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The dramatic increase in the prevalence and clinical impact of infections caused by bacteria producing carbapenemases is a global 
health concern. Carbapenemase production is especially problematic when encountered in members of the family Enterobacteriaceae. 
Due to their ability to readily spread and colonize patients in healthcare environments, preventing the transmission of these organ-
isms is a major public health initiative and coordinated international effort are needed. Central to the treatment and control of 
carbapenemase-producing organisms (CPOs) are phenotypic (growth-/biochemical-dependent) and nucleic acid–based carbapene-
mase detection tests that identify carbapenemase activity directly or their associated molecular determinants. Importantly, bacterial 
isolates harboring carbapenemases are often resistant to multiple antibiotic classes, resulting in limited therapy options. Emerging 
agents, novel antibiotic combinations and treatment regimens offer promise for management of these infections. This review high-
lights our current understanding of CPOs with emphasis on their epidemiology, detection, treatment, and control.
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One of the most concerning forms of antimicrobial resist-
ance (AMR) is resistance to the carbapenems, especially when 
observed in members of the family Enterobacteriaceae. A pri-
mary mechanism of carbapenem resistance in gram-negative 
bacteria is acquired carbapenemases, enzymes that hydrolyze 
these antibiotics. In this review, the epidemiology, laboratory 
detection, approaches to combat widespread dissemination, 
and treatment strategies for carbapenemase-producing organ-
isms (CPOs), especially carbapenemase-producing carbapen-
em-resistant Enterobacteriaceae (CP-CRE), will be discussed.

THE BIOLOGY AND EPIDEMIOLOGY OF CPOs

Phenotypic resistance to carbapenems in gram-negative bac-
teria commonly results from acquisition of carbapenemases, or 
production of cephalosporinases combined with mutations that 
decrease permeability of the bacterial cell wall to entry of carbap-
enems [1]. CPOs may exhibit significant variation in carbapenem 
minimum inhibitory concentration (MIC) values depending 
on their permeability status, the rate of carbapenem hydrolysis 
by the associated enzyme, and the level of gene expression [1]. 

Carbapenemases belong to Ambler classes A, B, or D, with class A 
and D enzymes possessing a serine-based hydrolytic mechanism, 
and class B enzymes requiring 1 or 2 zinc ions for their catalytic 
activity [1]. There is a rare instance of class C β-lactamase that 
is reported to hydrolyze imipenem (CMY-10) [2]. Globally dis-
tributed in many genera of bacteria, certain carbapenemases are 
typically associated with specific regions or countries (Figure 1). 
However, in an era of widespread international travel and expos-
ure to medical care, the association between a specific resistance 
mechanism and a given region or country may change, creating 
an urgent need for routine local and national surveillance.

The class A  Klebsiella pneumoniae carbapenemase (KPC) 
has been extensively reported in K.  pneumoniae and other 
Enterobacteriaceae, but has also been identified in other 
gram-negative pathogens including Pseudomonas aeruginosa 
[3]. KPC-producing K. pneumoniae is widespread in the United 
States, but is also endemic in some European countries such as 
Greece and Italy (Figure 1A) [4].

Class B β-lactamases, or metallo-β-lactamases (MBLs), are 
commonly identified in Enterobacteriaceae and Pseudomonas 
aeruginosa [5]. Among the MBLs, New Delhi metallo-β-lacta-
mase (NDM) (Figure 1B), Verona integron-encoded metal-
lo-β-lactamase (VIM), and imipenemase metallo-β-lactamase 
(IMP) enzymes are the most frequently identified worldwide 
[5]. IMP producing gram-negative bacteria are mainly detected 
in China, Japan, and Australia, mostly in Acinetobacter bauman-
nii. VIM producers are most often found in Italy and Greece 
(Enterobacteriaceae) and in Russia (P. aeruginosa) [6, 7].
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Acquired class D carbapenem-hydrolyzing β-lactamases are 
commonly reported in A. baumannii (mainly OXA [oxacilli-
nase]-23, OXA-24/40-, and OXA-58–like enzymes), but not 
in P. aeruginosa. OXA-48 and derivatives (eg, OXA-181 and 

