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Abstract

Ultra-high dimensional variable selection has become increasingly important in analysis of 

neuroimaging data. For example, in the Autism Brain Imaging Data Exchange (ABIDE) study, 

neuroscientists are interested in identifying important biomarkers for early detection of the autism 

spectrum disorder (ASD) using high resolution brain images that include hundreds of thousands 

voxels. However, most existing methods are not feasible for solving this problem due to their 

extensive computational costs. In this work, we propose a novel multiresolution variable selection 

procedure under a Bayesian probit regression framework. It recursively uses posterior samples for 

coarser-scale variable selection to guide the posterior inference on finer-scale variable selection, 

leading to very efficient Markov chain Monte Carlo (MCMC) algorithms. The proposed 

algorithms are computationally feasible for ultra-high dimensional data. Also, our model 

incorporates two levels of structural information into variable selection using Ising priors: the 

spatial dependence between voxels and the functional connectivity between anatomical brain 

regions. Applied to the resting state functional magnetic resonance imaging (R-fMRI) data in the 

ABIDE study, our methods identify voxel-level imaging biomarkers highly predictive of the ASD, 

which are biologically meaningful and interpretable. Extensive simulations also show that our 

methods achieve better performance in variable selection compared to existing methods.

Index Terms

Multiresolution Variable Selection; Bayesian Spatial Probit Model; Ising Priors; Ultra-High 
Dimensional Imaging Data; Block Gibbs Sampler

1 INTRODUCTION

Rapid advances in neuroimaging technologies have generated a large amount of high 

resolution imaging data, facilitating cutting-edge research in relevant areas. This presents 

new challenges for data scientists to develop efficient statistical methods for analysis of such 
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ultra-high dimensional imaging data. Our work is primarily motivated by the Autism Brain 

Imaging Data Exchange (ABIDE) study [1].

1.1 Autism Brain Imaging Data Exchange (ABIDE) Study

The major goal of the ABIDE study is to explore association of brain activity with the 

autism spectrum disorder (ASD), a widely recognized disease due to its high prevalence and 

substantial heterogeneity in children [2]. The ABIDE study aggregated 20 resting-state 

functional magnetic resonance imaging (R-fMRI) data sets from 17 different sites including 

539 ASDs and 573 age-matched typical controls. The R-fMRI is a popular non-invasive 

imaging technique that measures the blood oxygen level to reflect the resting brain activity. 

For each subject, the R-fMRI signal was recorded for each voxel in the brain over multiple 

time points (multiple scans). Several standard imaging preprocessing steps [1] including 

motion corrections, slice-timing correction, and spatial smoothing have been applied to the 

R-fMRI data, which were registered into the standard Montreal Neurological Institute (MNI) 

space consisting of 228,483 voxels. To characterize the localized spontaneous brain activity, 

we focus on the fractional amplitude of low-frequency fluctuations (fALFF) [3] based on the 

R-fMRI time series at each voxel for each subject. The fALFF is defined as the ratio of the 

power spectrum of low frequency (0.01–0.08Hz) to the entire frequency range and has been 

widely used as a voxel-wise measure of the intrinsic functional brain architecture derived 

from R-fMRI data [4]. In this work, we analyze the voxel-wise fALLF values over 116 

regions in the brain involving 185,405 voxels in total, where regions are defined according to 

the Automated Anatomical Labeling (AAL) system [5]. Besides the imaging data and the 

clinical diagnosis of the ASD, demographical variables were also collected, such as age at 

scan, sex and intelligence quotient (IQ).

One question of interest in this study is to identify imaging biomarkers, i.e., voxel-wise 

fALFF values over 116 regions, for detecting the ASD risk. In particular, our goal is to 

perform two levels of variable selection: at the first level, important regions are selected in 

relation to the ASD risk; at the second level, a set of important voxels within the selected 

regions are selected and are referred to as ASD imaging risk factors. Correspondingly, two 

levels of structural information – functional connectivity among regions and spatial 

dependence among voxels – can be incorporated to facilitate variable selection and produce 

biologically more interpretable results. To achieve this goal, we use a Bayesian probit 

regression model for spatial variable selection, where the binary outcome is the ASD disease 

status and the predictors include all voxel-level imaging biomarkers from multiple regions. 

