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Abstract

Canopy height is one of the strongest predictors of biomass and carbon in forested ecosystems. 

Additionally, mangrove ecosystems represent one of the most concentrated carbon reservoirs that 

are rapidly degrading as a result of deforestation, development, and hydrologic manipulation. 

Therefore, the accuracy of Canopy Height Models (CHM) over mangrove forest can provide 

crucial information for monitoring and verification protocols. We compared four CHMs derived 

from independent remotely sensed imagery and identified potential errors and bias between 

measurement types. CHMs were derived from three spaceborne datasets; Very-High Resolution 

(VHR) stereophotogrammetry, TerraSAR-X add-on for Digital Elevation Measurement, and 

Shuttle Radar Topography Mission (TanDEM-X), and lidar data which was acquired from an 

airborne platform. Each dataset exhibited different error characteristics that were related to spatial 

resolution, sensitivities of the sensors, and reference frames. Canopies over 10 m were accurately 

predicted by all CHMs while the distributions of canopy height were best predicted by the VHR 

CHM. Depending on the guidelines and strategies needed for monitoring and verification 

activities, coarse resolution CHMs could be used to track canopy height at regional and global 

scales with finer resolution imagery used to validate and monitor critical areas undergoing rapid 

changes.
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1. Introduction

Mangroves may only represent 3% of the global forest cover, but it has been estimated that 

at the current rates of degradation, these forests can release up to 10% of the total carbon 

emissions from deforestation worldwide [1,2]. Beyond being one of the most carbon dense 

ecosystem brought upon by high carbon sequestration rates [1,3], mangrove forests are 

economically and biologically important both at local and global scales [4]. The large carbon 

stocks along with the many economical ecosystem services, high rates of degradation, and 

threats from rising seas, make mangrove environments important regions of interest for 

climate mitigation and adaptation plans [5]. Remote sensing can provide multiple 

independent techniques to monitor and verify forest parameters such as canopy height.

The benefits of measuring canopy height and biomass on a regular basis can help increase 

the transparency and accountability of local governments when considering programs 

similar to Reduction Emissions from Deforestation and Forest Degradation (REDD) and 

REDD+ [6–8]. These programs plan to incentivize the reduction of emissions and the 

development of forest retention [9], but capacity building is needed to accurately measure, 

monitor, and verify these carbon pools, particularly in the carbon-rich mangrove forests. In 

addition, intensive field surveys currently used to document forest carbon stocks, 

deforestation, and forest degradation from both natural human circumstances can be costly, 

time consuming, and dangerous. Incorporating remote sensing into Monitoring, Reporting, 

and Verification (MRV) frameworks will improve our understanding of the changes to 

forested ecosystems, increase the simplicity of aggregating local information to the global 

scales, enhance our precision and accuracy of models through multiple iterations, and verify 

results through multiple independent measurements.

Recent blue carbon studies have reported high rates of carbon burial and sequestration 

occurring among mangrove forest ecosystems [1,10]. The large mangrove carbon pool is a 

combination of the aboveground carbon production that also contributes to the stability of 

the much higher, belowground carbon sequestration [5]. Carbon and biomass estimates for 

mangrove forest vegetation are regularly derived from allometric equations that use 

parameters such as wood density, diameter-at-breast height (DBH), and tree height. The 

former attributes are difficult to estimate remotely, but mangrove canopy height can be 

derived from multiple computational techniques and from multiple aerial- and space-borne 

sensors [11–14]. Canopy height, in turn, can then be used to estimate ecosystem-scale above 

ground biomass using specific allometric equations [11,15,16]. However, current canopy 

height-based biomass estimates are still poorly constrained in these coastal forested 

ecosystems.

Mangrove forests provide a challenging ecosystem to accurately measure above ground 

carbon stocks because of the harsh physical conditions and tidal inundation that can inhibit 

access to surveyors. In order to efficiently and safely estimate carbon in the harsh 

Lagomasino et al. Page 2

Remote Sens (Basel). Author manuscript; available in PMC 2018 April 04.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



pantropical coastal forests, various remote sensing techniques have been implemented. 

Three-dimensional maps of forest canopy heights have been generated using synthetic 

aperture radar (SAR), lidar, and high-resolution optical imagery. Airborne datasets acquired 

from lidar systems, like G-LiHT [17], can provide meter-to submeter spatial resolutions with 

height accuracies within 1.5 m for various forest types [18,19]. Though airborne lidar and 

similar systems are regarded as the “gold standard” for estimating canopy height, these flight 

campaigns can be expensive and cover limited regions. Data collected from space help to 

increase the area of interest to regional and global scales.

Spaceborne datasets from the Shuttle Radar Topography Mission and IceSAT/GLAS 

[11,12,16] have proven successful at estimating canopy height over mangrove forests at a 

relatively coarse spatial resolution of 90 m × 90 m resolution. Recently, global SRTM data 

have been released at a higher resolution of 30 m × 30 m. Other techniques like Polarimetric 

Synthetic Aperture Radar Interferometry (Pol-InSAR) have been applied to data collected 

from the TanDEM-X InSAR (TDX) mission to estimate canopy height [13,20]. High-

resolution stereo-photogrammetry of IKONOS and WorldView1 and −2 imagery have also 

produced canopy height estimates at sub-meter spatial resolutions for boreal and temperate 

regions [21,22], and more recently, in mangrove forests [14].