OXA-232) have been detected in Enterobacteriaceae, hydrolyze 
narrow-spectrum β-lactams and weakly hydrolyze carbapen-
ems, but spare broad-spectrum cephalosporins (ceftazidime, 
cefepime) [8]. OXA-48–producing Enterobacteriaceae are 

Figure 1.  Worldwide distribution of carbapenemases. A, Klebsiella pneumoniae carbapenemase producers in Enterobacteriaceae and Pseudomonas aeruginosa. B, New 
Delhi metallo-β-lactamase producers in Enterobacteriaceae and P. aeruginosa. C, OXA-48–like producers in Enterobacteriaceae. Abbreviations: KPC, Klebsiella pneumoniae 
carbapenemase; NDM, New Delhi metallo-β-lactamase; OXA-48, oxacillinase-48.
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endemic in Turkey (since 2004) and are frequently encountered 
in several European countries (eg, France and Belgium), and 
across North Africa (Figure 1C) [9]. Ten variants of OXA-48 
β-lactamases are acknowledged and are increasingly reported 
worldwide [9], notably among nosocomial K. pneumoniae and 
community Escherichia coli isolates [10].

Carbapenemase genes are often located on mobile genetic 
elements, further enhancing their spread. For example, the 
widespread dissemination of the blaOXA-48 gene was shown to be 
related to a successful and epidemic plasmid that conjugates at 
high rates within Enterobacteriaceae [11].

Other less common carbapenemases belonging to a variety 
of molecular classes (eg, class A  FRI-1 and IMI-like β-lacta-
mases, class B SPM-1 and GIM-1, and class D OXA-198) are 
reported sporadically and are found in specific species, likely 
because the corresponding genes are located on narrow-host-
range plasmids or chromosomes, which makes wide diffusion 
unlikely [10, 12].

LABORATORY DETECTION OF CPOs

Detection of carbapenemase-mediated carbapenem resistance 
is essential for patient management, infection control, and 
public health efforts. The diversity of these enzymes and the 
range of associated susceptibility phenotypes make detection 
challenging. Selection of a carbapenemase detection test (CDT) 
is contingent on several factors: epidemiology, diagnostic per-
formance, labor intensity, complexity, and cost. The impor-
tance of turnaround time depends on whether the assay will 
be employed for therapeutic decision making and/or infection 
control or surveillance studies.

CDTs are broadly differentiated into 2 groups: phenotypic 
(growth-/biochemical-dependent) and nucleic acid-based. 
Phenotypic assays monitor carbapenemase activity through a 
variety of methods: growth of a susceptible reporter strain fol-
lowing drug inactivation by a carbapenemase-producing test 
strain, observation of a pH change after β-lactam ring hydroly-
sis, detection of carbapenem hydrolysis products, or via inhibi-
tion with small molecules. In contrast, nucleic acid assays detect 
genetic determinants associated with carbapenemases.

The modified Hodge test (MHT) is probably the most 
extensively described CDT used in Enterobacteriaceae. This 
assay demonstrates acceptable sensitivity for most carbapene-
mases, especially KPC enzymes, but low sensitivity for NDM-
producing strains [13, 14]. Additionally, it has poor specificity as 
isolates producing cephalosporinases in conjunction with porin 
mutations are often false-positive [13, 15]. Although the MHT 
is inexpensive and uncomplicated to perform, it is often difficult 
to interpret and requires an additional 24-hour growth step after 
antimicrobial susceptibility test (AST) results are obtained.