We use Ising prior models to incorporate structural information for the two levels of variable 

selection. However, it is extremely challenging to perform spatial variable selection in such 

ultra-high dimensional structured feature space (185,405 voxels within 116 regions) under 

our modeling framework.

1.2 Variable Selection in High-Dimensional Feature Space

Regularization methods [6], [7], [8], [9], [10] have been developed to conduct variable 

selection and extended to handle high-dimensional feature spaces and allow for 

incorporation of structural information. Alternatively, Bayesian methods also play a 

prominent role in solving the variable selection problem. O’Hara and Sillanpää [11] 
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provides a review of several commonly used Bayesian variable selection methods and 

posterior simulation algorithms, such as the Gibbs variable selection (GVS) [12] and the 

stochastic search variable selection (SSVS) [13]. They usually specify a positive prior 

probability for each model parameter being exactly zero (i.e., the corresponding variable is 

not included in the model) and compute the posterior probability of each regression 

parameter being nonzero, which are often referred to as the posterior inclusion probability 

and can be used to quantify the uncertainty of variable selection – one advantage of 

Bayesian methods over existing regularization methods. Subsequently, important variables 

are identified by whether the posterior inclusion probabilities are greater than a threshold 

value. To incorporate the structural information and capture the dependence among 

variables, Ising or binary Markov random field (MRF) priors are frequently used for 

Bayesian variable selection [14], [15], [16], [17]. In particular, Smith et al. [16] and Smith 

and Fahrmeir [17] developed Bayesian spatial variable selection to identify active regions in 

fMRI studies. To improve efficiency of posterior simulations for Bayesian variable selection, 

transdimensional sampling algorithms [18] and adaptive Monte Carlo methods [19], [20], 

[21] have been proposed.

Although the aforementioned regularization and Bayesian methods have been successful for 

variable selection in relatively high-dimensional feature space (e.g., the number of predictors 

is on the order of thousands), these methods become infeasible due to their prohibitive 

computational costs when faced with a problem such as our motivating study involving 

hundreds of thousands or even millions of predictors. This has stimulated the development 

of variable selection techniques for ultra-high dimensional problems. Fan and Lv [22] 

proposed the Sure Independence Screening (SIS) approach often used in conjunction with 

regularization methods. This method does not require intensive computations and has good 

theoretical properties. Although it is applicable to a probit regression model, the SIS does 

not explicitly model the dependence among variables and cannot assess the uncertainty of 

variable selection. In a Bayesian modeling framework, Bottolo and Richardson [23] 

developed a powerful sampling scheme to accommodate the high-dimensional multimodal 

model space based on the evolutionary Monte Carlo. This method has been shown to be able 

to handle up to 10,000 predictors, but it is still computationally inefficient when applied to 

our motivating study with almost 200,000 predictors. More recently, by assigning nonlocal 

priors to model parameters, Johnson and Rossell [24] proposed a novel Bayesian model 

selection method that possesses the posterior selection consistency when the number of 

predictors is smaller than the sample size. Johnson [25] demonstrated that it can achieve 

high selection accuracy in ultra high-dimensional problems, comparable to the SIS 

combined with regularization methods. However, their method is not directly applicable to 

our problem in that it was developed for a linear regression model without incorporating any 

structural information in the covariate space. Goldsmith et al. [26] and Huang et al. [27] 

developed a single-site Gibbs sampler for Bayesian spatial variable selection using Ising 

priors with application to neuroimaging studies. This algorithm is able to fit linear regression 

models with ultra-high dimensional imaging biomarkers, i.e. “scalar-on-image regression” 

models, however, the single-site updating scheme leads to a very slow mixing of the Markov 

chain in the posterior computation for a probit regression model [18], [21]. Thus, there are 
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needs for developing more efficient posterior computation algorithms that can be applied to 

our motivating problem. Particularly, we resort to a multiresolution approach.

