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Abstract

Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the 

quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak 

(sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce 

quantitative WB images of the tracer influx rate Ki as a complimentary metric to the semi-

quantitative standardized uptake value (SUV). The resulting Ki images may suffer from high noise 

due to the need for short acquisition frames. Meanwhile, a generalized Patlak (gPatlak) WB post-

reconstruction method had been suggested to limit Ki bias of sPatlak analysis at regions with non-

negligible 18F-FDG uptake reversibility; however, gPatlak analysis is non-linear and thus can 

further amplify noise. In the present study, we implemented, within the open-source Software for 

Tomographic Image Reconstruction (STIR) platform, a clinically adoptable 4D WB reconstruction 

framework enabling efficient estimation of sPatlak and gPatlak images directly from dynamic 

multi-bed PET raw data with substantial noise reduction. Furthermore, we employed the 

optimization transfer methodology to accelerate 4D expectation-maximization (EM) convergence 

by nesting the fast image-based estimation of Patlak parameters within each iteration cycle of the 

slower projection-based estimation of dynamic PET images. The novel gPatlak 4D method was 

initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM convergence. 

Initially, realistic simulations were conducted utilizing published 18F-FDG kinetic parameters 

coupled with the XCAT phantom. Quantitative analyses illustrated enhanced Ki target-to-

background ratio (TBR) and especially contrast-to-noise ratio (CNR) performance for the 4D vs. 

the indirect methods and static SUV. Furthermore, considerable convergence acceleration was 

observed for the nested algorithms involving 10–20 sub-iterations. Moreover, systematic reduction 

in Ki % bias and improved TBR were observed for gPatlak vs. sPatlak. Finally, validation on 

clinical WB dynamic data demonstrated the clinical feasibility and superior Ki CNR performance 

for the proposed 4D framework compared to indirect Patlak and SUV imaging.
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1. Introduction

Molecular imaging involves in-vivo visualization, characterization and measurement of 

biological processes at molecular and cellular levels, often consisting of 2- or 3-dimensional 

(2D or 3D) imaging as well as quantification over time (Mankoff 2007). Positron emission 

tomography (PET) is nowadays considered a primary molecular imaging modality capable 

of quantitatively measuring and localizing radiolabelled biomarkers as they circulate via the 

blood stream across living tissues (Phelps 2000, Aboagye et al 2001, Gambhir 2002). In 

particular, static PET employs the established surrogate metric of standardized uptake value 

(SUV) to evaluate a temporal instantiation of the dynamic in-vivo tracer distribution within a 

single time frame (Wahl and Buchanan 2002).

Dynamic PET, on the other hand, allows for sampling of the time course of the spatial 

distribution of tracers in the blood (input function) and tissues to enable 4-dimensional (4D) 

in-vivo imaging for a range of molecular biomarkers (Schmidt and Turkheimer 2002, Carson 

2005, Bentourkia and Zaidi 2007, Müller-Schauenburger and Reimold 2008). Subsequently, 

the acquired 4D data may be fitted to a kinetic model to enable quantification of 

physiological parameters of interest at the individual voxel level, known as parametric PET 

imaging (Messa et al 1992, Nitzsche et al 1993, Petit-Taboue et al 1996, Gunn et al 1997). 

Unlike static SUV PET imaging, which only provides a temporal “snapshot” of the tracer 

dynamic distribution, parametric PET imaging enables a more objective characterization of 

the underlying physiology. Thus, the clinical translation of whole-body (WB) dynamic PET 

imaging may facilitate significant quantitative enhancements in diagnostic, prognostic and 

theranostic assessments for various oncology, cardiology and neurology diseases.

Nowadays, a wide range of clinical PET imaging protocols involve multi-bed or WB 

acquisitions to enable assessment of disseminated disease from a single scan session, e.g. 

assessment of metastatic burden (Wahl and Buchanan 2002). Single-pass or static PET scans 

can readily support multi-bed field-of- views (FOVs) with sufficient scan time allocated per 

bed (Kubota et al 1985, Thie 2004, Boellaard et al 2015). On the contrary, extension of 

current dynamic PET protocols to multi-bed FOVs is more challenging, as it involves 

multiple WB passes within the same time, resulting in very short scan time frames per bed. 

Nevertheless, dynamic PET has been steadily garnering clinical interest in oncology for the 

quantitative assessment of the progress and response to treatment of an increasing range of 

tumor types (Gupta et al 1998, Prytz et al 2006, Castell and Cook 2008, Kotasidis et al 
2014). With the advent of commercial PET scanners with larger axial FOVs, improved 

electronics, time-of-flight (TOF) and resolution modeling capabilities, studies of higher 

statistical quality may now be possible in shorter time sessions, paving the way for clinical 

WB parametric PET imaging (Panin et al 2006, Karp et al 2008, Rahmim et al 2013, 

Karakatsanis et al 2014b).
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Recently, we proposed a clinically adoptable dynamic WB 18F-FDG PET data acquisition 

framework involving a streamlined 6-pass WB protocol (Karakatsanis et al 2013a and c). In 

that framework, the dynamic WB PET images were first reconstructed, using a regular 3D 

maximum-likelihood expectation-maximization (ML-EM) algorithm (Dempster et al 1977, 

Shepp and Vardi 1982). Then, the standard Patlak (sPatlak) linear graphical analysis method 

(Patlak et al 1983) was employed on the voxel level to robustly estimate images of the tracer 

influx rate constant Ki and the blood distribution volume V. As sPatlak considers a linear 
relationship between the estimated parameters and the measured data, the ordinary least 

squares (OLS) regression method was applied to robustly fit the images to the model.

Although the sPatlak method is robust and therefore attractive for clinical usage, it does not 

account for uptake reversibility and therefore it may lead to biased Ki estimates (Sayre et al 
2011, Hoh et al 2011). In fact a number of studies have reported mild reversibility for 

normal tissues (Fischman and Alpert 1992, Hawkins et al 1992, Okazumi et al 1992, Choi et 
al 1994, Nelson et al 1996, Huang et al 2000, Graham et al 2000, Zhuang et al 2001, Iozzo 

et al 2003, Lin et al 2005, Prytz et al 2006) as well as some oncologic malignancy types, 

such as hepatocellular carcinoma (HCC) tumors (Messa et al 1992, Torizuka et al 1995). As 

such, we recently proposed the non-linear generalized Patlak (gPatlak) WB imaging method 

which utilizes the additional net efflux rate constant kloss to account for mild uptake 

reversibility and thus reduce the observed sPatlak Ki bias in multiple bed positions 

(Karakatsanis et al 2015a).

Both above-mentioned techniques are conducted at the image level as a separate post-

reconstruction step and, therefore, are characterized as indirect parametric imaging methods. 

Since each dynamic frame is reconstructed separately from the rest, the counts contributing 

to each dynamic image are limited to the respective time frame thus enhancing noise levels 

in the estimates. Alternatively, parametric PET images can be reconstructed directly from 

the complete set of dynamic raw PET measurements as initially introduced by Matthews et 
al (1997). Interested readers may refer to informative literature reviews on the topic 

(Tsoumpas et al 2008a and b, Rahmim et al 2009, Wang and Qi 2013, Reader and Verhaeghe 

2014, Kotasidis et al 2014). In particular, the sPatlak model has been previously 

incorporated within the ML-EM framework to enable direct estimation of Ki and V macro-

parameters from dynamic single-bed PET raw data (Tsoumpas et al 2008a, Wang and Qi 

2009, Tang et al 2010, Verhaeghe and Reader 2010). Unlike post-reconstruction Patlak 

analysis, 4D Patlak algorithms allow for direct ML-EM estimation from the complete 4D 

dataset, performing comprehensive counts utilization. In addition, the statistical noise in the 

raw data follows the well-known Poisson distribution, which can be accurately modeled 

within 4D reconstruction algorithms, while the indirect methods commonly oversimplify the 

complex noise distribution in the reconstructed PET images (Barrett et al 1994, Qi 2003, 

Rahmim and Tang 2013, Reader and Verhaeghe 2014). Therefore, 4D Patlak reconstruction 

is expected to yield reduced noise levels than indirect methods, with the difference becoming 

more apparent for low count statistics.

