of the samples were

adjusted using a manual x-y-stage (Standa, Lithuania) in conjunction with the sample-
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positioning module (Standa, Lithuania) by using the 4 available axes (3 translational, 1 rota-

tional). The acquisition consists of rotating a sample 360˚ in 0.9˚ steps and capturing an image

at each rotation angle, ranging from 0˚ to 359.1˚. A total of 400 images were acquired per sam-

ple. The OPT system was used in brightfield mode. The images were captured with an sCMOS

camera (Hamamatsu, Japan) and the exposure time was adjusted from 4 ms to 20 ms depend-

ing on the transparency of the sample. Projections collected in each orientation were used to

create the 3D reconstructions of each sample and the visualization of the 3D-volume was

obtained using Avizo software (FEI, USA).

Selective plane illumination microscopy. Cell distribution in the SF hydrogels was also

analyzed by selective plane illumination microscopy (SPIM), following the same protocol for

cell-loading sample preparation described above. The samples imaged with SPIM were stained

with Calcein AM (green: ex/em 494/517 nm) and Phalloidin (red: ex/em 550/575 nm). The

FEP-tubes containing the samples were supported by a 4 axis-positioning device (Picard

Industries, USA) and the plane of interest in each sample was found by using the 4 available

axes (3 translational, 1 rotational). The fluorophore distribution in the samples was acquired

my translating the sample along the detection axis while taking images at constant intervals.

The images were collected with an sCMOS camera. The samples were imaged using an expo-

sure time of 300 ms except for the day 10 and day 14 samples (exposure time of 100 ms to

avoid overexposure). Images were taken in 3 μm z-steps across depth of 500 μm. Due to nar-

row field of view, separate stacks were acquired to cover the width of the sample. The stacks

were stitched together in post processing to create a wider field of view. Finally, the stitched

stacks were visualized using Avizo software.

Statistical analysis

All the numerical results are presented as mean ± standard deviation (SD). Statistical analysis

was performed using the GraphPad Prism 5.0 Software (GraphPad Software Inc., La Jolla, CA,

USA). First, a Shapiro-Wilk test was used to ascertain about the data normality. The results

indicated that non-parametric tests should be used for all comparisons. The comparisons were

performed using the Kruskal-Wallis test followed by Dunn’s multiple comparison test. Three

independent experiments were performed for all biological quantification assays, and carried

out with three replicates in each culturing time. Statistical significance was set to ��p< 0.01,
���p< 0.001.

Results

Structure and multi-scale conformational transitions of the SF hydrogels

To clarify the relationship between hydrogels morphology and conformational changes of the

SF protein, we performed a multi-scale structural characterization to evaluate the conforma-

tional distribution within the SF hydrogels over the 14 days of incubation at physiological

conditions (Fig 1a). SF hydrogels immersed in phosphate buffer saline solution (PBS) solution

at 37˚C for 14 days presented a transparent morphology over the first 7 days, becoming

completely opaque after 10 days of incubation (Fig 1b) [20]. The Transmission electron

microscopy (TEM) images revealed at day 1 and day 3 the presence of a high amount of small

and randomly distributed SF nanofibrils, representative of a main amorphous conformation

in the hydrogels (Fig 1c). At day 7, the dimensions of the SF nanofibrils increased substantially,

and from day 10 to day 14 the nanofibrils aggregates also increased exponentially, indicating

higher order of β-sheet structures and the typical evidence of a conversion to a dominant β-

sheet conformation domain [38]. Thioflavin T (ThT) staining (Fig 1d) came to confirm the

TEM observations by the increasing evidence of SF nanofibrils and aggregates over the 14 of
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hydrogels incubation. The bright green fluorescence detecting protein nanofibrils in the β-

sheet state was only observed from day 7, confirming the previous observations [39]. In Fig 1e

and S1–S5 Movies, are represented the 3D reconstructions of the SF hydrogels obtained by

Optical projection tomography (OPT) analysis. The low intensity voxels colored in blue, give a

clear perception of the hydrogels microstructure and highlight their conformational changes.

From day 1 to day 7, hydrogels presented a homogeneous intensities distribution characteristic

of transparent hydrogels (random coil main conformation). From day 10 until day 14, an

increase in entropy was observed, which is related with a random intensity distribution in high

density hydrogels (β-sheet main conformation) [40, 41].

The conformational changes of SF hydrogels were then confirmed by X-ray diffraction

(XRD, Fig 2a) and attenuated total reflectance Fourier transform infrared spectroscopy

(ATR-FTIR, Fig 2b). XRD analysis revealed no significant differences between the hydrogels

tested with different incubation periods at 37˚C (3, 7 and 14 days) in terms of peak positions,

ranging from 2θ = 28.4–30.8˚. The intensity of these peaks increased over time, which charac-

terizes the typical pattern of substances undergoing an increase of crystallinity [42], repre-

sented by broad peaks at the first tested periods (3 and 7 days) converted to a crystalline

diffraction pattern after 14 days of incubation. The peak identified on day 14 at 2θ = 28.4˚ can

be assigned to β-sheet crystalline domain [43] and the additional peak at 2θ = 21˚, was only

detected at day 14 and also characterizes the β-sheet structure [44]. The main absorbance

Fig 1. Structural evaluation of the SF hydrogels after incubation in PBS at 37˚C for 1, 3, 7, 10 and 14 days. (a)