There have been a number of remote sensing techniques employed to measure forest canopy 

heights from airborne and spaceborne platforms using lidar [12,18], stereophotogrammetry 

[21,22], and radar interferometry [11,13,23]. However, there has not been a comparison 

between each of these techniques at one site, particularly with respect to newer, modified, 

and higher resolution techniques such as Pol-InSAR and very-high resolution (VHR) 

satellite stereophotogrammetry. This paper will: (1) assess the utility of remote sensing to 

measure mangrove canopy height; (2) examine spatiotemporal variability between sensors; 

and (3) estimate errors and compare model efficiencies for mangrove canopy height models 

between independent remote sensing datasets.

2. Methodology

2.1. Study Area and Field Inventory

The Zambezi River sheds water from a 1,570,000 km2 area encompassing eight African 

countries and eventually discharges into the Indian Ocean via the Zambezi Delta (Figure 1). 

Distinct wet and dry seasons are present within this tropical region, with approximately 85% 

of the 1000 to 1400 mm annual rainfall occurring during the wet season from April to 

October [24,25]. Water that flows through the Zambezi Delta is balanced between the 

cumulative runoff from the large watershed and the semidiurnal tidal regime that can 

fluctuate up to 4.1 m twice a day [26]. Two dams constructed upstream in the mid-20th 

century, Kariba and Cahora Bassa, have modified seasonal river flows [27]. The damming 

has resulted in diminished seasonal stream flow signals [26,27], reduced sediment transport 

by 70%, and has changed the deltaic system from river-dominated to rain-dominated [28]. 

The sediments and water moving downstream are needed to support the coastal ecosystems 

of the delta, which include extensive grasslands, swamps, dunes, and mangroves [29].
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An inventory of mangrove carbon stocks in the Zambezi Delta was conducted to provide a 

basis for inclusion of mangroves in the Mozambique national REDD+ strategy. The 

mangrove forest covers approximately 30,000 ha within the delta and is comprised of eight 

species: Sonneratia alba, Avicennia marina, Rhizophora mucronata, Ceriops tagal, Bruguiera 
gymnorrhiza, Lumnitzera racemosa, Heritiera littoralis, and Xylocarpus granatum [30].

In 2012 and 2013, a total of 52 (40 used in this study) inventory forest plots were measured 

to provide an unbiased estimate of the above- and belowground carbon stocks and 

determined that the biomass carbon densities ranged from 99.2 Mg· C· ha−1 to 341.3 Mg· C· 

ha−1 [30]. Only 40 plots were used in the present study because the other 12 were located 

outside the footprint of the remote sensing acquisitions. The inventory design incorporated 

recent recommendations for measuring carbon stocks in mangroves along with provisions to 

incorporate remote sensing, logistical constraints, and local information needs. The 

inventory design was based on a stratified random sampling method to improve precision of 

inventory results [30]. Field plots were stratified by mangrove canopy height maps derived 

from IceSat/GLAS and SRTM measurements from Fatoyinbo and Simard [12]. Canopy 

height, which is functionally related to biomass, was separated into five classes using natural 

breaks optimization: 2.0–7.0 m, 7.1–10.0 m, 10.1–13.0 m, 13.1–18.0 m, and 18.1–29.1 m 

[30]. Square 0.52 ha field plots were parsed into five smaller subplots each with a radius of 7 

m (0.015 ha) to help account for the spatial variability within the larger plot (Figure 1). A 

central subplot was surround by additional subplots in each cardinal direction. Tree height, 

diameter at breast height (DBH), and species were recorded for trees in the overstory (DBH 

≥ 5 cm) and understory (DBH < 5 cm). Tree height was measured using a hypsometer 

(Haglof Vertex III, Haglof Inc., Långsele, Sweden). Mean canopy height for the present 

study was estimated as the mean of all the overstory (DBH > 5 cm) trees in each subplot. 

The top of canopy height (H100), or the average of the 100 tallest trees per ha was 

calculated for each subplot. Since the measured area of the subplot was 0.015 ha, the 

average of the two tallest trees in each subplot represented H100. More detailed information 

about the sampling design and measurements can be found in Stringer et al. [30].

2.2. Canopy Height Models

Canopy height models (CHM) were collected and analyzed for the Zambezi Delta using 

multiple remote sensing platforms: airborne lidar, TerraSAR-X add-on for digital elevation 

measurements, high-resolution stereo-imagery, and SRTM.

2.2.1. Airborne Laser/LiDAR Scanning—The vertical structure of forests has been 

successfully studied using airborne laser/lidar scanning (ALS) sensors [17,18]. Moreover, 

ALS is a proven technique to validate and calibrate vertical forest structure measurements 

acquired from spaceborne sensors (SRTM, TDX) in mangrove ecosystems [11,13,31]. To 

compare, enhance, and validate spaceborne-based assessments, ALS and multispectral data 

(NIR, Red, Green bands) were acquired 5–6 May 2014 by Land Resources International 

(Pietermaritzburg, South Africa). The airborne survey comprised an approximate area of 115 

km2 in the Zambezi Delta (Figure 1) with a point density that ranged between 5 and 7 

points· m−2. First ALS returns (canopy returns), which mark the location of tree canopies, 

were used to generate a 1 m × 1 m resolution mangrove Digital Surface Models (DSM). The 
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DSM was generated using ENVI/IDL software by selecting and gridding the highest 

elevation value falling into each grid. Mangrove canopy heights were calculated relative to 

the Earth Gravitational Model 2008 (EGM2008) geoid, which provides a six-fold increase in 

resolution and an increased accuracy compared to EGM96 [32]. The mangrove DSM was 

georeferenced into a WGS84 datum and UTM Zone 36 South projection.