Due to a higher model complexity in 4D reconstruction, a larger number of iterations are 

needed for the convergence of the image estimates (Wu 1983, Kamasak et al 2005, Rahmim 

et al 2009). Moreover, the convergence rate may be further decelerated due to inherent 
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correlations between the Patlak temporal basis functions (Tsoumpas et al 2008b, Wang et al 
2008, Rahmim et al 2009, Wang and Qi 2010, Tang et al 2010, Karakatsanis et al 2013b). As 

a result, the slower tomographic update is interleaved with the faster Patlak update at each 

iterative step. Alternatively, the principle of optimization transfer (Carson and Lange 1985, 

Lange et al 2001) can be employed to define surrogate objective functions, which in turn 

allow for nesting of multiple sub-iterations of the fast image-based ML-EM update process 

within each global iteration of the slower projection-based ML-EM update (Wang and Qi 

2010, 2012 and 2013, Karakatsanis and Rahmim 2014a, Rahmim et al 2014). The same 

principle has been also employed for the integration of resolution (Angelis et al 2013) and 

motion (Karakatsanis et al 2014d) models within PET image reconstruction. As the image-

based Patlak ML-EM sub-iterations are considerably faster than the external tomographic 

ML-EM global iterations, multiple Patlak updates can be accommodated within each global 

iteration, thus facilitating convergence at a negligible computational cost per global iteration.

In the meantime, Zhu et al (2012, 2014) developed a non-nested 4D sPatlak algorithm for 

direct reconstruction from list-mode data across multiple beds. Their approach was based on 

a simplified 2-pass WB dynamic protocol (dual-time Patlak), which may be the minimum 

necessary number of passes to estimate the two sPatlak parameters (slope and intercept) but 

not for non-linear gPatlak regression involving 3 parameters. Furthermore, the choice of two 

WB passes does not offer any redundancy if the initial scan window is not found to be 

optimal for the evaluated tracer kinetics (Karakatsanis et al 2014c) or if the patient chooses 

to suddenly stop the exam before the two passes are completed.

Here we propose a multi-bed extension of the previous nested 4D sPatlak algorithms to 

directly and efficiently reconstruct sPatlak WB images from dynamic WB PET raw data at 

an accelerated convergence rate. In addition, we present a novel non-linear 4D nested 

gPatlak reconstruction algorithm for quantitative WB Ki imaging either in single- or multi-

bed FOVs, including regions where linear sPatlak yields biased Ki estimates, due to non-

negligible uptake reversibility. Both methods are based on our previously optimized 6-pass 

WB scan protocol corresponding to 0–45min post injection (p.i.) scan window. By acquiring 

six WB passes, the necessary temporal data redundancy is attained to facilitate a) kinetic-

driven optimization of the acquisition time window, and b) robust estimation of Patlak 

parametric images, especially for gPatlak non-linear parameters. Finally, we introduce a 

practical sPatlak-based initialization scheme for the gPatlak 4D algorithm to potentially 

overcome convergence problems to local optima, due to high noise in the data (Wu 1983). 

All proposed and reference algorithms have been implemented and validated on the open-

source Software for Tomographic Image Reconstruction (STIR) platform (Thielemans et al 
2012) by building upon existing non-nested sPatlak reconstruction libraries (Tsoumpas et al 
2008a) and including both simulated and clinical studies. As we target clinical adoptability, 

we laid emphasis on efficiency, robustness and application scope for the proposed methods.

2. Materials and Methods

2.1 Whole-body dynamic PET acquisition protocol

The proposed WB dynamic PET data acquisition protocol consists of an initial dynamic PET 

scan at the cardiac bed position, immediately following tracer administration (first phase), 
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namely 0–6min p.i., to measure the rapidly changing early section of the tracer 

concentration in the blood plasma (input function). Then, a dynamic series of 6 WB passes 

follows (second phase), for 8–45min p.i. (figure 1), to sample the later part of the tissue time 

activity curves (TACs) at every voxel across the WB FOV. The protocol has been 

streamlined for straightforward clinical adoption: each dynamic WB frame is scanned along 

the same axial direction (cranio-caudal or vice-versa) and consists of equal number of beds 

of equal duration resulting in uniform temporal sampling rates for all bed positions 

(Karakatsanis et al 2013a).

Initially, the PET 4D raw data from both protocol phases are independently reconstructed 

and the input function is extracted from regions-of-interest (ROIs) placed over the heart left-

ventricle (LV) in the resulting PET dynamic images. The ROIs are drawn such that partial 

volume effects are minimized (Karakatsanis et al 2013a). Subsequently, the image-derived 

input function is utilized to produce WB parametric Ki images with a) our previously 

validated indirect Patlak analysis and b) the newly proposed direct 4D Patlak reconstruction 

methods.

2.2 Patlak graphical analysis methods

2.2.1 Linear standard Patlak (sPatlak) graphical analysis—In multi-bed dynamic 

PET acquisitions, the linear sPatlak graphical analysis method (Patlak et al 1983) utilizes the 

dynamic PET data from each bed position and the input function to estimate the kinetic 

macro-parameters of tracer influx rate constant Ki, in units of ml of blood per minute per 

gram of tissue (ml/[min×g]), and total distribution volume V, in units of ml of blood per 

gram of tissue (ml/g), at each voxel (Karakatsanis et al 2013a):

C(tn)
CP(tn) = Ki

∫ 0
tnCp(t′)dt′

CP(tn) + V

C(tn) = Ki∫0

tn
Cp(t′)dt′ + VCP(tn) = Ki ⊗ Cp(tn) + VCp(tn), tn > t∗, n = 1…N

(1)

where ⊗ denotes the convolution operation over the time variable t′ and C(tn) is the 

measured tissue TAC at the mid-frame time points tn of the N dynamic PET frames, 

corresponding to a particular bed and voxel. Moreover, CP(tn) is the input function at the tn 

time points and t* is the p.i. time after which relative kinetic equilibrium between the blood 

and the tissue tracer concentration is attained. The sPatlak analysis assumes an irreversible 
2-tissue-compartment tracer kinetic model, as illustrated in figure 2a.

Patlak and Blasberg (1985) showed that the macro-parameter Ki can be related to the kinetic 

micro-parameters K1 (ml/[min×g]), k2 (1/min), k3 (1/min) and k4 (1/min) as follows:

Ki =
K1k3

k2 + k3
(2)
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2.2.2 Non-linear generalized Patlak (gPatlak) graphical analysis—Standard linear 

Patlak analysis directly estimates Ki and V macro-parameters by assuming a 2-tissue-

compartment kinetic model with an irreversible compartment, a commonly invoked model 

for organs and tumors exhibiting 18F-FDG uptake in PET human studies (Gunn et al 2001). 

However a considerable number of studies suggest uptake reversibility for a range of tracers, 

as presented previously (Holden et al 1997, Lodge et al 1999, Karakatsanis et al 2015a). 

Since the sPatlak model assumes irreversible uptake, it may underestimate Ki to compensate 

for lack of reversibility modeling (Messa et al 1992, Sayre et al 2011, Hoh et al 2011).

Therefore, later Patlak and Blasberg (1985) introduced a generalized graphical analysis 

method to account for mildly reversible uptake kinetics. A kloss kinetic parameter was 

introduced to describe the net rate constant for absorbed or metabolized tracer loss to the 

blood plasma. By assuming a reversible 2- tissue compartment model with kloss ≪ ki, it 

follows (Karakatsanis et al 2015a):

C(tn)
CP(tn) = Ki

∫ 0
tne

−kloss(tn − t′)
CP(t′)dt′

CP(tn) + V

C(tn) = Ki∫0

tn
e

−kloss(tn − t′)
CP(t′)dt′ + VCP(tn)

C(tn) = (Kie
−klosstn) ⊗ CP(tn) + VCP(tn), tn > t∗, n = 1…N, kloss ≪ Ki

(3)

The net efflux rate constant kloss (1/min) is related to the kinetic micro-parameters as 

follows:

kloss =
k2k4

k2 + k3
(4)

Despite the presence of a non-linear term in Eq. (3), gPatlak analysis is characterized by a 

significantly lower degree of complexity and, thus higher robustness, than the standard 2-

tissue compartmental kinetic modeling methods. Nevertheless, gPatlak is less robust to 

noise, but enhances ki quantification in voxels with uptake reversibility, compared to sPatlak 

analysis (Karakatsanis et al 2015a).