Schematic illustration of the β-sheet structural transitions in the SF hydrogels. (b) Macroscopic images of the SF

hydrogels (scale bar, 5 mm). (c) TEM micrographs of the SF hydrogels (scale bar, 500 nm for low magnification

images; scale bar, 200 nm for high magnification image). (d) SF hydrogels labeled with thioflavin T (scale bar, 500 μm

for low magnification images; scale bar, 100 μm for high magnification image) analyzed under the fluorescence

microscope (scale bar, 200 μm). The black arrows indicate nanofibrils and the red arrows indicate aggregates. (e) OPT

reconstructions of the SF hydrogels (scale bar, 500 μm). Movies from OPT reconstructions of the SF hydrogels are

available in S1–S5 Movies.

https://doi.org/10.1371/journal.pone.0194441.g001

Silk fibroin hydrogels and tumor cells death

PLOS ONE | https://doi.org/10.1371/journal.pone.0194441 April 4, 2018 8 / 21

https://doi.org/10.1371/journal.pone.0194441.g001
https://doi.org/10.1371/journal.pone.0194441


peaks detected by ATR-FTIR for the SF hydrogels were on day 3 at 1643 cm-1 and 1545 cm-1

and on day 7 at 1643 cm-1 and 1541 cm-1. These peaks are characteristic of random coil confor-

mation and correspond to the amide I and amide II bands, respectively [45, 46]. At day 14,

strong absorption peaks were detected at 1636 cm-1 and 1535 cm-1, corresponding to the β-

sheet structure on the SF hydrogels [45]. From day 3 to day 14, hydrogels presented an absor-

bance peak between 1250 cm-1 to 1252 cm-1, corresponding to amide III band positions. As

expected, the intensity of this peak was higher at day 14, which is an indication of the higher β-

sheet crystalline domain in these hydrogels [46]. We further quantitatively and unambiguously

confirmed the structural transitions between the SF hydrogels at a nanoscale by atomic force

microscopy combined to IR nano-spectroscopy (AFM-IR) (Fig 2c). Fig 2d, shows the AFM

nano-imaging of the SF hydrogel samples at the different tested periods, revealing that after 3

and 7 days of incubation at 37˚C a series of elements were exhibited, with the presence of

some globular amorphous protein aggregates with different sizes and morphologies. At day 14,

a large globular protein aggregate was identified with an opaque morphology, confirming that

SF hydrogels underwent conformational changes [38]. The AFM-IR spectra (Fig 2e) obtained

for the SF hydrogels were correlated to that obtained with the conventional ATR-FTIR (Fig

2b). Nevertheless, through AFM-IR analysis it was possible to obtain an average structural

information of samples covering larger areas of analysis, which is an important advancement

considering the high structural heterogeneity of SF hydrogels at the nanoscale (Fig 2d) [47].

The amide band positions (I, II, II) of samples from day 3 and day 7 were quite similar and of

low intensity (indistinct peaks), characteristic of a random coil main conformation (1644 cm-1

and 1640 cm-1 for amide I, 1532 cm-1 and 1540 cm-1 for amide II and 1232 cm-1 and 1228 cm-1

for amide III, respectively) [45, 46]. At day 14, all the amide signature bands shift towards

higher frequency, especially those of amide I and amide II (1650 cm-1 for amide I, 1546 cm-1

for amide II and 1256 for amide III), which is a characteristic of the β-sheet structure [48, 49].

Therefore, these results suggest that the natural conformational changes of the native SF can

also spontaneously occur on the SF hydrogels over time.

Fig 2. Physicochemical characterization of the SF hydrogel after incubation in PBS at 37˚C for 3, 7 and 14 days. (a) XRD

patterns of the SF hydrogels. (b) ATR-FTIR spectra of the SF hydrogels. (c) Schematic illustration of nanoscale IR spectroscopy using

AFM-IR: IR pulses are emitted in the sample increasing the local absorption on SF nanofibrils acquired by the AFM cantilever tip,

corresponding to the absorption spectroscopic peaks. (d) Tapping-mode AFM nano-images (10 μm x 10 μm), and (e) IR nano-

spectra of the SF hydrogels obtained by measuring the samples at different points selected by the AFM tip, corresponding to the

absorption spectroscopic signatures and indicated as green, blue and red points.

https://doi.org/10.1371/journal.pone.0194441.g002
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Viscoelastic properties and hydrogelation kinetics of the SF hydrogels

The mechanical properties of the SF hydrogels and SF/HRP/H2O2 mixture before gelation

were analyzed by rheometer, detecting the frequency sweep as a useful tool to characterize the

microstructure of a viscoelastic material. Frequency sweep curves obtained from oscillatory

shear measurements performed on the SF hydrogels are shown in Fig 3a, revealing the depen-

dence of storage modulus (G’) (Fig 3ai) and loss modulus (G”) (Fig 3aii) upon the frequency.