2.2.2. TanDEM-X—The TanDEM-X (TerraSAR-X add-on for Digital Elevation 

Measurements) mission forms a pair of satellite instruments that enable single-pass 

interferometry to generate a consistent global digital elevation model (DEM) [33]. The TDX 

mission, for the first time, allows the acquisition of satellite polarimetric interferometric data 

at X-band without temporal decorrelation, which is the most critical factor for successful 

Pol-InSAR forest parameter estimation in conventional repeat-pass air-/space-borne SAR 

systems [34]. Single- and dual-pol spaceborne TDX data have been well-proven at 

estimating quantitative forest parameters over a tropical, temperate and boreal forest site by 

means of the Random Volume over Ground (RVoG) model, although X-band wavelength has 

been expected to have less sensitivity for vertical forest structure [35]. However, the single-

pol TDX inversion can be applicable to the forest height inversion, if an external digital 

terrain model (DTM) is available for a forest test site. To overcome the limitation of single-

pol mangrove forest application, Lee and Fatoyinbo [14] suggested estimating the ground 

(water) phase directly from the TDX interferogram with the assumption that the underlying 

topography over mangroves is negligible and flat due to the unique environment in which 

mangroves grow (i.e., near the water mean level). This assumption reduces the amount of 

unknown variables in the RVoG model. The inversion approach has been successfully proven 

and has generated mangrove canopy height map at 12 m spatial resolution over Zambezi 

Delta, demonstrating the possibility to use TDX DEM acquisition to map mangrove height 

globally [13]. The TDX data used here were acquired on 14 October 2011 with a height of 

the ambiguity of −80.91 m. The swath of the TDX was about 32 km.

2.2.3. Very High-Resolution Stereophotogrammetry—One pair of VHR 

stereoimages from WorldView1 (DigitalGlobe, Longmont, CO) was collected over the 

Zambezi Delta on 7 January 2013. The panchromatic image pair was acquired via an 

agreement with Digital Globe and the National Geospatial Intelligence Agency (NGA) [36]. 

The image pair was acquired in along-track setting to reduce confounding issues related to 

temporal decorrelation and sensor angles. In other words, the two images were collected in 

the same orbit using an optimized satellite viewing and sun angle geometry to improve 

accuracy and corrections. Parallax tie points were automatically derived using the NASA 

Ames Stereopipeline (ASP) 2.4 software, developed by the Ames Research Center in 

Mountain View, CA [37]. The user guide and program software are available at http://

ti.arc.nasa.gov.

A digital surface model (DSM) of the Zambezi Delta was derived using the ASP program. 

An image correlation routine within the ASP matches similar pixels and calculates the 

distance between the focal plan and the Earth’s surface [38]. An affine adaptive window 

(subpixel mode = 2) was used to estimate the most accurate surface elevation relative to the 

WGS84 ellipsoid. The gridded resolution of the DSM was approximately 0.60 m × 0.60 m 
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which was a function of the sensor viewing geometry of the original panchromatic images. 

Without using ground control points (GCP), a horizontal accuracy of 5.5 m or less was 

expected for the DSM as described by Hobi and Ginzler [39], regardless of land cover type.

Mangrove canopy heights estimated from VHR imagery in the Zambezi Delta were 

determined using similar methodologies as outlined in Lagomasino et al. [14]. Bare ground 

surfaces were identified on the VHR images and then overlaid on the VHR-CHM. Elevation 

values were then extracted from each of the identified ground surfaces and using the area of 

the ground surfaces a mean-weighted ground elevation of 0.13 m was calculated. Lastly, the 

mean-weight ground elevation was subtracted from the VHR-DSM, which resulted in the 

VHR-CHM.

2.2.4. SRTM—Mangrove canopy height for the year 2000 was generated for Mozambique 

using SRTM data and validated with field measurements [16] and with GLAS footprint data 

by Fatoyinbo and Simard [12]. For this study, we generated an updated map of mangrove 

canopy height using the recently released 30 m resolution SRTM data and previously 

published calibration equations from Simard et al. [11]:

H = 2.1 + 0.84 HSRTM (1)

where H is the weighted mean height of the canopy and HSRTM is the SRTM elevation. We 

then extracted and compared height estimates generated by SRTM with other remotely 

sensed CHMs over the Zambezi Delta. The RMS error of height estimates on Inhaca Island, 

a region in southern Mozambique, ranged from 2.4 to 3.6 m.