Conceptually akin to the MHT, the carbapenem inactiva-
tion method (CIM) assesses growth of a susceptible reporter 
strain around a carbapenem disk previously incubated with a 

suspension of a suspected carbapenemase-producing test strain 
[16]. If the test strain produces a carbapenemase, drug in the 
disk will be inactivated, thus allowing growth of the reporter 
strain up to the edge of the disk. In contrast, a zone of growth 
inhibition indicates the antibiotic in the disk remains active and 
the test strain lacks carbapenemase activity. CIM sensitivity is 
reported to be between 98% and 100% [16, 17], but again this 
technique typically requires an overnight culture step. A modi-
fied version of the CIM (mCIM) was evaluated in a multicenter 
study, demonstrating 97% sensitivity and 99% specificity for 
detection of carbapenemase production in Enterobacteriaceae 
[18]. Based on those data, the mCIM was added to the Clinical 
and Laboratory Standards Institute M100 document as a reli-
able method for detection of carbapenemase production in 
Enterobacteriaceae [19].

The Carba NP test (RAPIDEC CARBA NP, bioMérieux, 
Durham, North Carolina), its derivatives, and matrix-assisted 
laser desorption/ionization–time of flight mass spectrometry 
(MALDI-TOF MS) monitor the hydrolysis of carbapenems 
using bacterial extracts and produce same-day results [20, 21]. 
In the Carba NP test, carbapenemase-dependent hydrolysis of 
imipenem causes a decrease in pH, registered by a pH indica-
tor as a color change. The test exhibits excellent sensitivity [20], 
although the recognition of OXA-48–producing isolates may be 
challenging [17, 22]. To aid in early identification, the Carba 
NP test has been successfully extended to detect the presence 
of CP-CRE in positive blood cultures even before isolation of 
organism on solid media [23].

MALDI-TOF MS can identify carbapenem degradation 
products following incubation of a bacterial protein extract with 
a carbapenem substrate. Overall, the sensitivity of MALDI-TOF 
MS for this purpose is high, and sensitivity for OXA-48–pro-
ducing isolates is enhanced by inclusion of bicarbonate in the 
reaction buffer [22]. Despite the potential of mass spectrom-
etry–based assays, because they are complex to perform and 
interpret, widespread implementation in clinical microbiology 
laboratories may be unfeasible.

Conventional AST methods such as broth microdilution, 
disk diffusion, and gradient diffusion can be modified to detect 
different classes of carbapenemases by performing them in the 
absence and presence of small molecule inhibitors, including 
phenylboronic acid, which inhibits serine active site enzymes, 
and ethylenediaminetetraacetic acid, an inhibitor of MBL 
activity. These assays have reportedly high sensitivities and 
specificities [24–28] and are inexpensive and generally easy to 
implement and interpret, but require overnight incubation.

Nucleic acid–based CDTs include commercially available and 
laboratory-developed polymerase chain reaction (PCR) and 
microarray platforms to detect carbapenemase genes in bac-
terial isolates or directly from clinical specimens. They exhibit 
clinically relevant sensitivities and specificities and have same-
day turnaround times [29–33] but are typically associated with 
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high costs. PCR- and microarray-based platforms only detect 
certain carbapenemase genes and thus would not detect the 
emergence of new or previously uncommon carbapenemases.

Whole-genome sequencing (WGS) platforms potentially 
represent the ultimate molecular CDT by interrogating the 
entire genomic content, chromosomal and extrachromosomal, 
of a bacterium to identify carbapenem resistance determinants 
[34–36]. Furthermore, WGS data provide an opportunity to 
query for extra information, including strain relatedness, plas-
mid types encoding the carbapenemase, other factors influenc-
ing carbapenem resistance (eg, porin mutations), and presence 
of additional resistance factors, and data can be analyzed in near 
real-time or archived for future inquiry. Notwithstanding the 
power and promise of WGS, these assays are still the purview of 
advanced clinical microbiology and public health laboratories, 
and require considerable expertise to perform and interpret. 
As algorithms improve, costs decrease, and commercialized 
options are brought to market, the clinical workforce is likely to 
become increasingly proficient at performing and interpreting 
these data, allowing WGS to gain wider acceptance.