G’ measures the deformation energy stored during shear stress, i.e. the material stiffness, while

G” measure the dissipated energy, i.e. the flow or liquid-like response [50]. In all tested periods,

G´ was higher than the G”, showing that the produced SF hydrogels are viscoelastic solids,

both in a main amorphous conformation (transparent) and in a β-sheet crystalline form

(opaque) (Fig 3d). G’ and G” were almost independent on the oscillation frequency, but for

higher values of frequency (>1 Hz) it shows a typical plastic flow behavior with G’ and G”

increasing with frequency. Moreover, the G’ increases substantially from day 3 to day 7, corre-

sponding to the conformation transition period of hydrogels (Fig 3d). In the first 3 days is sug-

gested a network-like structure converted in a liquid crystal-like structure from day 7 to day 14

of analysis [51]. The damping factor or loss factor (tan δ) was measured by determining the

ratio G@/G0 (Table 1). An increase of tan δ was observed over time (from day 1 until day 14),

as well as, that the damping factor was lower than 1 in all tested periods (higher storage modu-

lus—G’), characterizing the typical behavior of elastic solids [51]. Moreover, a substantial

increase of the damping factor was determined from day 3 to day 7, consistent to the G’ mea-

surements (Fig 3ai). SF/HRP/H2O2 mixture was subjected to two different oscillatory experi-

ments, temperature (Fig 3bi) and time (Fig 3bii) sweep curves, before gelation. In both cases, a

gel-like response was observed in which G’ was always higher than G”. An abrupt increase of

Fig 3. Rheological properties of the SF/HRP/H2O2 mixture before gelation, after SF hydrogels formation and

incubation in PBS at 37˚C for 1, 3, 7 and 14 days. (a) Oscillatory experiments or frequency sweep curves: (i) storage

modulus as a function of frequency, and (ii) loss modulus as a function of frequency for the SF hydrogels. (b) Dynamic

moduli as function of: (i) temperature, and (ii) time for the SF/HRP/H2O2 mixture. (c) Rotational experiments: (i)

shear viscosity, and (ii) shear stress as a function of shear rate for the SF/HRP/H2O2 mixture. (d) Macroscopic images

of SF hydrogels analyzed at day 1 and day 7 (scale bar, 4 mm).

https://doi.org/10.1371/journal.pone.0194441.g003
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G’ was observed up to 27 ˚C and 120 s, indicating an increase of samples stiffness associated to

the formation of a hydrogel network [18]. After a stagnation at intermediate times and on the

range of temperature from 30˚C to 40˚C, a slight increase of G’ and G” was observed at the

end of the curves (starting at 40˚C and 2900 s), indicating that at this point the SF hydrogels

were completely formed and the temperature or time did not significantly alter the final

mechanical properties of the hydrogels. The prepared SF/HRP/H2O2 mixture was studied

through rotational experiments (Fig 3c). Before gelation, SF/HRP/H2O2 mixture showed an

average shear viscosity of 4.7 ± 0.37 Pa.s (Fig 3ci), as confirmed by the slope of the linear trend

line (Fig 3cii). The shear viscosity values decreased with increasing shear rate (0.1 s-1 to 1 s-1),

suggesting the shear-thinning fluidic behavior of the SF/HRP/H2O2 mixture. At higher shear

rate values (1 s-1 to 100 s-1) a Newtonian behavior was observed represented by a constant

shear viscosity [52].

Assessment of the programed cell death in U251 cell-laden SF hydrogels

and live conformational changes

Due to the conformational transitions observed on the SF hydrogels after short incubation

periods, the developed hydrogels were used for U251 cell line encapsulation to evaluate the

effects of the conformational changes on cell behavior. The ATP evaluation (Fig 4a) showed

that the metabolic activity of the encapsulated cells significantly improved from day 1, as

Fig 4. U251 cell-laden SF hydrogels cultured for 1, 7, 10 and 14 days. Cell viability and proliferation analyzed by (a)

ATP assay and (b) DNA quantification, respectively. (c) Macroscopic images of the U251 cell-laden SF hydrogels (scale

bar, 5 mm). (d) Live/Dead staining and fluorescence TUNEL assay of the U251 cell-laden SF hydrogels (scale bar,

200 μm). All the raw numerical data were provided in S1 and S2 Tables. ��p< 0.01, ���p< 0.001.

https://doi.org/10.1371/journal.pone.0194441.g004

Table 1. Damping factor of SF hydrogels after incubation in PBS at 37˚C for 1, 3, 7, 10 and 14 days.

Time (day) Damping factor

1 0.0121 ± 0.0004

3 0.0208 ± 0.0042

7 0.0941 ± 0.0048

10 0.1039 ± 0.0074

14 0.1078 ± 0.0017

https://doi.org/10.1371/journal.pone.0194441.t001
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compared to the remaining culture periods (���p < 0.001). Nevertheless, after 10 days of cul-

ture a non-significant decrease in cellular metabolic activity was verified, as compared to day

7, corresponding to the conformation transition state of the SF hydrogels, from amorphous

(transparent hydrogels) to crystalline β-sheet (opaque hydrogels) (Fig 4c). A non-significant

increase of metabolically active cells was observed from day 10 to day 14. This cell behavior

may have been induced as stress response to counter the effects of the conformational transi-

tion on SF hydrogels. Moreover, in contrast to normal differentiated cells most cancer cells

respond differently to generate the energy needed for cellular processes, which affects the

ATP production by cells [53]. From DNA quantification (Fig 4b), it was observed a signifi-

cant increase of cell proliferation from day 1 to day 10 (��p < 0.01: from day 1 to day 7;
���p < 0.001: from day 1 to day 10 and from day 7 to day 10). However, at day 14 a slight

decrease in cell proliferation was observed as compared to day 10, even if it has been signifi-

cantly superior as compared to day 1 (���p < 0.001) and day 7 (��p < 0.01). As shown in Fig

4d, live/dead staining showed that the cell-laden SF hydrogels were capable support cell via-

bility during the first 24 hours of culturing. At day 7 and day 10 the amount of dead cells was

very similar to the living ones, and a large amount of dead cells were observed after 14 days

of culturing. Cell apoptosis detected through TUNEL assay (Fig 4d) also revealed that no

apoptosis was visualized at day 1. However, over the 14 days of culturing a substantial

increase of apoptotic cells were detected at the cell-laden hydrogels, presenting at day 14 a

very similar pattern to that observed on the positive control samples (S3a Fig). From Figs 1b

and 4c it was observed that, both the un-laden and cell-laden SF hydrogels, respectively,

maintained a transparent morphology until day 7, where opacity started to be noticed.