2.3 Direct 4D WB Patlak imaging

Previously, we proposed a set of indirect WB PET parametric imaging tools utilizing either 

sPatlak or gPatlak graphical analysis (Karakatsanis et al 2013a and 2015), here denoted, in 

general, as (s/g)Patlak methods. The standard OLS and the Basis Function Method (BFM) 

(Gunn et al 1997) were then applied on the reconstructed dynamic PET images to estimate 

the sPatlak and gPatlak parameters respectively. However, the main scope of the current 

study is the design and validation of clinically adoptable direct 4D (s/g)Patlak ML-EM WB 

reconstruction methods for more efficient utilization of the 4D data, at each bed position, 

when estimating kinetic macro-parameters.
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2.3.1 Nested direct 4D WB sPatlak reconstruction—Let us first define the 

following:

• yn = [yi
n]

i = 1
I

: nth dynamic frame of a PET sinogram or projection data vector 

comprised of a total of detector pair or line-of-response (LOR) bins,

• Y = [y1 … yN]T : column vector of a set of N dynamic frames of measured PET 

sinograms,

• xn = [x j
n]

j = 1
J

: nth dynamic frame of a PET image vector comprised of a total of 

voxels,

• X = [x1 … xN]T: column vector of a set of N dynamic frames of reconstructed 

PET images,

• K = [Ki
j]

j = 1
J

: parametric image vector of the Patlak slope or tracer influx rate 

constant Ki,

• V = [V j] j = 1
J

: parametric image vector of the Patlak intercept or blood 

distribution volume V,

• Ms = [K; V]T : ensemble standard Patlak parametric image vector

• CP(n) = CP(tn) : measured blood plasma activity concentration at mid-frame time 

tn,

• SP(n) = ∫ 0
tnCP(t′)dt′: integral of CP(t′) along time variable t′

• P = [pi j]i = 1, j = 1
I, J : spatial system response matrix with pij denoting the 

probability an annihilation event having occurred at jth image voxel to be 

recorded at ith detector pair or line or response (LOR) of the sinogram, thus yn = 

Pxn,

•

Bs = [bs, nk]
n = 1, k = 1
N, 2 =

SP(1) CP(1)
⋮ ⋮

SP(N) CP(N)
: standard Patlak model matrix and

•

P =
SP(1)P CP(1)P

⋮ ⋮
SP(N)P CP(N)P

= P ⊕ Bs: spatio-temporal system response matrix derived 

by taking the Kronecker product (⊕) of P and Bs model response matrices.

According to standard Patlak graphical analysis, the expectations of dynamic sinograms Ŷ = 

[ŷ1 … ŷN]T and respective PET images X̂ = [x̂1 … x̂N]T can be directly related to the 

expected ensemble parametric image M̂
s = [K̂; V̂]T of tracer influx rate constant K̂ and blood 

distribution volume V̂ according to the following linear kinetic model equations:
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X = BsMs, Y = PMs = (P ⊕ Bs)Ms (5)

or, equivalently:

xn(K, V) = KSP(n) + VCp(n), yn(K, V) = Pxn(K, V) = P KSP(n) + VCP(n) (6)

Then the two 4D maximum likelihood expectation-maximization (ML-EM) update equation 

follows:

Knew =
Kold

PT1∑n = 1
N SP(n)

∑n = 1
N SP(n)PT yn

yn(Kold, Vold)
(7a)

Vnew =
Vold

PT1∑n = 1
N CP(n)

∑n = 1
N CP(n)PT yn

yn(Kold, Vold)
(7b)

or, equivalently:

Ms, new =
Ms, old

PT1
PT y

PMs, old
(7c)

By letting ms
j = [ms, k

j ]
k = 1
2 = [Ki

j V j]T as the standard Patlak parameter vector at voxel j, we 

have:

ms, k
j, new =

ms, k
j, old

∑n Bs, nk∑i Pi j
∑n Bs, nk∑i Pi j

yi
n

∑ j Pi j∑k Bs, nkms, k
j, old (7d)

The nested 4D sPatlak image reconstruction algorithm breaks down the previous integrated 

EM process into two steps: i) a single tomographic projection-based EM update of the 

dynamic image estimates, based on the measured 4D data, followed by ii) multiple nested 

image-based EM updates of the kinetic parameter estimates, based on the dynamic image 

estimates from step 1. The nested ML-EM implementation utilizes the “optimization 

transfer” principle (Lange et al 2001), which “transfers” the optimization target from a 

single and more complex global objective function to simpler surrogate functions, that vary 

at each global ML-EM iteration step, as illustrated in figure 3 (Carson and Lange 1985, 

Wang and Qi 2010, 2012 and 2013, Karakatsanis and Rahmim 2014a).
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In the nested sPatlak 4D ML-EM framework, both the global objective function L and the 

surrogate objective function Qw, for each iteration w, are defined as Poisson log-likelihood 

functions of the measured dynamic data Y and the dynamic image estimate xw at iteration w, 

respectively, given the sPatlak parameter vector ms. In fact, the nested section of the sPatlak 

4D ML-EM algorithm for global iteration w utilizes the latest dynamic image estimate xw 

from step 1 to return, after several sub-iterations, the ms parameter vector that maximizes the 

wth iteration surrogate log-likelihood function Qw(xw | ms) (figure 3c). Subsequently, the 

returned value ms
w initializes the tomographic ML-EM update (step 1) of the next, i.e. (w 

+ 1)-th iteration.

We note that our scheme employs an ML-EM optimization algorithm for both the external 

tomographic and the nested image-based iterative update processes, while the respective 

Poisson log-likelihood functions satisfy the criteria described in Figures 3a and b. In 

addition, the external and nested Poisson log-likelihood maximization problems described 

above are equivalent to minimizing the Kullback-Leibler (KL) distance metrics (Barrett and 

Myers 2004) between the measured dynamic data Y and dynamic images xw, for the 

tomographic estimation problem, and between the estimated dynamic images xw and the 

new sPatlak parameter estimates ms
w for the image-based parametric estimation problem. 

Under these conditions, the 4D ML-EM nested estimation of the sPatlak parameters is 

legitimately performed, as the Poisson distribution in the measured counts is fully 

accounted, and the EM convergence of the nested 4D ML-EM algorithm is ensured, as 

illustrated in figure 3d.

Below, we present the theoretical framework of the nested sPatlak 4D ML-EM algorithm 

(Wang and Qi 2010). In this work, we extended its application to raw PET data from 

multiple beds. Initially, for every global ML-EM iterative cycle, an updated dynamic image 

set x ̂new is estimated for each bed utilizing the large tomographic system matrix P and the 

respective bed dynamic data Y (step 1):

xnew
n =

xn(Kold, Vold)
PT1

PT yn

yn(Kold, Vold)
(8a)

or, equivalently:

x j, new
n =

x j, old
n

∑i Pi j
∑i Pi j

yi, n

∑ j Pi j∑k Bs, nkms, jk
old (8b)

Subsequently, the algorithm performs a series of nested ML-EM updates of the kinetic 

parameter images K and V, corresponding to each bed, by employing the considerably 

smaller in size sPatlak model matrix Bs and the respective PET image estimates x̂new from 

step 1 as a reference (step 2):
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Knew =
Kold

∑n = 1
N SP(n)

∑n = 1
N SP(n)

xnew
n

xn(Kold, Vold)
(9a)

Vnew =
Vold

∑n = 1
N CP(n)

∑n = 1
N CP(n)

xnew
n

xn(Kold, Vold)
(9b)

or, equivalently:

ms, jk
new =

ms, jk
old

∑n Bs, nk
∑n Bs, nk

x j, new
n

∑k Bs, nkms, jk
old (9c)

Then, the nested sPatlak 4D ML-EM steps above are repeated for the data of the remaining 

beds to produce the respective sPatlak images. Finally, all images of the same parameter 

type are combined, after accounting for any axial overlapping slices between beds, to create 

multi-bed or WB sPatlak images.

The first step of each global EM iteration cycle involves forward- and back-projection 3D 

tomographic operations, which are often computationally expensive due to the large size of 

P. On the contrary, the nested EM loop of the second step employs the much smaller model 

matrix Bs, thus allowing for much faster forward- and back-projection operations to 

transform between parametric and dynamic image space. Thus, by nesting multiple faster 

update steps of the kinetic parameter estimates (equations 9a and 9b) within every 

tomographic update step of the dynamic images (equation 8a or 8b), the global convergence 

rate of the 4D reconstruction algorithm is effectively accelerated, in terms of total 

computation time (Wang et al 2010, Wang and Qi 2013, Karakatsanis and Rahmim 2014a).

2.3.2 Nested direct 4D WB gPatlak reconstruction—For the non-linear gPatlak 

model let us denote:

• K, kloss and V: column vectors denoting respective K, kloss and V parametric 

images,

• Mg = [K; kloss; V]T: the overall gPatlak parametric image matrix,

• mg
j = (Ki

j, kloss
j , V j): vector of the three gPatlak parameters at voxel j,

• td′ , d = 1 … D: variable denoting each of the D convolution time points (different 

from tn, n = 1 … N, variable for the N mid-frame time points)

•
hd

j (Ki
j, kloss

j , td′ ) = Ki
je

−kloss
j td′ : gPatlak impulse response element at time point td′

for voxel j,
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• h j = [hd
j ]

d = 1
D

: impulse response column vector at voxel j and

• x j = [x j
n]

n = 1
N

: TAC at voxel j.