2.3. Comparative Analysis

Each CHM was resampled to 1 m × 1 m to match the spatial sampling of the airborne lidar 

dataset. The VHR was resampled using a bilinear interpolation, while SRTM and TDX 

datasets were downsampled using nearest neighbor. Similarly, all datasets were clipped to 

the extent of the lidar coverage and subsequently masked to the regions of mangrove tree 

cover identified by Giri et al. [40]. Each CHM covered an approximate mangrove area of 

6118 ha. Both the mean and H100 canopy height were calculated for the field data, and lidar 

and VHR CHMs. The H100 reference height, or the average of the 100 tallest trees per ha, 

was determined by taking the maximum pixel value of a 10 m × 10 m moving window 

which corresponded to 0.01 ha [41]. Using this technique, we were able to determine the 

maximum height of the canopy that would be equivalent to the tallest tree within each 

subplot. A 7 m radial buffer was created around the center point of each field subplot and 

represents the approximate area surveyed for each subplot [30]. Canopy height data were 

averaged within each buffered subplots; the mean canopy height being derived from the 

average of the resampled CHM and H100 determined from the average of the resampled 

H100 map. Both mean and H100 canopy height estimates were derived for lidar and VHR 

CHMs while only TDX H100 top-of-canopy and SRTM InSAR phase center heights were 

considered in this study. Areas with bad pixels were removed from the analysis.
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We used the airborne CHM as a reference to assess the spaceborne CHMs. All CHMs were 

validated with the in situ data. General statistics including the mean, median, and standard 

deviations were determined for each of the CHMs. A comparative analysis was performed 

through error and efficiency statistics, including root-mean-square-error (RMSE), the Nash–

Sutcliffe efficiency, mean-absolute percent error (MAPE), and bias. The RMSE was used to 

determine the deviation between the measured (field and lidar) and modeled results, but the 

NMRSE was used to normalize the RMSE to the range of canopy height values. The Nash–

Sutcliffe Efficiency (NSE) index is widely used in hydrologic studies to calculate model 

efficiency but can be sensitive to sample size, outliers, and bias [42]. NSE values close to a 

value of 1 represent better predictions of the actual values while values near 0 reflect 

predictions as accurate as the mean of the data. Negative NSE values suggest that the mean 

value is a better predictor than the model. The different model efficiencies provided the 

ability to compare the CHMs using different techniques to identify the limitations and 

strengths of each CHM. In addition, these modeling statistics contribute information 

regarding the strengths of models without the use of p values.

3. Results

First, we investigate overall canopy height statistics. Mean canopy height estimates generally 

show corresponding statistical properties while the H100 canopy height tend to exhibit more 

variability among mean, standard deviation, and median. The estimated mean canopy 

heights for the entire mangrove region were not significantly different between the field-

measured, lidar and VHR CHM at 10.1, 10.76 and 10.95 m, respectively (Table 1). Statistics 

for mean canopy height were not derived for SRTM and TDX CHMs. Similarly, there was 

no significant difference between their standard deviations and only a small difference 

between the medians. The H100 CHMs reported much more variability with the average 

top-of-canopy height increasing from 10.72 m with SRTM to 15.25 m with lidar, and VHR 

and TDX CHMs falling in between the two (Table 1). The average and median H100 canopy 

heights were within less than 1 m for the VHR and lidar CHMs, though the lidar H100 

heights were taller by 3 m. TDX and VHR CHMs also exhibited similar standard deviations, 

~5.5 m, for both the mean and H100 models.

Mangrove canopy heights determined at the subplot scale ranged between 1 and 30 m 

(Figures 2 and 3). Both the mean and H100 CHMs measured from remote sensing were 

positively correlated with mean and H100 field canopy heights (Figure 3). Mean and H100 

CHMs overestimated actual canopy heights in areas where the in situ canopies were taller 

than 10 m, but overall still represented the study area field canopy height of 10.1 m (Table 

1). More specifically, the mean VHR and lidar based approaches overestimated the canopy 

heights for canopies between 10 and 30 m and conversely, underestimated or provided better 

estimates of canopy heights in areas less than 10 m (Figure 3). Similar overestimation 

patterns were exhibited for the H100 CHMs for canopies greater than 10 m, but show 

different patterns for shorter canopies. In shorter canopy forests, the H100 lidar 

overestimated field canopies, while VHR and TDX CHMs underestimated the field top-of-

canopy (Figure 3). The SRTM CHM consistently underestimated the H100 canopy for all 

heights. These estimates reflect the bias calculations where TDX had the strongest bias of 

3.31–3.52 m followed by VHR with 1.33–1.88 m, then SRTM with 0.15–1.69 m (Table 2). 
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The lidar CHM had a much more variable bias between the mean and H100 CHMs, 1.84 and 

4.80 m, respectively.

The R2 values were similar amongst all the CHM models. Mean CHMs R2 values were 20% 

to 30% higher than H100 CHMs, ranging from 0.69 to 0.73 and 0.57 to 0.59, respectively 

(Table 2). SRTM CHM was a better predictor of field-derived mean canopy heights 

compared to the other remote sensing models despite the original 30 m × 30 m model being 

downscaled (nearest neighbor) to 1 m resolution. Error estimates, RMSE and MAPE, were 

highest for the TDX CHM, but remained consistent between mean and H100 models. The 

lowest errors were associated with the SRTM CHMs though there was a slight increase in 

the error from the mean to the H100 CHMs (Table 2). Lidar and VHR CHMs exhibited 

similar error statistics except for the lidar H100 model that was generally twice the error of 

the mean CHM.

Similar height relationships were exhibited for CHM comparisons between the field survey 

and lidar reference frames. There was as a notable increase in R2 values for all CHMs with 

the lidar reference compared to the field reference. R2 values increased to 0.82–0.90 and the 

RMSE dropped for all CHM except the SRTM CHM which resulted in an increase in RMSE 

(Table 3). As with the field reference, TDX canopy heights generally underestimated mean 

lidar canopy heights in mangrove stands less than 5–10 m tall. The VHR CHM indicated 

little to no bias while the TDX and SRTM CHMs exhibited a negative and positive bias 

respectively (Table 3). The NSE index was highest for VHR CHMmean and TDX CHMH100 

at 0.76 and 0.72, respectively. CHMH100 more precisely predicted top-of-canopy height for 

each subplot, though did show an increasing bias from TDX to VHR, and from VHR to 

SRTM. (Figure 4, Table 3).