After 10 days of incubation, hydrogels become completely opaque. The hydrogels TEM,

ThT and OPT images (Fig 1c–1e; S1–S5 Movies), showed an increase of SF nanofibrils

aggregates after 7 days of incubation and the rheological analysis also showed a substantial

increase of hydrogels stiffness from day 7 (Fig 3ai). These results indicate that the unques-

tionable conformational transition of SF hydrogels to a dominant β-sheet crystalline confor-

mation affected cell proliferation and viability, increasing cell apoptosis.

The in vitro conformation transition behavior of the U251 cell-laden SF hydrogels was

also evaluated by OPT analysis and selective plane illumination microscopy (SPIM) (Fig 5a;

Fig 5. U251 cell-laden SF hydrogels cultured for 1, 7, 10 and 14 days. (a) OPT projections (scale bar, 400 μm), OPT

reconstructions (scale bar scale bar, 500 μm) and SPIM reconstructions (scale bar, 200 μm) of the U251 cell-laden SF

hydrogels. Movies from OPT projections, OPT reconstructions and SPIM reconstructions of the cell-laden SF

hydrogels are available in S6–S17 Movies. (b) Fluorescence TUNEL assay of the sections from the U251 cell-laden SF

hydrogels for 1, 7, 10 and 14 days (scale bar, 50 μm). (c) Schematic illustration of the morphological changes of U251

cells during apoptosis induced by the conformational transitions of the cell-laden SF hydrogels.

https://doi.org/10.1371/journal.pone.0194441.g005
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S6–S17 Movies). These imaging techniques allowed to create multi-scale 3D rendered images

to evaluate cell distribution within the hydrogels, while being minimally invasive at the same

time. OPT projections (Fig 5a; S6–S9 Movies) showed that from day 1 to day 10, U251 cells

were well distributed within the hydrogels presenting a main amorphous conformation (trans-

parent morphology) on the first 7 days of culture. At day 10 some changes were observed in

the cell-laden hydrogels morphology due to the presence of some opaque depots characteristic

of a β-sheet conformation transition. These opaque depots were converted in the main struc-

ture of the U251 cell-laden SF hydrogels after 14 days of culture, showing the complete transi-

tion of hydrogels conformation and confirming the previous OPT observations (Fig 1e; S1–S5

Movies). Nevertheless, cell distribution behavior after 14 days of culture was only possible to

evaluate through OPT reconstructions (Fig 5a; S10–S13 Movies), showing that cells were orga-

nized in clusters. SPIM reconstructions (Fig 5a; S14–S17 Movies), allowed not only to achieve

high resolution 3D images of the cell-laden SF hydrogels using high penetration depths, as

imaged and tracked the cells within the hydrogels by fluorescence labeling. At day 1 and day 7,

U251 cells presented a very similar distribution within the hydrogels to that observed on OPT

projections (Fig 5a; S6–S9 Movies) and reconstructions (Fig 5a; S10–S13 Movies). At day 10,

cells were already organized in clusters and this effect was even more pronounced after 14 days

of cell encapsulation. The sections from the U251 cell-laden hydrogels analyzed by TUNEL

assay (Fig 5b) also showed an increase of cell clusters over the culture period accompanied by

a substantial increase of apoptotic cells on day 14, suggesting that the transition from random

coil (amorphous) to a β-sheet (crystalline) (Fig 4c) induced formation of U251 cell clusters

that undergo a programmed cell death (Fig 5c; S2c Fig).

Discussion

In this study, we have investigated enzymatically crosslinked SF hydrogels mediated by a HRP/

H2O2 complex. These hydrogels were produced in a main random coil conformation, which

allow them to obtain physical, mechanical and biological properties completely distinct to

those reached by the SF hydrogels formed with a β-sheet conformation [17, 18], or even to

those induced by electrical stimuli in main random coil conformation [54]. The high concen-

tration of SF (16 wt%) allowed us to obtain fast-formed hydrogels (15–20 minutes of gelling

time) suitable for injectable systems [55]. The previous electrically induced SF hydrogels, were

prepared from low concentrated SF, which imply longer gelation times and low mechanical

properties [54]. As observed in a previous study by our group [20], the proposed SF hydrogels

can be customized to yield a wide range gelling times and mechanical properties only by

changing the concentration of SF and the HRP/H2O2 ratio, due to the tyrosine groups available

in the crosslinking system [22]. The crosslinking system herein proposed, involved not only a

highly-concentrated SF solution (16 wt%), as an increased concentration of enzyme (HRP)

was applied to yield faster gelation times. Moreover, the proposed highly concentrated SF

hydrogels have shown high water content and swelling ability, both in the amorphous state

and after β-sheet inducement, which is very important to maintain hydrogels integrity and bet-

ter simulate the physiological environment [21].