According to gPatlak model assumptions in (3) the TAC at every voxel j can be modeled as 

follows:

x j = h j(Ki
j, kloss

j , t′) ⊗ CP(t′) + V jCP(t′) (10a)

By approximating the above time convolution operation with a summation over D finely 

sampled time convolution points td′ , we can also model every voxel TAC xj as a vector-

matrix product:

x j = Θr j (10b)

where rj = [hj; Vj]T is the Patlak response vector at voxel j, constructed by appending the Vj 

unknown parameter at the end of the impulse response vector hj, and Θ is the N × (D + 1) 

matrix derived from the Toeplitz matrix (Heinig and Ross 1984) of CP(tn) for D temporal 

convolution points:

Θ =
CP(t1 − t1′ ) ⋯ CP(t1 − tD′ ) CP(t1)

⋮ ⋱ ⋮ ⋮
CP(tN − t1′ ) ⋯ CP(tN − tD′ ) CP(tN)

(11)

For the proposed nested gPatlak 4D ML-EM WB reconstruction algorithm, each global 

iteration step is now decomposed into three distinct respective steps, unlike the two steps 

previously described for nested sPatlak 4D algorithm.

The first step, which is identical with step 1 of the nested sPatlak 4D method, involves a 

single update of the estimated TAC x j = [x j
n]

n = 1
N

 at voxel j, through a tomographic EM 

estimation process, and is often the most computationally expensive, as it is applied 

consecutively to all N dynamic frames and employs the large tomographic matrix P. Thus, 

for d = 1 … D and n = 1 … N, we have for step 1:

x j, new
n =

x j, old
n

∑i Pi j
∑i Pi j

yi, n

∑ j Pi j∑l Θnlrl, old
j (12)

Subsequently, the previously estimated TAC xj,new of voxel j from step 1 and the measured 

data in Θ are employed to estimate the Patlak response vector rj of size D + 1, through the 

following nested iterative ML-EM process (step 2):
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rnew
j =

rold
j

∑nΘnl
∑nΘnl

x j, new
n

∑l Θnlrl, old
j (13)

Thus, after all nested sub-iterations in step 2 of current global iteration have been completed, 

rnew
j  is estimated, which includes the impulse response vector hj and gPatlak parameter Vj. 

Subsequently, in step 3 of current global iteration, the gPatlak parameters Kl
j and kloss

j  are 

analytically derived, as it will be described later. By repeating the previous 3 steps for a 

number of ML-EM iterations in all voxels of a particular bed position, the gPatlak images 

are reconstructed for that bed. Finally, this process is repeated for the dynamic data of the 

rest of the beds, to ultimately produce WB gPatlak images.

Similarly with sPatlak, the presented nested gPatlak 4D algorithm targets at Poisson log-

likelihood types of global and surrogate functions and employs the ML-EM algorithm for 

the external and the nested optimization problems. The main difference lies in the type of 

nested estimates targeted by the gPatlak algorithm. Due to the non-linear relationship 

between the gPatlak parameters and dynamic image space, the latter could not be estimated 

directly from the nested ML-EM approach employed in the previous section for nested 

sPatlak 4D case. Instead, the Patlak response vector rj at each voxel j is now estimated 

through the same nested ML-EM update process, as it is linearly related with the dynamic 

image estimates, according to Eq. (10b). Therefore, the same conditions apply to gPatlak 

case, as those illustrated in figure 3, if sPatlak parameter vector ms is replaced by the Patlak 

impulse response vector r. In fact, if kloss is set to zero, the gPatlak 4D formulation in Eq. 

(10b) reduces to the sPatlak framework and the direct linear relationship between parametric 

and dynamic image space is restored.

The updated Patlak response vector rj maximizes now a surrogate Poisson log-likelihood 

given the current TAC estimate xj from step 1, as illustrated below:

rnew
j = argmax

r j
∑n = 1

N x j, new
n log x j

n(r j) − x j
n(r j) (14)

The first parameter to be updated at every nested ML-EM iteration of Eq. (13) is Vj, as the 

last element of the updated vector rj. Then, inspired by a similar analytical derivation for a 

reversible 1-tissue compartment kinetic model (Yan et al 2012, Wang and Qi 2013), the 

analytical solutions for K and kloss gPatlak parameters at every voxel j can be calculated as 

follows (Karakatsanis and Rahmim 2014a):

kloss, new
j = S−1 ∑d = 1

D td′ hd, new
j

∑d = 1
D hd, new

j (15)
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where S−1 is the inverse of the function below:

S(kloss) =
∑d = 1

D td′ e
−kloss

j td′

∑d = 1
D e

−kloss
j td′

(16)

In order to enhance computational efficiency, a look-up table for S(kloss) can be pre-

calculated and loaded to computer memory at the start of the reconstruction algorithm for a 

range of possible kloss initial values. Then, during reconstruction, this look-up table can be 

utilized to invert S(kloss) function and efficiently determine the updated estimate kloss, new
j

with Eq. (15).

Finally, the tracer influx rate constant parameter Ki, new
j  can be also analytically calculated 

from the current estimates rnew
j  and kloss, new

j  as follows:

Ki, new
j =

∑d = 1
D hd, new

j

∑d = 1
D e

−kloss, new
j td′

(17)

Although the S(kloss) look-up table is pre-loaded, the estimation of gPatlak parameters Ki
j

and kloss
j  from the current rj estimate may be computationally inefficient, if repeated for each 

nested sub-iteration. Besides, only the EM update of rj is strictly required to maximize the 

surrogate EM log-likelihood as in Eq. (14). Therefore, here we propose updating only the rj 

vector at every nested sub-iteration, except for the last one wherein the gPatlak parameters 

Ki
j and kloss

j  are estimated as well.

Furthermore, we recommend not using the newly estimated Ki
j and kloss

j  parameters to 

update hj estimates of the new global iteration cycle. Aside from the observation that such an 

update would be redundant and only add computational cost, as hj is already updated before, 

it can also be “risk-prone” for the proper global EM convergence of the algorithm. The risk 

lies in the estimation of Ki
j and kloss

j  parameters, which is not exclusively driven by the 

nested ML-EM process (steps 1 and 2), as was the case with sPatlak 4D method. Now, an 

analytical derivation is additionally employed in the end (step 3), which forces the new 

estimates Ki
j and kloss

j  to be related with h j = [hd
j ] according to the following equation: 

hd
j = Ki

je
−kloss

j td′ , d = 1 … D, provided S(kloss) inversion in Eq. (15) is accurate. Therefore, 

depending on the sampling density of the S(kloss) discrete look-up table and its range (Eq. 

16), which can both be freely determined by the user, the linear interpolation accuracy of 

S(kloss) inversion in Eq. (16) may be degraded, therefore affecting the bias in the parametric 
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ki and kloss estimates. As a result, the optimization transfer requirements may not be strictly 

fulfilled, if the inversion of the S(kloss) look-up table is interfering with ML-EM estimation 

at every global iteration step. Although we have observed a negligible error associated with 

the analytic calculations even when moderate sampling rates are selected (1000 samples 

uniformly drawn from a [10−5,1] kloss range), the overall convergence of the ML-EM 

algorithm may nevertheless be affected after several global ML-EM iterations. Therefore, to 

ensure the proper EM convergence properties of the gPatlak 4D algorithm and save 

computational time, the rj vector of the next global tomographic iteration in Eq. (12) should 

be updated directly from the rj estimate of the last nested sub-iteration, denoted as rold
j  in Eq. 

(13).

2.3.3 Initialization schemes of the 4D Patlak reconstruction methods—
Normally, conventional 3D ML-EM iterative reconstruction algorithms are associated with 

objective functions that do not require any special initialization scheme. In this study, all 3D 

ML-EM methods have been initialized with unity values. The sPatlak 4D algorithms are also 

characterized by a sufficiently stable EM convergence when initialized with unity Ki and V 
images, due to their linearity and robustness, and thus no special initialization was applied to 

this class of methods.