WGS FOR INVESTIGATION OF THE EPIDEMIOLOGY 
AND DIVERSITY OF CPOs

Recent studies indicate that WGS, combined with hospital epi-
demiology, may facilitate the tracking of transmissions within 
healthcare facilities with the level of precision necessary to 
guide the modification of infection control procedures and 
limit the spread of healthcare-associated infections [34–39]. 
One example is the National Institutes of Health Clinical Center 
outbreak in which a single patient colonized on admission 
with KPC-producing K. pneumoniae was eventually linked to 
CP-CRE colonization in 18 additional patients. The epidemio-
logic data could not discriminate between undetected trans-
mission from the index patient or introduction of a second 
strain. The extensive genetic similarity among KPC-producing 
K. pneumoniae in the United States prevented a definitive match 
to the index patient using standard outbreak investigation tools 
such as pulsed-field gel electrophoresis or repetitive-element 
PCR. WGS revealed direct linkage of the index patient, with 
transmission originating from different anatomic sites [34], 
indicating silent colonization, even in immunocompromised 
patients. In another healthcare-related outbreak, WGS was 
instrumental in identifying limited healthcare-associated trans-
mission of CP-CRE against a background of sporadic intro-
duction of multiple other strains [36]. In other studies, WGS 
was key in determining the phylogeny of carbapenem-resist-
ant Enterobacter species and how gene regulation by insertion 
sequence elements impacted carbapenem and multidrug resist-
ance in A. baumannii [40, 41]. WGS has also been used to create 
a reference set capturing the diversity of plasmids and mobile 
elements that carry the KPC gene [36, 42].

NOVEL TREATMENT STRATEGIES FOR CPOs

Treatment of CPO, especially CP-CRE, remains difficult. 
Patients with CP-CRE infection suffer unacceptably high mor-
tality, emphasizing the need for novel diagnostics and therapies. 
Studies performed to date demonstrate a bias to report trials 
of successful combination chemotherapy, informed largely by 
results from in vitro studies. In most trials targeting CP-CRE, 
combination therapies have included the use of (i) colistin (pol-
ymyxin E) and a carbapenem; (ii) colistin and tigecycline, or 
colistin and fosfomycin; or (iii) double carbapenem therapy. 
Interestingly, it was also shown in vitro that dual carbapenem 
combinations might work against carbapenemase-producing 
strains, with significant synergies observed when using imipe-
nem and another carbapenem [43].

In an early study performed at a tertiary care center, Qureshi 
and colleagues reported that 28-day mortality was 13.3% in the 
combination therapy group (colistin and another agent) com-
pared with 57.8% in the monotherapy group (P = .01) and that 
combination regimens were independently associated with 
better survival (P =  .02) [44]. Additionally, a multicenter ret-
rospective cohort study conducted in 3 large Italian teaching 
hospitals examined death within 30  days of the first positive 
blood culture among 125 patients with bloodstream infections 
caused by KPC-producing K. pneumoniae [45]. That investiga-
tion found 54.3% mortality in the monotherapy arm vs 34.1% 
mortality in the combination therapy group (P  =  .02); triple 
combination therapy (tigecycline, colistin, and meropenem) 
was associated with lowest mortality (P = .01). This study also 
revealed that patients infected by CP-CRE with imipenem MIC 
values of ≥4 µg/mL had worse outcomes than patients whose 
isolates had an MIC value of ≤2  µg/mL. The “dividing line” 
appears to be an MIC value between 2 and 4 µg/mL, and pre-
dicted differences in mortality were notable (16.1% vs 76.9%; 
P < .01); each imipenem MIC doubling dilution increased the 
probability of death 2-fold.

In a subsequent review of 20 clinical studies involving 414 
patients, Tzouvelekis and colleagues reported that a single 
active agent resulted in mortality rates not significantly different 
from those observed in patients administered no active therapy 
[46]. Consistent with the notions reported above, combination 
therapy with 2 or more agents active in vitro was superior to 
monotherapy, providing a clear survival benefit (mortality rate, 
27.4% vs 38.7%; P  <  .001). The lowest mortality rate (18.8%) 
was observed in patients treated with carbapenem-containing 
combinations.