The proposed rapidly responsive SF hydrogels have been previously observed to present a

transparent appearance during the amorphous conformation state that gradually changes to

an opaque morphology when the hydrogels are naturally converted in a β-sheet conforma-

tion [20]. This was another interesting characteristic of our hydrogels that presented

significant morphological changes after 7 days of hydrogels formation, indicative of a confor-

mational transition of SF to β-sheet crystalline form, as confirmed under TEM, ThT staining

and OPT analysis (Fig 1c–1e; S1–S5 Movies). These results also suggest that the applied
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enzymatic crosslinking on the semi-crystalline or amorphous tyrosine groups of SF may not

affect the β-sheet inducement of the protein [22]. In a previous study, Ryu et al. [56] pro-

posed a different approach for producing SF-PEG hybrid hydrogels, where the SF phase was

naturally converted to a β-sheet conformation after 5 days of hydrogels formation. These

hydrogels were formed by an initial functionalization step of SF in order to allow the photo-

polymerization reaction and hydrogels formation. The post-gelation step of SF was then con-

ducted by the natural β-sheet structural transition within the hydrogel network. Although

most of the reported literature recognize that the formation of transparent SF hydrogels is

associated with a random-coil conformation and opaque hydrogels present a main β-sheet

conformation, it has been also reported the development of transparent SF hydrogels formed

by reaction with polar reagents that resulted in an amorphous-to-crystalline conformational

change [57].

The chemical characterization of the SF hydrogels (Fig 2a, 2b and 2e) was essential to con-

firm the multi-scale morphological observations and in which state of hydrogels formation the

conformational transition takes place, showing that until day 7 the developed SF hydrogels

presented the typical low intensity peak positions of a random coil conformation. After 14

days of hydrogels formation, high intensity absorption peaks were detected resulting from an

increase of crystallinity and conversion to a dominant β-sheet conformation. Thus, under-

standing the structure-property relation of protein-based biomaterials can open for new possi-

bilities of developing high-level 3D biomaterials impossible to obtain from other polymeric

materials [58]. Mechanical properties constitute one of the main issues of biomaterials design

for TE applications. In the specific case of hydrogels, it can be hard to produce with sufficient

mechanical strength to support tissues like cartilage or subchondral bone [59]. Moreover, in

most cases high elasticity is also required, which hindered its production for the desired appli-

cations. In this study, SF hydrogels presented a viscoelastic solid behavior, both in a random

coil conformation or in a β-sheet opaque form [51]. Even the materials stiffness has suffered a

substantial increase during the conformational transition, they still maintained the typical

behavior of elastic solids, which is not the normal behavior of SF hydrogels formed in a β-sheet

conformation with high stiffness but lack of elasticity [17]. The crosslinking process induced

by the enzymatic complex of HRP/H2O2, may had a direct influence on these results [8]. As

previously observed, higher contents of peroxidase and hydrogen peroxide in the crosslinking

system, equivalent to those used in the present system (HRP/silk: 0.52‰; H2O2/silk: 1.45‰),

can induce higher amount of oxidized tyrosine groups and an enhanced crosslinking degree

that resulted in improved mechanical properties of the hydrogels [20]. Moreover, in both stud-

ies it was observed that regardless of the enzymatic ratio, in the amorphous state SF hydrogels

presented a constant elasticity with increasing frequency and strain sweep. We were also able

to distinguish the gelling point of the SF/HRP/H2O2 mixture by the substantial increase of

samples stiffness at specific temperature and time sweep [18] and the viscoelastic behavior was

also determined to evaluate the resistance to flow, which is an important concern of injectable

systems [4, 51]. Polymers are known for being non-Newtonian fluid and most of them exhibit

shear-thinning behavior in which the molecules are oriented along the flow direction, as

observed in our results. At high shear rate, the Newtonian behavior was observed due to the

molecules disorder as a result of shearing [52].

In the hydrogel-based 3D cell cultures, the seeding of cells is usually done by suspending

cells in the fluidic gel precursor solution, in order to obtain the cells embedded inside the gel

after gelation [60]. This is one of the major limitations of the SF hydrogels reported in the liter-

ature [17, 18]. As above mentioned, the usually applied methods for preparing SF hydrogels

involve the β-sheet conformational transition of SF during the sol-gel transition, which in

some cases may involve long gelation times [61]. On the other side, physical and chemical
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treatments proposed to shorten the SF gelation time, may also have provided useful time-

frames for successful cell encapsulation [17, 18]. For example, the ultrasonication treatment of

SF have shown to decrease the gelation time of SF hydrogels up to 2 hours, at the same time

that a successful cell incorporation after sonication and before the rapid gelation process was

observed. These hydrogels sustained cell function, proliferation and survival up to 21 days of

culture [17]. The same protocol was used in a different study [62], allowing the co-encapsula-

tion of pancreatic iselets with mesenchymal stem cells (MSCs) and ECM proteins within

vortex-induced SF hydrogels. In the present study, the SF hydrogels were prepared at physio-

logical conditions (peroxidase mediated crosslinking) and in a main random coil conforma-

tion, allowing for cell encapsulation, viability and proliferation up to 10 days of culture,

corresponding to the period of SF amorphous-to-crystalline conformational transition (Figs 1

and 2; S1–S5 Movies). The complete transition to a dominant β-sheet conformation was veri-

fied at day 14, accompanied by a substantial increase of cell apoptosis. In previous studies [31,