Nevertheless, non-linear 4D reconstruction methods involve more complex objective 

functions, and a more advanced initialization scheme may be helpful. In particular, gPatlak 

4D algorithms involve non- linear parameters, and thus, their EM convergence is sensitive to 

initialization. Therefore, for gPatlak 4D nested algorithm we evaluated i) a conventional 

scheme involving initialization of Ki and V estimates with unity values, and ii) a novel 

sPatlak-based scheme, where Ki and V parameters were initialized with respective sPatlak 

4D estimates. In both cases, kloss initial value was set to zero, which is equivalent to the 

sPatlak method. Although initialization with zero values is not recommended in ML-EM 

algorithms to avoid trapping of estimates to zeroes in subsequent iterations due to the 

multiplicative update mechanism, kloss belongs to an exponential term in the gPatlak model 

and thus zero is effectively translated as the unity value. The number of sPatlak ML-EM 

iterations employed to produce the parameter values for gPatlak initialization were 

determined based on noise-bias trade-off performance in simulated data.

2.4 Design of simulation study and image reconstruction strategy

For the purposes of the simulation study, we initially modeled a set of realistic TACs for 

various characteristic regions of the human body by employing FDG kinetic parameters 

from literature (Table 1), assuming Feng input function model (Feng et al 1993) and a 

reversible 2-tissue-compartment model.

Then, a dynamic series of noise-free emission images were generated by assigning the 

modeled TACs to the respective regions of a voxelized XCAT human torso digital phantom 

at the time frames of the proposed protocol (figure 1). A total of six tumor regions were also 

added: three in the normal liver (A1, A2 and A3) and three in the right lung (B1, B2 and B3) 

background regions, with the members of each group having diameters in descending order 
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of 15, 10, and 8mm, respectively. Finally, tumor groups A and B were assigned the kinetics 

of liver and HCC metastatic tumors, respectively (Table 1).

Later, analytic simulations were conducted by forward projecting the emission images with 

STIR (Thielemans et al 2012) using the Biograph mCT system geometry (Jakoby et al 
2011). Then, the generated sinograms were attenuated, according to the XCAT attenuation 

factors, and scaled based on a factor accounting for the sensitivity of the mCT scanner and 

the time frame duration. Quantitative Poisson noise was then added. Finally, the generated 

noise-free and noisy dynamic PET projection data were all reconstructed in either 3D or 4D 

mode, using current and newly developed STIR ML-EM libraries to produce dynamic PET 

and Patlak parametric images, respectively. A diagram illustrating the design of the 

simulated study, along with examples of reconstructed Patlak images, is presented in figure 

4.

For the evaluation of the 4D simulated data, ground truth kinetic parameters were known. 

Thus, the quantitative analysis was first conducted in terms of percentage (%) normalized 

bias (NBias×100) and normalized standard deviation or noise (NSD×100), where NBias and 

NSD were calculated over F = 20 simulated realizations, according to Karakatsanis et al 
2013a, paragraph 4.2. Both metrics were extracted from four characteristic tumor regions 

(A1, A2, B1 and B2), as a function of the number of ML-EM iterations and plotted together 

to form noise-bias trade-off curves for each ROI and evaluated method. In addition, we 

assessed the mean target to background (TBR) and contrast to noise ratio (CNR) metrics for 

the same tumor regions after averaging over the 20 realizations, according to equations 18 

and 19 below.

TBRtarget_ROI = 1
F ∑ f = 1

F meantarget_ROI f
− meanbckgrd_ROI f

/meanbckgrd_ROI f
(18)

CNRtarget_ROI = 1
F ∑ f = 1

F
meantargetROI f

− meanbckgrdROI f
meanbckgrdROI f

/std_devbckgrdROI f
(19)

where meantarget_ROIf and meanbckgrd_ROIf are the mean values over the target (tumor) and 

background (normal organ) ROIs, respectively, for f realization, and std_devbckgrd_ROIf is the 

spatial standard deviation of the background ROI, as defined in Karakatsanis et al 2013a, 

paragraph 4.2.

For the clinical validation, the Siemens Biograph mCT PET/CT scanner (Jakoby et al 2011) 

was used together with the validated scan protocol described in Section 2.1. A set of 5 

clinical WB dynamic datasets have been reconstructed with the presented methods. As STIR 

currently supports only non-TOF projectors, the mCT TOF PET raw data were first 
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converted to a non-TOF format. Two suspected tumor regions of high focal uptake were 

identified to assess the clinical feasibility and quantitative performance of direct 4D WB 

Patlak imaging methods against conventional SUV and indirect Patlak analysis in clinical 

oncology. In all cases, the TBR and CNR scores were evaluated, as a function of the ML-

EM global iterations, according to equations 18 and 19 for F = 1.

In this study we chose to evaluate the effect on convergence of non-nested vs. nested 

algorithms in the context of a pure ML-EM framework, i.e. by utilizing data from all 

projection angles at every update cycle of the reconstruction algorithm. Thus, we were able 

to maintain a common framework to enable direct comparison with previous related ML-EM 

evaluation work on WB Patlak Ki clinical imaging studies (Karakatsanis et al 2013a, 2013c 

and 2015a). In addition, we isolated the effects on convergence from other factors, such as 

that of ordered subsets EM (OS-EM) implementations, which are also expected to accelerate 

convergence by subsetizing projections at each update cycle. Nevertheless, STIR platform 

also supports OS-EM algorithm and our preliminary results indicate the same degree of 

convergence acceleration between nested ML-EM and nested OS-EM when 21 subsets are 

employed for the latter, which is the standard selection for most clinical studies with the 

mCT scanner.

3. Results

3.1 Performance evaluation from 4D simulations

3.1.1 Noise-free direct 4D vs. SUV imaging—The noise-free dynamic PET SUV 

cardiac images in figure 5a (1st row) illustrate the variability introduced to each simulated 

lesion uptake and contrast during the first 45min p.i. due to the modeled kinetics (Table 1). 

The simulated dynamic PET images were produced from 3D ML-EM reconstruction (3 

cycles of 21 iterations each) of dynamic cardiac data which were sampled according to our 

validated WB dynamic PET protocol (figure 1). Moreover, the reconstructed noise-free 

indirect and direct (s/g)Patlak Ki images in the 2nd row of figure 5a converged to higher 

lesion TBR contrast scores than any of the dynamic noise-free PET images for both ROI 

groups A and B. Therefore, in the absence of noise, Patlak may theoretically offer 

information beyond SUV and thus the complementary application of the two may enhance 

lesion detectability performance.

3.1.2 Direct 4D vs. indirect (s/g)Patlak WB imaging—In noise-free conditions, 

indirect and direct methods are expected to match in performance, after convergence is 

attained. Indeed, no visually distinct difference was observed in the noise-free Ki images 

between the two method classes (figure 5a). In the presence of noise, however, the benefit in 

noise and resolution of properly initialized direct 4D vs. indirect Patlak analysis is illustrated 

when visually comparing the noisy Ki simulated images (figures 4 and 5b), especially for the 

tumor lesions of B group in the right lung. Moreover, the noise-bias trade-off curves (figure 

5c) clearly demonstrated, for all evaluated ROIs, the superiority of 4D sPatlak and properly 

initialized 4D gPatlak algorithms, relative to the respective indirect methods. In particular, 

we observed significantly reduced noise at matched bias (resolution) and vice-versa for the 

direct 4D vs. the indirect methods in all ROIs. Finally, the 4D methods converged to 
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distinctly smaller bias values than indirect methods, thus suggesting reduced noise-induced 

bias compared to indirect Patlak.

These observations were further supported by the TBR and CNR quantitative analysis on the 

same four Ki image ROIs in figure 6. Nevertheless, it should be noted that 4D imaging 

methods were associated with a relatively higher gain in CNR rather than TBR scores, as the 

main benefit of direct over indirect parametric reconstruction is the reduction of the noise in 

the Ki images. The TBR relative enhancements of 4D over indirect algorithms can be 

attributed to the reduction of noise-induced bias for the former, as also indicated by the 

noise-bias trade-off analysis in figure 5c. Nevertheless, the ground true TBR Ki contrast, as 

calculated from the true input values of our simulation study, was underestimated in all 

cases. In all cases, the observed bias in the lesion Ki estimates and respective underestimated 

TBR scores becomes higher for smaller diameters (A2 and B2 ROIs), which we attribute to 

the partial volume effects.

3.1.3 sPatlak vs. gPatlak 4D WB imaging—A visual inspection of the ground truth Ki 

and kloss images and their comparison with the noise-free reconstructed Ki images in figure 

5a (2nd row) suggests that, in general, the gPatlak indirect 3D and direct 4D methods were 

associated with more accurate Ki estimates than respective sPatlak methods. Furthermore, 

both noise-free and noisy gPatlak 4D reconstructions yielded relatively higher Ki TBR 

contrast scores, than respective sPatlak reconstruction, for tumor ROIs of group B, where a 

relatively higher degree of uptake reversibility (k4=0.012) was introduced in our simulations 

(Table 1). Thus, our observations demonstrated the theoretical advantage of gPatlak over 

sPatlak algorithms, when evaluating regions exhibiting non-negligible uptake reversibility. 