In contrast, Falagas and partners in 2014 reported the larg-
est meta-analysis performed to date [47], examining 20 studies 
involving 692 patients. Surprisingly, the authors reported 50% 
mortality in patients treated with tigecycline and gentamicin, 
64% mortality for tigecycline and colistin, and 67% mortality 
for carbapenems and colistin. This comprehensive analysis 
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called into question the conclusions drawn from the earlier ret-
rospective, nonrandomized studies, and emphasized that unex-
plained molecular heterogeneity and nonuniform microbiology 
testing might be confounding results. These differences suggest 
that studies concluding the superiority of combination therapy 
over monotherapy may not be sufficiently rigorous for us to 
accept their conclusions.

What about new drugs in development? Avibactam is a 
synthetic non-β-lactam, bicyclic diazabicyclooctane (DBO) 
β-lactamase inhibitor that inhibits the activities of Ambler class 
A and class C β-lactamases and some Ambler class D enzymes. 
Avibactam closely resembles portions of the cephem bicyclic 
ring system and has been shown to bond covalently to β-lacta-
mases. Against carbapenemase-producing K. pneumoniae, the 
addition of avibactam significantly improves the activity of 
ceftazidime in vitro (~4-fold MIC reduction). In surveillance 
studies, the combination of ceftazidime with avibactam restores 
in vitro susceptibility against all extended-spectrum β-lacta-
mases and most KPCs tested. Studies comparing outcomes of 
infections with KPC-producing gram-negative bacteria treated 
with ceftazidime-avibactam as monotherapy or in combin-
ation with colistin are ongoing. An important study compar-
ing the outcomes of patients infected with CP-CRE treated 
with colistin vs ceftazidime-avibactam was recently performed 
[48]. Patients initially treated with either ceftazidime-avibac-
tam or colistin for CP-CRE infections were selected from the 
Consortium on Resistance Against Carbapenems in Klebsiella 
and other Enterobacteriaceae (CRACKLE), a prospective, mul-
ticenter, observational study. Thirty-eight patients were treated 
first with ceftazidime-avibactam and 99 with colistin either as 
monotherapy or combination therapy. Patients treated with cef-
tazidime-avibactam vs colistin (monotherapy or combination) 
had a higher probability of a better outcome as compared to 
patients treated with colistin. This study strengthens the notion 
that treatment with a highly active agent as monotherapy in the 
appropriate clinical setting may be better than therapy with a 
less desirable agent singly or in combination.

Relebactam, also a DBO, combined with imipenem/cilistatin, 
will soon be evaluated in clinical studies [49]. In vitro studies 
indicate that imipenem/cilistatin-relebactam is comparable to 
ceftazidime-avibactam. The role of the combination of imipe-
nem vs ceftazidime with different DBOs remains to be defined.

The US Food and Drug Administration (FDA) recently 
approved ceftazidime-avibactam based on data obtained in 
Phase 2/3 trials of complicated urinary tract infections and 
intra-abdominal infections (ceftazidime-avibactam com-
bined with metronidazole). Despite encouraging results, 
the FDA cautioned that ceftazidime-avibactam should be 
reserved for situations when there are limited or no alter-
native drugs for treating an infection. The concern was that 
resistance to ceftazidime-avibactam would emerge in KPC-
producing strains. Regrettably, resistance is already being 

reported due to mutations occurring in the KPC enzyme and 
porin changes [50, 51]

In summary, combination chemotherapies seem to be effect-
ive against KPC-producing bacteria (Table 1) [49], but we still 
need to design the right trial to answer the fundamental ques-
tion as to why. We also need to carefully examine new drugs 
in the pipeline, and use clinical trials to define their best use. 
Other drugs in development are summarized in Table 2. The 
reader will note that there are some drugs specifically targeted 
for MBL producers (aztreonam-avibactam and cefidericol); 
these developments are awaited in earnest. Novel combina-
tions (ceftazidime-avibactam paired with aztreonam) are also 
being explored [52]. In addition, the optimization of pharma-
cokinetic and pharmacodynamic parameters is essential for 
ensuring efficacy in difficult-to-treat infections. Activities such 
as testing in hollow fiber models, prolonged infusion, or con-
tinuous infusion are being aggressively evaluated to optimize 
drug dosing [53–55].