63], hydrogel matrices presented superior physiological properties as in vitro platforms for

cancer cells encapsulation and proliferation, where cells were encouraged to grow as tumor-

like clusters in 3D formation. Moreover, the authors also observed that the oxygen and nutri-

ents diffusion limitations within the hydrogel matrices resulted in cellular competition for the

available nutrients, growing levels of intra-cellular hypoxia, and as consequence in the devel-

opment of necrosis in the core of the in vitro bioengineered tumors [63]. Our suggestion is

that the opacity and crystallinity induced by the β-sheet conformation may have conditioned

the oxygen and nutrients diffusion within the cell-laden hydrogels, forcing the cell cluster for-

mation. At some point, cancer cells were not able to adjust to those deficiencies ceding to a cell

death by apoptosis (Fig 5c). It is important to reinforce that this cell behavior may be beneficial

to mimic the tumor microenvironment in 3D cancer models research. The relation of a cell

death induced by the β-sheet conformation of SF protein can also be raised, especially since it

has been reported in the literature that fibrillar β-amyloid peptides may have cytotoxic proper-

ties [64]. Nevertheless, different SF-based structures in a β-sheet form, have proved to be able

of support cell viability, proliferation and differentiation, as well as, in vivo biocompatibility

[16]. From the OPT and SPIM reconstructions (Fig 5a; S10–S17 Movies), we were able to

observe the typical behavior of cells in growing tumors, with an increase of U251 cell clusters

over the culture period, especially after 14 days of culture. This cell behavior may be beneficial

to mimic the tumor microenvironment in 3D cancer models research. In fact, bioengineered

3D hydrogels have already shown to induce cancer cells clusters formation in a new 3D culture

concept used to assess the cell-matrix interactions implied in carcinogenesis [65]. From the

cell-laden hydrogels TUNEL sections (Fig 5b) it was possible to closely observe that at day 14

most of these clustered cells were apoptotic, confirming that the β-sheet crystalline domain of

SF hydrogels may not only affect cell distribution but also induce programmed cell death (Fig

5c), which reinforces the potential use of these hydrogels as biomimetic matrices for studying

the programmed tumor cells death.

Conclusions

The present work demonstrates the formation of stimuli-responsive enzymatically crosslinked

SF hydrogels that undergo a spontaneous conformational transition from random coil to β-

sheet at physiological conditions. These hydrogels were highly resistant and presented appro-

priate mechanical properties to be used as injectable systems or 3D artificial matrices. They

were successfully applied for cell encapsulation, showing a significant increase of U251 cells

proliferation and metabolic activity in the transparent amorphous state. The spontaneous ran-

dom coil-to-β-sheet conformational transition of the SF hydrogels affected the viability of cells
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and induced apoptosis, envisioning their use as a generic injectable system to guide cancer

cells behavior and suppressing tumor progression. Furthermore, the stimuli-responsiveness

and cell-loading ability of these in situ forming SF hydrogels, provide new insights for using

these hydrogels as potential orthotopic 3D cancer models and for studying the 3D microenvi-

ronment of tumor cells.

Supporting information

S1 Fig. Schematic illustration of redox-responsive enzymatically crosslinked SF hydrogels.

(a) Oxidation-reduction reaction between HRP and H2O2 transformed the tyrosine groups of

SF and induced hydrogels formation. (b) Rapidly responsive sol-gel transition combining

HRP and H2O2 at physiological conditions (pH 7.4 and 37˚C).

(TIF)

S2 Fig. Schematic illustration of in situ fast-formed enzymatically crosslinked SF hydrogels

and in vitro response of U251 cell-laden SF hydrogels. (a) Peroxidase mediated crosslinking

method using HRP and H2O2 at physiological conditions (pH 7.4 and 37˚C), reacting with the

tyrosine groups of the SF protein. (b) U251 cells encapsulation within the newly formed ran-

dom coil SF hydrogels. (c) U251 cell-laden SF hydrogels converted into a crystalline β-sheet

conformation showing U251 cell clusters organization and U251 cell death by apoptosis.

(TIF)

S3 Fig. Positive control for fluorescence TUNEL assay. (a) U251 cell-laden SF hydrogels

(scale bar, 200 μm) and (b) sections from the U251 cell-laden SF hydrogels (scale bar, 50 μm).

(TIF)

S1 Table. Data points behind the mean values obtained from the ATP quantification assay.

(DOCX)

S2 Table. Data points behind the mean values obtained from the DNA quantification

assay.

(DOCX)

S1 Movie. OPT reconstruction of the SF hydrogels after incubation in PBS at 37˚C for 1 day.

(MPG)

S2 Movie. OPT reconstruction of the SF hydrogels after incubation in PBS at 37˚C for 3
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Silk fibroin hydrogels and tumor cells death

PLOS ONE | https://doi.org/10.1371/journal.pone.0194441 April 4, 2018 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194441.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194441.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194441.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194441.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194441.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194441.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194441.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194441.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194441.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194441.s021
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194441.s022
https://doi.org/10.1371/journal.pone.0194441


Writing – review & editing: Joana Silva-Correia, Anirban Roy, Ana L. Oliveira, Rui L. Reis,

Joaquim M. Oliveira.

References
1. Elisseeff J. Hydrogels: structure starts to gel. Nature materials. 2008; 7(4):271–3. https://doi.org/10.

1038/nmat2147 PMID: 18354410

2. Xia L-W, Xie R, Ju X-J, Wang W, Chen Q, Chu L-Y. Nano-structured smart hydrogels with rapid

response and high elasticity. Nature communications. 2013; 4.

3. Hennink W, Van Nostrum CF. Novel crosslinking methods to design hydrogels. Advanced drug delivery

reviews. 2012; 64:223–36.

4. Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chemical Society Reviews. 2008; 37

(8):1473–81. https://doi.org/10.1039/b713009k PMID: 18648673

5. Sakai S, Hirose K, Taguchi K, Ogushi Y, Kawakami K. An injectable, in situ enzymatically gellable, gela-

tin derivative for drug delivery and tissue engineering. Biomaterials. 2009; 30(20):3371–7. https://doi.

org/10.1016/j.biomaterials.2009.03.030 PMID: 19345991

6. Liu L, Gao Q, Lu X, Zhou H. In situ forming hydrogels based on chitosan for drug delivery and tissue

regeneration. asian journal of pharmaceutical sciences. 2016; 11(6):673–83.