However, the same results indicated lower Ki image noise for sPatlak vs. the gPatlak 4D 

methods. The respective noise-bias curves (figure 5c) confirmed the previous findings, as 

they revealed smaller bias at matched noise levels and higher noise at matched resolution 

(bias) for gPatlak 4D reconstruction methods.

Furthermore, in terms of lesion detectability performance, the results in figure 6 suggest that 

the main differences between sPatlak and gPatlak 4D methods were observed in TBR and 

CNR scores, with TBR being affected more profoundly. We attribute this finding to the 

relatively higher noise levels for gPatlak imaging, even within the 4D framework. Although 

bias and TBR contrast are enhanced with gPatlak 4D methods, the increased noise 

associated with gPatlak non-linear model eventually limits gPatlak 4D CNR scores. As a 

result, gPatlak 4D is not increasing the CNR scores as much as it enhances the TBR scores.

3.1.4 Conventional vs. nested Patlak 4D ML-EM and number of nested sub-
iterations—The expected gain in ML-EM convergence rate for the nested relative to the 

conventional, i.e. non-nested, 4D sPatlak implementations was illustrated qualitatively and 

quantitatively in figures 5b and 5c respectively. In particular, visual inspection of B1 and B2 

lesions contrast as a function of the iteration cycles in simulated Ki images of figure 5b 

suggested a faster contrast recovery, and thus convergence rate, for the nested sPatlak Ki 

images. In addition, the respective noise-bias curves in figure 5c indicated smaller bias 

values at matched noise levels for the nested sPatlak 4D implementation.
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Moreover, a mildly faster 4D ML-EM convergence was recorded as the number of nested 

sub-iterations increased per global iteration step. This is conjectured from all three plots of 

the 2nd column of figure 7. However, the gain in bias and TBR contrast became 

progressively negligible when more than 20 sub-iterations were involved, as convergence 

had already been established at earlier iterations in these cases. Meanwhile, the noise was 

being steadily deteriorated in the same cases, due to the higher number of nested updates 

involved per global iteration step. As a result, for higher than 20 nested sub-iterations, image 

noise kept increasing relatively faster than TBR lesion contrast and, consequently, CNR 

started dropping at later iterations. Although not included in the results, it should be noted 

that a very small number of sub-iterations (<10) resulted in consistently slower convergence 

in all nested 4D algorithms.

3.1.5 Patlak 4D ML-EM initialization schemes—The noise-free images in Figure 5a 

demonstrate that the (s/g)Patlak 4D ML-EM algorithms converge in theory to the global 

optimal solution regardless of the initialization method. Thus, our findings indicated proper 

theoretical EM convergence properties for the implemented algorithms. In the presence of 

noise, however, the conventional method of initializing 4D ML-EM with Ki=1, kloss=0 and 

V=1 parameter values, yielded correct EM convergence only in the case of 4D sPatlak 

method, as it can be conjectured by comparing 3rd and 4th row in figure 5b. Nevertheless, as 

the Ki images of the last 2 rows in figure 5b illustrate, higher Ki lesion contrasts were 

attained with 4D gPatlak, compared to sPatlak (3rd row), after initializing the gPatlak 4D 

method with Ki and V estimates from the first 21 (5th row) or 3×21=63 (6th row) sPatlak 

iterations.

The importance of sPatlak-based initialization for gPatlak 4D algorithms was further 

demonstrated by the noted bias reduction as well as TBR and CNR score enhancements in 

figure 7 (1st column plots), when more sPatlak 4D global iterations were involved in the 

initialization of gPatlak 4D algorithm. However, after 3 cycles of 21 sPatlak ML-EM initial 

iterations, no additional benefit was observed for gPatlak 4D EM convergence rate. Thus, 

under noisy conditions, gPatlak 4D reconstruction may require a minimum number of 

sPatlak 4D iterations for its initialization, to ensure proper convergence and thus high 

quantification accuracy in Ki reconstructed images.

3.2 Clinical demonstration of feasibility and benefits of 4D WB Patlak imaging

In Figure 8, we present a set of indirect and direct (s/g)Patlak Ki WB images from a patient 

dataset at a 10–45min p.i. scan time window. Moreover, the respective SUV WB PET image 

is also shown, as acquired at 60min p.i. with the standard-of-care static PET protocol. The 

directly reconstructed (s/g)Patlak WB Ki images were estimated after five cycles of 21 ML-

EM global iterations each. A nested 4D ML-EM implementation was employed at each bed 

position involving 20 sub-iterations. Furthermore, the first 3 out of the 5 ML-EM iteration 

cycles of the gPatlak 4D WB reconstruction consisted of sPatlak 4D ML-EM iterations to 

initialize the 4th cycle of gPatlak ML-EM iterations (figure 9).

3.2.1 Direct 4D Patlak vs. SUV WB PET imaging in clinic—The spatial noise levels 

visually observed in the background regions of the selected liver and chest target ROIs of 
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WB 4D (s/g)Patlak Ki clinical images of Figure 8 were comparable to the respective static 

SUV image noise. This is also evident by comparing the TBR and CNR scores of respective 

clinical Ki and SUV images for both evaluated ROIs in the same figure. In particular, the 

superiority of Ki imaging, relative to SUV, in terms of TBR contrast is also retained to 

nearly the same or higher degree in terms of CNR score. As CNR is derived from TBR after 

normalizing the latter with spatial noise in the target background, the previous observation 

suggest similar or lower quantitative levels of spatial noise between direct 4D Ki and SUV 

clinical images, at least for the two evaluated ROIs. Thus, our results demonstrate the 

clinical feasibility of 4D WB Patlak Ki methods, when applied on a streamlined 6-pass WB 

PET protocol. In addition, the superior TBR and CNR 4D Ki scores, relative to SUV, on the 

two identified ROIs indicate potential enhancement of tumor detectability performance, 

when complementing the currently established in clinic WB SUV imaging protocols with 

the proposed direct 4D WB (s/g)Patlak methods.

3.2.2 Direct 4D vs. indirect Patlak WB clinical imaging—The images in figure 8 

illustrated the lower noise of direct 4D relative to indirect Patlak methods. Moreover, the 

quantitative plots in figure 8 demonstrated the superior TBR and CNR performance for all 

4D Patlak methods, compared to the respective indirect methods, particularly for the chest 

ROI. The improvement was more evident in terms of the CNR metric, owing to the lower 

noise levels observed in the 4D reconstructions vs. indirect Patlak analysis. Our clinical 

findings confirmed the simulation results and can be explained by the more efficient 

utilization of the acquired data with 4D Patlak algorithms. Finally, the quantitative TBR and 

CNR analysis suggested that the gain observed when switching from indirect to direct 4D 

Patlak methods is relatively larger than the respective gain between standard and generalized 

Patlak models.

3.2.3 sPatlak vs. gPatlak 4D WB clinical imaging—Our clinical validation results in 

figure 8 demonstrated the superior TBR lesion contrast scores for nested gPatlak 4D Ki 

images, both via the qualitative inspection of the respective patient WB Ki images as well as 

through the quantitative TBR analysis in both evaluated ROIs. Moreover, despite the higher 

noise levels observed in gPatlak Ki images, relative to sPatlak, the highest clinical ROI CNR 

scores were systematically observed for the former. Besides, the clinical TBR and CNR 

score differences between the two 4D Patlak methods were not as significant as the 

respective differences between i) indirect sPatlak and gPatlak or ii) direct vs. indirect Patlak 

methods. In other words, the differences between the two Patlak models were less significant 

in the 4D framework.

3.2.4 Clinical impact of number of nested sub-iterations and gPatlak 
initialization—The series of WB Ki images in figure 9 illustrate the convergence of sPatlak 

and gPatlak 4D methods, when applied to the same patient dataset and after being initialized 

with the proposed schemes. The two 4D algorithms converged to different but similar 

sPatlak and gPatlak solutions in the last two cycles of 21 iterations.

Moreover, the TBR and CNR plots describe the quantitative effect on 2 chest ROIs of the 

number of nested ML-EM sub-iterations as well as that of sPatlak-based initialization for 

gPatlak 4D algorithm. In particular, the plots of the 2nd row suggested superior TBR and 
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CNR performance for both ROIs in clinical gPatlak-4D Ki images, when at least 3×21 ML-

EM sPatlak iterations are employed for its initialization. Any higher number of iterations 

only resulted in negligible convergence acceleration. Furthermore, the TBR and CNR scores 

of the 3rd row suggested a minimum number of 20 nested ML-EM sub-iterations to 

sufficiently accelerate convergence without increasing noise in the Ki images.