The H100 canopy height histogram distributions computed for all four CHMs (e.g., SRTM, 

TDX, VHR, and lidar) exhibit two distinct patterns: negatively skewed distributions with 

peak frequencies clustered around each other, and a positively skewed distribution with a 

lower magnitude frequency (Figure 5A). Lidar, TDX, and VHR CHMs all show similar 

maximum height frequencies between 15 and 18 m that accounted for nearly 8% of 

mangrove canopy in the study area. TDX canopy height values less than 5 m were removed 

from the distribution because of the high estimation errors within the shorter canopies that 

were associated with TDX data acquired at relatively small spatial baselines [14,35]. The 

VHR and lidar CHMs show near-identical distributions with an offset equal to the bias for 

the VHR CHM. More specifically, both distributions identify a distinct maximum peak and 

also depict a second canopy mode that was approximately 6–7 m shorter than the peak 

mode: 6–10 m for VHR CHM and 10–15 m for lidar CHM (Figure 5A).

Differential canopy heights, with respect to lidar, were also determined for satellite-derived 

CHMs. The TDX CHM has the lowest maximum frequency height differential at 1–2 m, 

followed by VHR CHM with 3 m, and finally SRTM with 6 m (Figure 5B). The mean 

difference between the lidar reference and satellite-derived CHMs for all mangrove pixels 

were 2.99, 3.58, and 6.06 m for VHR, TDX, and SRTM, respectively.
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4. Discussion

4.1. Canopy Height Measurements

The results of the present study show a strong correlation between each of the datasets as 

seen in similar mangrove environments in the Caribbean [11,13] and Africa [14,16] as well 

as other deciduous and pine forest types [21,22,43]. The differences among CHMs can be 

related to the differences in ground reference frames (i.e., field surveys and airborne lidar), 

spatial resolution, temporal resolution, time lag in acquisitions and senor sensitivities. Two 

ground reference frames, field surveys and airborne lidar, were used in this study to 

represent the ground-truthed canopy height. By comparing other independent remotely 

sensed CHMs (i.e., SRTM, VHR, and TDX) with the field-measured and airborne lidar 

canopy heights we can discern the capabilities and height bias for each method.

The 0.015 ha subplots from the field survey were directly compared to overlapping areas on 

each CHMs. There were similar correlations between each of the different models, but with 

a relatively high initial RMSE that exceeded 3.4 m for all but one CHM. The error increased 

by 40%–50% when comparing the H100 parameter between the field measurements and the 

CHMH100 (Figure 3). In addition, the CHM mean was a much better predictor of the in-situ 
mean canopy height at the subplot level because the aggregation of trees in the overstory 

within each pixel is more consistent with the remote sensing measurement. More 

specifically, the lower mean canopy heights from SRTM best predicted the field values (NSE 

> 0.50). The penetration depth of the phase-centered canopy height elevation measured from 

the SRTM is partly a function of the tree canopy structure and density [11]. Lee and 

Fatoyinbo [13] reported a penetration depth up to 10 m in areas for InSAR X-band in the 

Zambezi Delta. C-band data from SRTM over French Guiana, exhibited a vegetation 

density-dependent canopy penetration range of 2.3 to 8.5 m compared to top-of-canopy 

measurements from RADARSAT but also include an overall elevation error of ±16 m that 

was complicated by ground topography [44]. As the radar signal interacts with the 

vegetation, changes in the over-and under-story canopy structure could drive the elevation of 

the phase center. The underestimation reported here for the SRTM CHM is most likely 

related to the C-band radar signal penetrating further through the mangrove canopy in the 

Zambezi Delta and may represent a relatively lower canopy height even after initial 

mangrove SRTM bias corrections [11].

Conversely, airborne lidar and VHR CHMs represent the top surface of the canopy. The 

commercial lidar data used in the present study were processed by the supplier based on first 

and last signal returns, and VHR imagery considers the optical properties reflected to the 

satellite. Clearly, changes in forest structure may have occurred since SRTM data acquisition 

(February 2000) and more recent datasets. In the years between SRTM and recent remote 

sensing acquisitions, there have only been six cyclones that have made landfall in 

Mozambique, with only Cyclone Funso indirectly affecting the study area [45]. Strong 

tropical storms will inevitably have an impact on mangrove forest as seen in other similar 

environments [46]; however, the major discrepancies between CHM would occur in 

localized areas. Although not in the scope of this study, large deviations between CHMs 
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would suggest dramatic changes to the forest structure, indicative of clearing events from 

humans and cyclones.