7. Sakai S, Ogushi Y, Kawakami K. Enzymatically crosslinked carboxymethylcellulose–tyramine conju-

gate hydrogel: cellular adhesiveness and feasibility for cell sheet technology. Acta biomaterialia. 2009;

5(2):554–9. https://doi.org/10.1016/j.actbio.2008.10.010 PMID: 19010747

8. Teixeira LSM, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable

hydrogels: emerging strategies for tissue engineering. Biomaterials. 2012; 33(5):1281–90. https://doi.

org/10.1016/j.biomaterials.2011.10.067 PMID: 22118821

9. Jin R, Teixeira LM, Dijkstra P, van Blitterswijk C, Karperien M, Feijen J. Enzymatically-crosslinked

injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engi-

neering. Biomaterials. 2010; 31(11):3103–13. https://doi.org/10.1016/j.biomaterials.2010.01.013 PMID:

20116847

10. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Bio-

materials. 2003; 24(24):4337–51. PMID: 12922147

11. Cai Y, Guo J, Chen C, Yao C, Chung S-M, Yao J, et al. Silk fibroin membrane used for guided bone tis-

sue regeneration. Materials Science and Engineering: C. 2017; 70:148–54.

12. Yang M, Shuai Y, Sunderland KS, Mao C. Ice-Templated Protein Nanoridges Induce Bone Tissue For-

mation. Advanced Functional Materials. 2017.

13. Sun C-X, Du G-Y, Mi L-D, He S-W. Bone Morphogenic Protein-2 (rhBMP2)-Loaded Silk Fibroin Scaf-

folds to Enhance the Osteoinductivity in Bone Tissue Engineering. Nanoscale Research Letters. 2017;

12(1):573. https://doi.org/10.1186/s11671-017-2316-1 PMID: 29067541

14. Yu E, Zhang J, Thomson J, Turng L-S. Fabrication and Characterization of Electrospun Thermoplastic

Polyurethane/Fibroin Small-Diameter Vascular Grafts for Vascular Tissue Engineering. International

Polymer Processing. 2016; 31(5):638–46. https://doi.org/10.3139/217.3247 PMID: 29033499

15. Font Tellado S, Bonani W, Balmayor ER, Foehr P, Motta A, Migliaresi C, et al. Fabrication and

characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Tissue

Engineering Part A. 2017; 23(15–16):859–72. https://doi.org/10.1089/ten.TEA.2016.0460 PMID:

28330431

16. Ribeiro VP, Silva-Correia J, Nascimento AI, da Silva Morais A, Marques AP, Ribeiro AS, et al. Silk-

based anisotropical 3D biotextiles for bone regeneration. Biomaterials. 2017; 123:92–106. https://doi.

org/10.1016/j.biomaterials.2017.01.027 PMID: 28161684

17. Wang X, Kluge JA, Leisk GG, Kaplan DL. Sonication-induced gelation of silk fibroin for cell encapsula-

tion. Biomaterials. 2008; 29(8):1054–64. https://doi.org/10.1016/j.biomaterials.2007.11.003 PMID:

18031805

18. Yucel T, Cebe P, Kaplan DL. Vortex-induced injectable silk fibroin hydrogels. Biophysical journal. 2009;

97(7):2044–50. https://doi.org/10.1016/j.bpj.2009.07.028 PMID: 19804736

19. Reis RL, Yan L-P, Oliveira AL, Oliveira JM, Pereira DR, Correia C, et al., inventors; A4TEC Association,

assignee. Hydrogels derived from silk broin: Methods and uses thereof. Portugal patent 107426. 2014.

20. Yan LP, Silva-Correia J, Ribeiro VP, Miranda-Goncalves V, Correia C, da Silva Morais A, et al. Tumor

Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels. Scientific Reports. 2016; 6:31037.

https://doi.org/10.1038/srep31037 PMID: 27485515

Silk fibroin hydrogels and tumor cells death

PLOS ONE | https://doi.org/10.1371/journal.pone.0194441 April 4, 2018 18 / 21

https://doi.org/10.1038/nmat2147
https://doi.org/10.1038/nmat2147
http://www.ncbi.nlm.nih.gov/pubmed/18354410
https://doi.org/10.1039/b713009k
http://www.ncbi.nlm.nih.gov/pubmed/18648673
https://doi.org/10.1016/j.biomaterials.2009.03.030
https://doi.org/10.1016/j.biomaterials.2009.03.030
http://www.ncbi.nlm.nih.gov/pubmed/19345991
https://doi.org/10.1016/j.actbio.2008.10.010
http://www.ncbi.nlm.nih.gov/pubmed/19010747
https://doi.org/10.1016/j.biomaterials.2011.10.067
https://doi.org/10.1016/j.biomaterials.2011.10.067
http://www.ncbi.nlm.nih.gov/pubmed/22118821
https://doi.org/10.1016/j.biomaterials.2010.01.013
http://www.ncbi.nlm.nih.gov/pubmed/20116847
http://www.ncbi.nlm.nih.gov/pubmed/12922147
https://doi.org/10.1186/s11671-017-2316-1
http://www.ncbi.nlm.nih.gov/pubmed/29067541
https://doi.org/10.3139/217.3247
http://www.ncbi.nlm.nih.gov/pubmed/29033499
https://doi.org/10.1089/ten.TEA.2016.0460
http://www.ncbi.nlm.nih.gov/pubmed/28330431
https://doi.org/10.1016/j.biomaterials.2017.01.027
https://doi.org/10.1016/j.biomaterials.2017.01.027
http://www.ncbi.nlm.nih.gov/pubmed/28161684
https://doi.org/10.1016/j.biomaterials.2007.11.003
http://www.ncbi.nlm.nih.gov/pubmed/18031805
https://doi.org/10.1016/j.bpj.2009.07.028
http://www.ncbi.nlm.nih.gov/pubmed/19804736
https://doi.org/10.1038/srep31037
http://www.ncbi.nlm.nih.gov/pubmed/27485515
https://doi.org/10.1371/journal.pone.0194441