4. Discussion

4.1 Benefits, limitations and respective solutions for nested 4D (s/g)Patlak WB ML-EM 
algorithms

Initially, our evaluation concentrated on the benefits of direct 4D vs. indirect sPatlak WB 

imaging. The simulation results illustrated considerable noise reduction at matched bias in 

Ki images when 4D reconstruction was employed, especially for regions of low uptake 

signal and therefore high noise. Moreover, the respective clinical evaluation on clinical data 

revealed improved CNR Ki scores at matched contrast in suspected tumor regions for the 4D 

methods. Nevertheless, a known limitation for 4D parametric reconstruction algorithms is 

the slower convergence rate compared to the indirect methods, thus constraining their 

clinical adoption. Therefore, we suggested exploiting the optimization transfer principle to 

enable convergence acceleration via a nested ML-EM implementation framework. By 

nesting multiple image-based ML-EM Patlak parameter updates within each slower 

tomographic ML-EM iteration step, we allowed for a larger number of Patlak parameter 

updates per global iteration at a negligible added computational cost and thus effectively 

accelerated the convergence.

Subsequently, the study focused on 4D reconstruction performance assessment between 

sPatlak and gPatlak ML-EM methods with the simulation results indicating reduction in Ki 

bias for gPatlak at matched noise levels. The comparative evaluation on WB Ki patient 

images also suggested superior CNR scores at matched number of iterations. However, 

gPatlak 4D method assumes a non-linear model for the relationship between the final 

parameter estimates and the dynamic data. Our proposed nested ML-EM implementation 

overcame this issue by targeting the iterative estimation of the overall gPatlak response 

function, instead of the individual gPatlak parameters, as only the former is linearly related 

with the dynamic image estimates. Then, a nested ML-EM implementation similar to 

sPatlak 4D method was made possible. Eventually the individual gPatlak parameters were 

estimated analytically at the end of the last nested sub-iteration from the last response vector 

estimate. Besides, the ML-EM estimated response vector and not the gPatlak parameters 

were being used in the next global iteration. Thus, the designed algorithm fully retains the 

ML-EM properties to ensure KL distance minimization between the data and the estimates 

and, thus, its theoretical EM convergence to a global ML solution (Barrett and Myers 2004). 

Indeed, our evaluation on both simulated and clinical data revealed a faster convergence for 

the nested 4D (s/g)Patlak algorithms, thus demonstrating their higher clinical adoptability.

Nevertheless, the gPatlak 4D ML-EM optimization becomes more susceptible to data noise, 

as now the number of the response vector elements to be estimated is considerably high. On 

the other hand, the sPatlak 4D algorithm, although relatively less quantitative than gPatlak, 

is more robust to noise, as it optimizes a log-likelihood function with respect to just two 
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parameters: Ki and V. Therefore, we proposed initializing the gPatlak 4D algorithm with 

estimates derived after a few sPatlak 4D ML-EM iterations and zero kloss. Indeed, both the 

simulated and clinical results showed incomplete gPatlak 4D convergence, unless the 

suggested sPatlak-based initialization scheme was applied.

Although our simulation and clinical findings have confirmed the theoretical expectations, 

we recognize the clinical value of expanding current validation study to a larger cohort of 

patients to involve a wider range of tracer kinetics and commercial scanner acquisition and 

reconstruction technologies. In fact, we are currently conducting a systematic assessment of 

TOF and resolution modeling techniques on direct 4D and indirect WB (s/g)Patlak imaging 

methods (Karakatsanis et al 2014b and 2015c).

4.2 Complementing conventional 3D SUV with 4D Patlak PET image reconstruction

Static 3D PET imaging utilizes the clinically established SUV metric to estimate a temporal 

instantiation of the tracer dynamic distribution, as integrated over a time frame, normalized 

to injected dosage and lean body mass (Wahl and Buchanan 2002). Nevertheless, SUV is 

considered semi-quantitative, as it is dependent of the acquisition time window and the 

metabolic and dietary condition of the subject (Keyes 1995, Huang 2000, Thie 2004, 

Boellaard 2011, Durand and Besson 2015).

On the contrary, dynamic PET imaging can track the signal distribution over space and time, 

thus enabling imaging of parameters describing the physiological in-vivo uptake of the 

administered tracer. By correlating the measured tissue TACs with the blood input function, 

graphical analysis methods enable quantitative image-based assessments that may be 

substantially less dependent on the acquisition time window and the current metabolic state 

of the subject. As a result, 4D imaging may facilitate more objective evaluations between 

imaging studies of the same subject, thus paving the way for enhanced quantification in 

treatment response monitoring and image-guided diagnostic and therapeutic schemes.

Therefore, in this study we view the proposed 4D (s/g)Patlak reconstruction framework 

mainly as a quantitative complement to the standard-of-care single-pass 3D PET SUV 

protocols. The presented 4D imaging methods could constitute the early phase (0–40min 

p.i.) followed by the conventional SUV PET scan (60–80min p.i.). Alternatively, dynamic 

WB PET acquisition could instead be delayed towards the more standard post-60min 

windows and eventually replace single-pass WB SUV with a multi-pass WB scan. Then, the 

SUV metric would be estimated by properly adding together the dynamic PET frames of 

each bed across time, while the (s/g)Patlak Ki metrics would be derived from 4D (s/g)Patlak 

reconstructions of the same data. Although, this approach would alleviate the need for 2 

anatomical scans, thus permitting its application within a PET/CT framework too, it would 

also require inference of the missing early section of the input function (Karakatsanis et al 
2015d, Zhou et al 2012). This method has been evaluated in a combined SUV/Patlak clinical 

study (Karakatsanis et al 2015b).

4.3 Application scope of 4D generalized Patlak imaging

In this study, the presented 4D (s/g)Patlak methods have been designed and evaluated for 

multi-bed or WB acquisitions to demonstrate their clinical potential in oncology, where large 
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axial FOVs are important for assessing potential metastatic tumors. Nevertheless, the 

proposed methods can be also utilized in more specific clinical applications involving single-

bed FOVs, such as cardiovascular, neurologic or specific tumor type evaluation studies 

(Dimitrakopoulou-Strauss et al 2002, Sanz and Fayad 2008, Oo et al 2013).

We laid emphasis on Ki image evaluation, as this parameter has been found to correlate well 

with SUV metric over patient population (Freedman et al 2003). The Ki parameter reflects a 

principal kinetic component that conveniently summarizes a major portion of the clinically 

relevant information contained in 4D FDG PET data. Nevertheless, we have also 

demonstrated the importance of the kloss parameter as well, in terms of Ki quantification and 

TBR. Furthermore, we observed that kloss and V images correlated well with the respective 

ground truth values, although their robustness was found lower than that of Ki and 

dependent on noise and S(kloss) inversion accuracy. Despite our focus on Ki quantification, 

we acknowledge the clinical potential of kloss and V imaging, especially when correlated 

with Ki and SUV metrics, and we plan investigating their clinical relevance in oncology and 

other disease mechanisms.

In addition, although this study has been focusing on 18F-FDG tracer, as this is the most 

widely used PET radiotracer in oncology (Phelps et al 1979, Hustinx et al 2002), it could be 

also well applied to other radiotracers of similar half-lives, such as 18F-FLT (Been et al 
2004), 18F-FMISO (Thorwarth et al 2005), and 18F-NaF (Siddique et al 2011), utilizing 

equivalent protocols. Moreover, the support for gPatlak model may enable robust kinetic 

analysis for a range of tracers with varying degree of uptake reversibility in different tissues, 

thus widening the application scope. Finally, all presented algorithms have been 

implemented within the open-source STIR platform for a broader utilization by the research 

community.

4.4 Data utilization efficiency and noise characterization between 4D and indirect Patlak 
imaging

In the direct 4D parametric PET image reconstruction framework, the complete 4D 

measurements space is directly related with the kinetic parameters image space through a 4D 

system response model. As a result, 4D algorithms directly exploit measurements from all 
dynamic sinograms. On the contrary, indirect parametric imaging employs frame-by-frame 

3D reconstructions only utilizing the counts from a single sinogram each time. As the latter 

approach exploits measurements from a smaller pool of data, it will inevitably result in 

higher noise levels that are subsequently propagated in the final Patlak images through the 

post-reconstruction statistical regression estimation process. Therefore, parametric image 

noise is expected to be lower with direct 4D algorithms, thanks to the more efficient 

utilization of the measured counts (Barrett et al 1994, Reader et al 2006). In addition, this 

difference becomes more apparent for 4D PET data of low count statistics (Reader and 

Verhaeghe 2014), such as in the case of dosage minimization (Karakatsanis et al 2014e) or 

WB dynamic acquisition protocols.