There was no clear best predictor of field-measured canopy height with respect to R2 values, 

though SRTM CHMs did produce higher NSE values which did indicate better predictions 

of the actual mean field measurements collected in 2013 (Table 2). However, because of the 

larger spatial resolution of the SRTM imagery, many of the finer-scale changes in canopy 

height are overlooked and areas with the tallest trees are overlooked. In addition, a 

continental-scale SRTM correction algorithm was used that may not be suitable for more 

localized studies [12]. All other remotely sensed CHMs moderately estimated canopy 

height, including lidar with NSE values below 0.3. This phenomenon is most likely a result 

of the subplot scale at which the CHM estimates were integrated over. Variability in the 

spatial scales (i.e., pixel size) of the CHMs can highlight differences in canopy height 

depending on the structure of the forest. Dense, homogenous canopies have been shown to 

remain relatively consistent across a range of pixel resolutions (e.g., 3 to 30 m). Forests with 

gaps tend to show more variability at fine spatial resolutions (<12 m) but become consistent 

at coarser resolutions (>12 m) [43]. This suggests the tree density and canopy closure of 

mangrove forests may impact variability in height estimates depending on which CHM 

technique is employed. It should also be noted that the geolocation accuracy of handheld 

GPS units decreases in remote areas under thick forest canopies, like those found in the 

Zambezi Delta. The lower geolocation accuracy of handheld units may result in poor 

coupling between field and image data.

The use of lidar in previous forest height studies, have proven the technique’s accuracy and 

reliability across forest types [18,43]. The small bias between the lidar CHM and field-

measure values can be attributed to the averaging of shorter trees measured in the field to 

obtain a mean canopy height. However, because of its reliability, we compared all other 

remotely sensed datasets with the reference lidar acquisition with the goal of increasing 

model accuracy. Similar to the field data reference results, the lidar reference frame yielded 

similar positive correlations but with much higher R2 values, which were on average, 10%–

30% higher than their respective field comparison (Table 3). The increase in model accuracy 

and efficiency based on the lidar reference frame suggests greater geolocation accuracy 

associated with high-resolution remote sensing data than geolocation with handheld GPS 

units. Improving the geolocation of field plots through surveys and differential GPS systems 

will most certainly improve field to remotely sensed canopy heights, but come at a financial 

cost. However, though geolocation may increase RMSE, it would not cause the biased trends 

(Table 3).

The Pol-InSAR and stereophotogrammetry techniques used in this study have recently 

shown similar RMSE for measuring mangrove canopy height [13,14]. Lee and Fatoyinbo 

[13] calculated an RMSE of 1.3 m by comparing airborne lidar and TDX CHMs for a 1 ha 

over the Zambezi Delta, while Lagomasino et al. [14] determined an RMSE of 1.8 m by 

comparing field height to VHR CHMs for mangroves in Inhaca Island in southern 

Mozambique. Physical characteristics of the forest such as tree density, crown size and 

canopy structure may influence measurement accuracy and most likely depend on the 

instrument type. Understanding the sensitivities and biases of each of the CHM approaches 
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will be particularly helpful to future canopy studies. According to previous studies, the TDX 

signal can be biased in shorter canopies as a result of a relatively small spatial baseline 

acquisition [13,47]. For a successful mangrove height inversion from TDX data over a wide 

range of mangrove forest heights, dual or multiple TDX acquisitions with variable spatial 

baselines (especially, larger baseline for small mangroves) may be required [34,47]. This 

study confirms the lower sensitivity by TDX for estimating shorter canopies, but performs 

best in canopies taller than 13 m (Figure 6). Conversely, VHR stereo derived CHMs 

estimated lidar CHMs with slightly better modeling efficiencies, but outperformed by TDX 

CHMs within canopies shorter than 13 m by nearly 100%. By combing the two techniques 

into a cross-platform CHM, at the 1 m × 1 m spatial resolution for the study, RMSE 

decreased by 15% and 31% compared to the original VHR and TDX CHMs (Table 4). More 

importantly, the NSE index also increased to 0.58, which indicates that the fused CHM 

predictions are better matched with the lidar observations than the VHR and TDX CHM that 

have a NSE index of 0.43 and 0.12, respectively.

When making comparisons between CHMs the reference elevation plane and the elevation 

of the measured physical parameter within the mangrove canopy also need to be considered. 

Because of the presumptuously flat terrain, we remove the underlying topography though 

differences between the geoid, ground and water level elevations, which could influence 

height variability between CHMs. The remote sensing approaches used in this study have 

variable elevation reference frames, which are a function of the data preprocessing and 

sensor sensitivities. Mangrove canopy height estimates generated from airborne lidar and 

SRTM were referenced to geoid models, while the TDX and VHR heights were fixed to 

physical references such as water level and the ground surface, respectively, after initial 

corrections to the geiod [13,14,16]. Small changes in frame of reference elevation may 

account for some of the differences reported in this study and actual canopy heights 

measured and reported across the Zambezi Delta [13].

Several factors need to be recognized and considered when comparing mangrove canopy 

heights from remote sensing. Forest type properties can drive differences in the CHM 

accuracies. For example, CHMs derived from SRTM data for pine forests tend to exhibit 

lower errors than for hardwood forest with a RMSE of 3.11 and 4.94 m, respectively, 

because of the forest crown structure [43]. Similar forest comparison between pine and 

hardwoods were reported by Neigh et al. [22] using VHR stereo CHM. Sparsely-dense larch 

forests, VHR CHMs underestimated field canopy height, but after calibration reduced 

RMSE to 1.37 m [21]. New CHMs techniques, similar to those used in the present study, 

have reduced initial RMSEs in SRTM CHMs from 3.55 [12] to 1.5 and 1.8 m using radar- 

and stereo-derived CHMs, respectively [13,14].

Next, the definition of canopy height should be specified. In our study we compared the 

mean height of the over-story canopy and the average of the tallest trees for each subplot. 