21. Yan LP, Oliveira JM, Oliveira AL, Reis RL. Core-shell silk hydrogels with spatially tuned conformations

as drug-delivery system. Journal of Tissue Engineering and Regenerative Medicine. 2016; 11

(11):3168–77. https://doi.org/10.1002/term.2226 PMID: 27921382

22. Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J. Silk fibroin: structural implications of a

remarkable amino acid sequence. Proteins: Structure, Function, and Bioinformatics. 2001; 44(2):119–

22.

23. Sundarakrishnan A, Acero EH, Coburn J, Chwalek K, Partlow B, Kaplan DL. Phenol red-silk tyrosine

cross-linked hydrogels. Acta biomaterialia. 2016; 42:102–13. https://doi.org/10.1016/j.actbio.2016.06.

020 PMID: 27345138

24. McGill M, Coburn JM, Partlow BP, Mu X, Kaplan DL. Molecular and macro-scale analysis of enzyme-

crosslinked silk hydrogels for rational biomaterial design. Acta biomaterialia. 2017; 63:76–84. https://

doi.org/10.1016/j.actbio.2017.09.020 PMID: 28919509

25. Partlow BP, Hanna CW, Rnjak-Kovacina J, Moreau JE, Applegate MB, Burke KA, et al. Highly tunable

elastomeric silk biomaterials. Advanced functional materials. 2014; 24(29):4615–24. https://doi.org/10.

1002/adfm.201400526 PMID: 25395921

26. Shirmanova MV, Lubov’E S, Lukina MM, Zagaynova EV, Kuimova MK. Live Cell Imaging of Viscosity in

3D Tumour Cell Models. Multi-Parametric Live Cell Microscopy of 3D Tissue Models. Advances in

Experimental Medicine and Biology 1035: Springer; 2017. p. 143–53.

27. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: advantages, disadvan-

tages, variables, and selecting the right platform. Frontiers in bioengineering and biotechnology. 2016;

4:12. https://doi.org/10.3389/fbioe.2016.00012 PMID: 26904541

28. Qiu P, Qu X, Brackett DJ, Lerner MR, Li D, Mao C. Silica-Based Branched Hollow Microfibers as a Bio-

mimetic Extracellular Matrix for Promoting Tumor Cell Growth In Vitro and In Vivo. Advanced Materials.

2013; 25(17):2492–6. https://doi.org/10.1002/adma.201204472 PMID: 23450784

29. Xiong G, Luo H, Gu F, Zhang J, Hu D, Wan Y. A novel in vitro three-dimensional macroporous scaffolds

from bacterial cellulose for culture of breast cancer cells. Journal of Biomaterials and Nanobiotechnol-

ogy. 2013; 4(04):316.

30. Fischbach C, Mooney DJ. Polymers for pro-and anti-angiogenic therapy. Biomaterials. 2007; 28

(12):2069–76. https://doi.org/10.1016/j.biomaterials.2006.12.029 PMID: 17254631

31. Huang H, Ding Y, Sun XS, Nguyen TA. Peptide hydrogelation and cell encapsulation for 3D culture of

MCF-7 breast cancer cells. PloS one. 2013; 8(3):e59482. https://doi.org/10.1371/journal.pone.0059482

PMID: 23527204

32. Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S, Charest JL, et al. A microfluidic 3D in vitro model for

specificity of breast cancer metastasis to bone. Biomaterials. 2014; 35(8):2454–61. https://doi.org/10.

1016/j.biomaterials.2013.11.050 PMID: 24388382

33. Hutmacher DW, Horch RE, Loessner D, Rizzi S, Sieh S, Reichert JC, et al. Translating tissue engineer-

ing technology platforms into cancer research. Journal of cellular and molecular medicine. 2009; 13

(8a):1417–27. https://doi.org/10.1111/j.1582-4934.2009.00853.x PMID: 19627398

34. Seib FP, Berry JE, Shiozawa Y, Taichman RS, Kaplan DL. Tissue engineering a surrogate niche for

metastatic cancer cells. Biomaterials. 2015; 51:313–9. https://doi.org/10.1016/j.biomaterials.2015.01.

076 PMID: 25771021

35. Greish K, Frandsen J, Scharff S, Gustafson J, Cappello J, Li D, et al. Silk-elastinlike protein polymers

improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors.

The journal of gene medicine. 2010; 12(7):572–9. https://doi.org/10.1002/jgm.1469 PMID: 20603862

36. Ta HT, Dass CR, Dunstan DE. Injectable chitosan hydrogels for localised cancer therapy. Journal of

Controlled Release. 2008; 126(3):205–16. https://doi.org/10.1016/j.jconrel.2007.11.018 PMID:

18258328
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