MONITORING AND CONTROL OF CPOs

Approaches to addressing the rapid intercontinental spread of 
CPOs and other multidrug-resistant organisms include sur-
veillance and judicious use of infection prevention and control 
(IPC) practices. There is evidence that IPC efforts at the local 
and country-wide levels are effective in reducing transmission 
of CPOs [56], and the role of IPC in the overall control of CPOs 
cannot be overemphasized. Regarding surveillance at a global 
level, the Global Antimicrobial Resistance Surveillance System 
(GLASS) program was launched in 2015 as part of the WHO 
Global Action Plan on AMR to support a standardized approach 
to collection, analysis, and sharing of AMR data to inform local 
and national decision making, and provide the evidence base 
for action and advocacy. Another approach that has been sug-
gested is the application of the International Health Regulations 
(IHR), which represents a legal framework for international 

Table  1.  Clinical Regimens Used in Observational Studies for Treating 
Carbapenem-Resistant Klebsiella pneumoniae Where Carbapenemase Is 
Identified

β-Lactamases Present Regimen

Improved 
Survival vs 

Monotherapy

KPC- and MBL- 
producing Klebsiella 
pneumoniae

•Carbapenem and tigecycline, plus 
aminoglycoside or colistin

•Carbapenem and tigecycline
•Carbapenem and aminoglycoside
•Carbapenem and colistin

Yes

KPC-producing 
K. pneumoniae

•Colistin and aminoglycoside
•Colistin and tigecycline
•Colistin and quinolone
•Colistin and carbapenem
•Carbapenem and carbapenem

Yes

Abbreviations: KPC, Klebsiella pneumoniae carbapenemase; MBL, metallo-β-lactamase.
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efforts to reduce the risk from public health threats that may 
spread between countries [57]. The IHR requires countries to 
report certain disease outbreaks, including smallpox, wild-type 
poliomyelitis, severe acute respiratory syndrome, new types of 
influenza, or any public health event of international concern 
(PHEIC), which may include “new or emerging antibiotic resist-
ance” [57]. The rationale for declaring AMR, specifically CPOs, 
as a PHEIC has been reported previously [58] and includes 
multidrug resistance, propensity for rapid spread, absence of 
geographic/political boundaries, presence in E.  coli (the most 
common cause of urinary tract infection globally), presence in 
microbes of high public health importance (namely Salmonella, 
Shigella, and Vibrio species), and carriage of resistance traits on 
very mobile broad-host-range plasmids [59]. The emergence of 
plasmid-mediated colistin resistance in CP-CRE has created a 
potential scenario of pan-resistant Enterobacteriaceae [60].

Although application of IHR to CPOs may have potential 
benefits including increased surveillance and response capac-
ities to address the spread of AMR on a global basis [58], a 
counter-reaction argues that it is difficult to appreciate how the 
global spread of AMR constitutes an “extraordinary event” and 
that it is neither pragmatic nor within the framework of the 
IHR to consider it a PHEIC [61]. The only PHEICs declared 
to date include H1N1 2009 global influenza pandemic, Ebola 
virus disease in 2014, and the recent clusters of microcephaly 
and neurological abnormalities associated with Zika virus. In 
addition to global efforts under way, country-specific guide-
lines, including the “Combating Antibiotic-Resistant Bacteria” 

report and the President’s Council of Advisors on Science and 
Technology strategic plans, provide practical recommendations 
to the United States government to facilitate addressing the 
problem of AMR. Canada and the European Union have made 
similar commitments.
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