Indirect Patlak regression is conducted on the reconstructed images where the statistical 

noise is spatially correlated and unknown, as it depends on numerous factors, including 

number of iterations, resolution modeling kernel and object shape (Barrett at al 1994, 
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Rahmim et al 2013, Rahmim and Tang 2013, Ashrafinia et al 2014). Consequently, noise 

distribution in the image space is often approximated, thus increasing the likelihood for 

noise-induced bias in the estimates (Reader and Verhaeghe 2014). On the contrary, direct 4D 

reconstruction is applied on the raw measurements space, where the noise can be accurately 

described, as it follows the well-known Poisson distribution. This property facilitates 

robustness especially for non-linear algorithms, such as the gPatlak 4D method, thus closing 

the gap between linear and non-linear performance in terms of noise-induced bias. Indeed, 

our results indicated smaller differences between the two Patlak methods in the direct 4D 

relative to the indirect framework.

5. Conclusions

In this study, we designed and implemented a set of linear and non-linear 4D (s/g)Patlak 

reconstruction methods capable of estimating parametric images directly from single- or 

multi-bed dynamic PET sinogram data. Standard as well as novel generalized Patlak models 

were integrated within the 4D ML-EM reconstruction framework to support a wider range of 

PET tracer kinetics with or without uptake reversibility. The direct 4D Patlak algorithms 

always outperformed the respective indirect methods in terms of noise at matched resolution 

levels and CNR at matched contrast. The observed noise reduction between indirect and 4D 

imaging was more profound in the case of the non-linear gPatlak model. In addition, gPatlak 

4D imaging outperformed the respective sPatlak analysis for both simulated and clinical data 

in terms of contrast at matched noise scores and matched number of iterations. Moreover, 

the presented direct reconstruction algorithms utilized the optimization transfer principle to 

efficiently nest the faster Patlak iterative ML-EM update process within each global ML-EM 

iteration step and thus accelerate EM convergence rate for enhanced clinical adoption of the 

presented methods.

To conclude, we demonstrated the clinical feasibility and quantitative benefits of 

complementing standard-of-care WB SUV imaging with the proposed 4D WB (s/g)Patlak 

reconstruction framework. The additional surrogate metrics offered by the presented family 

of 4D Patlak graphical analysis methods, such as the tracer net uptake rate constant Ki and 

net efflux rate constant kloss, could extend quantification capabilities beyond the currently 

established SUV metric. In addition, the proposed 4D methods is associated with relatively 

low noise levels, comparable to static SUV images and supports a wide range of tracer 

kinetics including uptake reversibility. Moreover, the 4D (s/g)Patlak framework was 

supported with advanced optimization transfer and initialization schemes to ensure proper 

and faster 4D EM convergence rates and, thus, further facilitate clinical adoption. 

Furthermore, all introduced 4D Patlak reconstruction algorithms have been implemented in 

open-source STIR platform to enable their broader utilization by the research community for 

further developments towards quantitative PET. Therefore, the presented 4D PET 

reconstruction methods in this study have been designed and implemented such that they can 

efficiently, robustly and easily be translated to the clinic, to enhance quantification in 

existing routine PET protocols for improved diagnostic and theranostic applications in 

molecular imaging.
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Figure 1. 
Flow chart illustrating the sequence of all dynamic bed frames, as acquired with the step-

and-shoot mode during the 2nd phase of the suggested WB dynamic PET protocol. In the 

example, 6 unidirectional (cranio-caudal) WB passes are acquired, each comprised of 7 beds 

of equal scan duration. Later the parametric Ki image at each column, i.e. bed position, is 

directly estimated via 4D sPatlak and gPatlak algorithms from the image-derived input 

function and the respective dynamic projection PET data.
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Figure 2. 
Standard 2-tissue compartment 18F-FDG kinetic models (a) without and (b) with uptake 

reversibility constant rate k4. The Cp, Ce and Cm compartments denote the activity 

concentration in blood plasma and in tissue exchangeable and metabolized states, 

respectively (Gunn et al 2001).

Karakatsanis et al. Page 30

Phys Med Biol. Author manuscript; available in PMC 2018 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(left) Diagram of ML-EM global objective function L (red curve) and surrogate functions 

Qw (blue) and Qw+1 (green) for global iterations w and w + 1, respectively. They all are 

Poisson log-likelihood functions depending on the sPatlak parameter vector ms. The basic 

principles of optimization transfer are illustrated as follows: (a) Each value of the w-th 

surrogate function is either lower or equal to the value of the global objective function at the 

same ms. In addition, (b) the maximum value of w-th surrogate function is equal to the value 

of the global function at ms
w. The set of parameters maximizing the w-th surrogate objective 

function is considered the optimal for w-th iteration, as described in (c). Finally, ms
w yields 

higher values for the global objective function, as the iterations progress (d).
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Figure 4. 
Diagram illustrating the steps for generating realistic simulation data of quantitative levels of 

noise and the subsequent reconstruction analysis to compare direct 4D vs. indirect (s/

g)Patlak imaging methods.
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Figure 5. 
(a) Overview of noise-free Ki and kloss images and (b) noisy Ki images from simulated 4D 

PET data employing indirect and direct (s/g)Patlak methods. The orange and green bars 

denote sPatlak and gPatlak ML-EM global iterations respectively for the images directly 

above. In the last 2 rows, the yellow arrow position between the two bars designates at 

which iteration were the gPatlak estimates, on the right, initialized from the sPatlak 

estimates, on the left. (c): Quantitative Ki noise-bias trade-off analysis on four ROIs across 

20 noise realizations. The red and green colors correspond to sPatlak and gPatlak methods, 

while the continuous and dotted delineations indicate direct and indirect methods, 

respectively. The triangle markers on red curves denote non-nested sPatlak method. 

Evaluations were conducted every 21 global ML-EM iterations, each consisting of 20 nested 

sub-iterations. Thus, gPatlak-4D was initialized after 3×21=63 sPatlak ML-EM iterations.
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Figure 6. 
TBR (1st column) and CNR (2nd column) quantitative analysis for A1, A2, B1 and B2 target 

ROIs on simulated Ki parametric images for a range of indirect and direct (s/g)Patlak 

methods. The same number of nested Patlak ML-EM sub-iterations and gPatlak-4D 

initialization scheme are employed, as for figure 5. TBR and CNR scores were averaged 

over 20 noise realizations with the standard deviation illustrated with error bars.

Karakatsanis et al. Page 34

Phys Med Biol. Author manuscript; available in PMC 2018 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Ki noise-bias trade-off, TBR and CNR quantitative analysis over 20 noise realizations for 

simulated B1 ROI for different initialization schemes (1st column) and number of nested 

ML-EM Patlak sub-iterations (2nd column) for a range of conventional and novel 4D-Patlak 

methods. The sPatlak-4D and the first gPatlak-4D method (red and green curves at 1st 

column) were initialized with the conventional method (Ki=1, kloss=0, V=1). All methods in 

1st column utilized 20 sub-iterations. Finally, all gPatlak-4D methods of 2nd column were 

initialized with kloss=0 and Ki and V values estimated from 63 sPatlak MLEM iterations.
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Figure 8. 
(1st row): Clinical WB (s/g)Patlak Ki images, as estimated either indirectly or directly from 

the raw dynamic (10–45min p.i) 18F-FDG PET data with 4D and indirect methods with 

patient arms at the bottom position to withstand longer scan duration. Also, the respective 

static SUV image obtained at 60min p.i., after repositioning same patient with arms in the 

standard upper position (2nd and 3rd rows): TBR and CNR scores vs. iterations for a range of 

(s/g)Patlak and SUV methods from a chest and a liver suspected tumor lesion ROIs.
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Figure 9. 
(1st row): Clinical WB Ki images, estimated directly from the raw data of 6 WB passes with 

nested (s/g)Patlak 4D-MLEM methods. sPatlak 4D algorithm has been initialized with 

conventional method, while gPatlak 4D method utilizes the estimates of previous sPatlak 4D 

method after 3 cycles of 21 ML-EM iterations. All methods employ 20 nested sub-iterations. 

(2nd and 3rd rows): Clinical TBR and CNR evaluation on 2 selected chest ROIs drawn from 

patient WB Ki images as a function of the initialization scheme and number of nested sub-

iterations employed by the proposed (s/g)Patlak 4D WB reconstruction methods.
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