These two measurements represent two significantly different heights of the canopy as 

shown in this study. SRTM CHMs better predicted mean canopy heights measured in the 

field (Table 3) most likely as a result the penetration depth of C-band into the canopy and the 

fact that the mean field canopy height was an aggregation all of the overstory trees. Airborne 
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lidar and optical sensors did not perform as well in estimated mean canopy height because 

they are more sensitive to the top of the canopy, and therefore the tallest trees.

Spatiotemporal effects also need to be considered when measuring mangrove forest structure 

over time. At relatively short timescales (e.g., tidal cycles and satellite flyovers), the 

assumptions for the flat terrain along mangrove coastlines that we presumed were static can, 

in actuality, change because of the sedimentation and erosion rates, and tidal fluctuations. 

During spring tides, water levels can reach an amplitude of 4 m in the Zambezi Delta. The 

ground phase of the TDX CHM was estimated by the ground, or water surface from a 

“double-bounce” and Pol-InSAR inversion. In microtidal coastal environments, where tidal 

fluctuations are less than 2 m, overall height estimates may not significantly change the 

overall distribution of mangrove canopy heights for the area. However, in areas where tides 

exceed 2 m, a positive or negative height bias may manifest in the CHM depending on the 

tidal cycle. A relatively easy response to removing any tidally influenced bias would be to 

correct TDX data with in-situ water level measurements.

Temporal changes in forest structure are also an attribute that needs to be considered when 

comparing CHMs. The four remote sensing datasets used in this study span 14 years, from 

2000 to 2014, where SRTM data were collected in 2000, TDX data in 2011, VHR data in 

2013, and the lidar data in 2014. Because of the discrepancies that could arise from using 

multi-temporal datasets, we parameterized our model comparison to consider overall 

changes in the mean and H100 canopy surface. Since H100 represents the tallest trees of the 

canopy, it also represents less change in height because of the lower mortality rates for trees 

with a DBH greater than 10 cm [48,49]. Therefore, our results confirm with other studies 

that suggest that canopy height comparisons between the H100 top-of-canopy heights permit 

a more robust long-term comparison by recognizing the lower mortality rates of taller trees 

and steady-state conditions in mature forests [14,50]. Previous studies have reported a less 

than 12% per year mortality rate for mangroves with a diameter-at-breast height (DBH) 

greater than 10 cm [48], and less that 3% per year for similar sized mangroves in protected 

equatorial waters around Malaysia [49]. In addition, two airborne lidar campaigns conducted 

in 1997 and 2006 for tropical forests in Costa Rica reported near-identical canopy height 

distributions and an average change of −0.32 m over the 8.5 year study [50], which is well 

within the error reported in the present study. Therefore, one of the major benefits of cross-

platform forest monitoring would be detect areas of the canopy where substantial change has 

occurred (i.e., deforestation). The change in canopy structure would identify areas of canopy 

loss or canopy growth greater than 2 m. In mature mangrove forests, large changes in 

canopy height or canopy cover are directly related to natural events like tropical storms or 

lightning strikes, or human intervention like mariculture or restoration.

4.2. Applications for Monitoring, Reporting, Verification

This study has compared several satellite remote sensing capabilities with forest inventory 

standard field and airborne lidar data. The comparison highlighted the similarities, errors, 

and biases between lidar, radar, and optical sensor types. VHR and TDX satellite provide an 

opportunity to deliver repeat measurements in order to better estimate forest canopy height, 

but more importantly, measure changes in the canopy over time. Canopy height has been 

Lagomasino et al. Page 12

Remote Sens (Basel). Author manuscript; available in PMC 2018 April 04.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



shown to be directly related to biomass concentrations for mangrove forests [11,15,16]. 

Although we can predict mangrove forest biomass through these global equations, the 

accuracy of these estimates still needs to be refined locally.

Incentivized forest sustainability programs like UNREDD+ have specific precision and 

accuracy requirements. In order to meet these requirements, multiple remote sensing 

platforms can be used in harmony to assist with monitoring the three-dimensional structure 

of forest stands at the regional and global scales. Similarly, the verification process related to 

forest inventories can be through the comparisons of multiple remotely sensed CHMs. By 

understanding the biases and the reference measurements of SRTM, TDX, and VHR remote 

sensing datasets we can then make better interpretations regarding the landscape and refine 

our estimates to fall within forest inventory protocols.

Readily available satellite imagery can provide regional and global mangrove height 

estimates at relatively lower costs. The results from this study indicate that CHMs generated 

from several remote sensing techniques can provide precise estimates of mean and H100 

canopy surfaces with a corrected RMSE of ~2 m. Because of the model efficiency using 

VHR and TDX, resources for lidar acquisitions can therefore be used more strategically to 

gather information in critical areas where changes in measurements would be less than 2 m. 

Critical areas where TDX or VHR data may not provide effective data would be areas that 

are degrading but not yet deforested or in areas where there is active canopy growth. The 

benefits of TDX and VHR CHMs will be their ability to document change in relatively 

mature forests or in forests undergoing rapid degradation. Adding remote sensing 

methodologies to current forest inventory standards will help achieve better regional 

estimates and complement field inventories by identifying areas of greatest canopy change.

4.3. Ecosystem Scale Modeling for Blue Carbon

The advancement of remote sensing technologies through increased sensor and spatial 

resolution capabilities provides an enormous amount of information to model ecosystems at 

local, regional, and global scales. In order to best capitalize on these techniques, and 

particular the fusion of the techniques, field inventories should also consider measurements 

that would benefit remote sensing estimates. This could include differential GPS and tree 

heights that are not routinely collected in forest inventories. Mangrove biomass estimates are 

primarily based on tree diameter, a parameter that is difficult to measure with satellite 

remote sensing. Developing robust allometric relationships to capitalize on remote sensing 

data and capabilities must be grounded in spatially and vertically explicit inventory surveys, 

not synoptic individual point measurements. Previous and planned mangrove forest 

inventories, particularly in Mozambique, Tanzania, and Gabon, will provide important 

advancements to incorporate cross-platform remote sensing as a decisive tool in the 

monitoring and verification of forest canopy height. In addition, the information on forest 

structure collected from similar mangrove studies can be incorporated into ecological 

function studies involving evapotranspiration [51], water quality [52], light-use-and water 

use-efficiency [53], carbon stock changes [54], and provide a new framework to refine 

regional carbon and water cycling.
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5. Conclusions

We discussed the pros and cons of measuring mangrove canopy height at large spatial scales 

using various remotely sensed datasets. More importantly, we have assessed the accuracy of 

two relatively new high-resolution satellite derived CHMs (e.g., TDX and VHR) and three 

proven forest canopy methodologies: field surveys, SRTM, and airborne lidar. Our results 

show a strong correlation between each of the datasets. For certain regions, field data can be 

an expedited and economical method to measure canopy height at local scales. However, the 

remoteness and harsh conditions in mangrove forests prohibit the efficacy of such field 

campaigns. Therefore, remote sensing can play a crucial role in measuring baseline 

conditions and continuously monitoring mangrove forests at regional and global scales to 

help inform better management practices and provide verification for incentivized carbon 

programs similar to REDD+.

Several factors beyond costs and coverage should be considered when selecting a particular 

technique to estimate canopy heights in mangrove forests: spatial resolution, sensor 

sensitivities, and reference frames. Coarse 30 m × 30 m resolution SRTM imagery provides 

global coverage of mangrove canopy heights and generally predicts the mean overstory 

canopy height. The time lag between remote sensing acquisitions provides some 

discrepancy, because of canopy growth that may have occurred. SRTM data therefore poorly 

represents the top of the canopy, overlooks fine-scale forest canopy properties that are 

needed for more localized studies. Conversely, SRTM may be more stable overtime because 

changes at finer resolutions (e.g., gap dynamics) do not interfere so much with measurement 

and can accurately represent mean canopy height and canopy height distribution in mature, 

intact mangrove forests. In addition, significant changes in canopy height between SRTM 

canopy models and more recent models by signal deforestation and may augment land cover 

change research. TDX mangrove CHMs provide some of the highest spatial resolution radar 

altimetry estimates to date and has global coverage. Height estimates among the taller 

mangrove canopies are accurately represented using TDX but fail to detailed estimates for 

shorter canopies because of the baseline and height ambiguity issues. Though current efforts 

are being made to adjust the baseline in order to estimate the height of lower canopy 

vegetation. Lastly, VHR CHMs derived from stereophotogrammetry provided the lowest 

RMSE and highest NSE values on a pixel-by-pixel basis with the “gold standard” of forest 

canopy models, airborne lidar.

Depending of the scope of future studies and applications, aggregating canopy heights into 

discrete height classes could be used to reduce the errors across the height classes because of 

the inherent variability between different CHMs associated with spatial resolution and 

reference frames. Ultimately, reducing the error between classes will help in meeting carbon 

and restoration guidelines and protocols.

Future mangrove forest mapping applications will be augmented by the high-resolution 

CHMs described here to refine biomass estimates, but will inevitably be enhanced when 

combined with other mapping techniques like texture analyses, tree density, and spectral 

classification.
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Figure 1. 
Location of the Zambezi Delta along the coast of Mozambique. Canopy Height Models 

(CHM) were generated over parts of the delta: airborne lidar (black outline); very-high 

resolution satellite imagery (red outline); TanDEM-X (blue outline); and SRTM (white 
area). The field inventory plot design is shown in the lower right.
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Figure 2. 
Four Canopy Height Models (CHMs) for a region of the Zambezi Delta (see black line on 

Figure 1 for region of interest): Airborne Lidar, Shuttle Radar Topography Mission, Very 

High Resolution (VHR) Stereo, and TanDEM-X (TDX).
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Figure 3. 
Relationship between model canopy height and field measured canopy height for each 

sensor at the subplot location: (A) comparions between the means; and (B) comparisons 

between H100.
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Figure 4. 
Relationship between airborne lidar measured canopy height and modeled canopy height for 

each sensor at the subplot location: comparions between the means (A); and comparisons 

between H100 (B).
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Figure 5. 
H100 canopy height (A) and canopy height differential (B) frequency distributions.
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Figure 6. 
Canopy height differentials between reference airbone lidar and other Canopy Height 

Models (CHMs) for a region of the Zambezi Delta (see black line on Figure 1 for region of 

interest): Fused Very High Resolution (VHR) and TanDEM-X (TDX), Shuttle Radar 

Topography Mission (SRTM), VHR Stereo, and TDX.
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Table 4

Modeling efficiency statistics for H100 model comparison between all pixels of lidar and other remote sensing 

approaches.

Fused VHR-TDX VHR TDX SRTM

R2 0.47 0.47 0.47 0.47

RMSE 3.49 4.08 5.06 6.78

MAPE 0.23 0.26 0.34 0.42

NSE 0.58 0.43 0.12 −0.58

Bias 2.2 2.99 3.58 6.06
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