1.3 Multiresolution Approach

The idea of multiresolution, which facilitates the information transition through a 

construction of coarse-and-fine-scale model parameters, has been adopted to optimize 

algorithms successfully in data mining and machine learning. The pioneer work of utilizing 

the multiresolution idea for Bayesian computation traces back to a multi-grid MCMC 

method proposed by Liu and Sabatti [28]. This approach was originally adopted by 

Goodman and Sokal [29] to solve a problem in statistical physics. Motivated by image 

denoising problems, Higdon et al. [30] proposed a coupled MCMC algorithm with the 

coarsened-scale Markov chains serving as a guide to the original fine-scale chains. The 

coupled Markov chains can better explore the entire sample space and avoid getting trapped 

at local maxima of the posterior distribution. Holloman et al. [31] further proposed a 

multiresolution genetic algorithm to reduce computational burden, provide more accurate 

solution of maximization problem, and improve mixing of the MCMC sampling. Similarly, 

Koutsourelakis [32] adopted a multiresolution idea to estimate spatially-varying parameters 

in PDE-based models with the salient features detected by the coarse solvers. From the 

computational perspective, Giles [33] showed that the computational complexity for 

estimating the expected value from a stochastic differential equation could be reduced by a 

multiresolution Monte Carlo simulation. More recently, Kou et al. [34] applied a 

multiresolution method to diffusion process models for discrete data and showed that their 

approach improves computational efficiency and estimation accuracy. From the perspective 

of model construction, Fox and Dunson [35] adopted the multiresolution idea in Gaussian 

process models to capture both long-range dependencies and abrupt discontinuities.

In this work, we develop efficient multiresolution MCMC algorithms for variable selection 

in the ultra-high dimensional feature space of imaging data. In contrast to the coupled 

Markov chain methods [30], [31], [34] that alternate between different resolutions in 

posterior simulation, we construct and conduct posterior computations for a sequence of 

nested auxiliary models for variable selection from the coarsest scale to the finest scale. Our 

goal is to conduct variable selection at the finest scale – the resolution in the observed data. 

The MCMC algorithm for the model at each resolution depends on the posterior inclusion 

probabilities obtained from fitting the auxiliary model at the previous, coarser resolution 

through the use of a “smart” proposal distribution that allows the algorithm to explore the 

entire sample space more efficiently. This avoids the complication of alternating between 

resolutions for a large number of selection indicators in our problem.

Our major contributions in this work are severalfold. First, we are among the very first to 

develop a multiresolution approach for Bayesian variable selection in a ultra-high 

dimensional feature space involving hundreds of thousands or millions of voxels 

(predictors). Second, the proposed MCMC algorithm leads to fast convergence and good 

mixing of Markov chains. For example, the posterior computation can be completed within 

hours for a variable selection problem involving 200,000 predictors. Third, our approach is 

able to incorporate multi-level structural information into variable selection, e.g., the 
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functional connectivity between ROIs and the spatial dependence between voxels in the 

motivating study, leading to biologically more meaningful and interpretable results and 

improving accuracy in variable selection and prediction. To the best of our knowledge, no 

existing methods can be directly applied to our motivating problem and achieve similar 

performance. Lastly, using the motivating data our method identifies highly predictive voxel-

level imaging risk factors of the ASD. It provides valuable insights for neuroscientists and 

epidemiologists to understand the ASD etiology that is essential for the development of 

effective treatments.

The remainder of the paper is organized as follows. In Section 2, we present the Bayesian 

spatial probit regression model for variable selection with incorporation of structural 

information. We present the prior specifications in Section 2.2 and the standard posterior 

computation algorithm in Section 2.3. In Section 3, we propose our multiresolution approach 

for variable selection in a ultra-high dimensional feature space and describe two efficient 

sequential resolution sampling schemes. In Section 4, we apply the proposed method to the 

R-fMRI data in the ABIDE study to identify important voxel-level fALFF biomarkers that 

are predictive of the ASD risk. In Section 5 we conduct simulation studies to demonstrate 

the superiority of our proposed approach. Finally, we conclude with a discussion in Section 

6.

2 MODEL FORMULATION

2.1 A Probit Regression Model for Variable Selection

Suppose there are n subjects in the data. For i = 1, …, n, let yi ∈ {0, 1} be the binary 

outcome representing the disease status of subject i (disease = 1, control = 0). Assume that 

the whole brain  consists of R regions and region r contains Vr voxels, for r = 1, …, R, 

with V = ∑r = 1
R Vr representing the total number of voxels in the brain. Let xirv denote the 

imaging biomarker at voxel v within region r for subject i and sij denote clinical variable j 
for subject i (j = 1, …, p). We consider a probit regression model for variable selection

yi = I[zi ≥ 0],

zi = α0 + ∑
j = 1

p
α jsi j + ∑

r = 1

R
cr ∑

v = 1

Vr
γrvβrvxirv + εi,

(1)

where εi ~ N(0, 1), indicator function I( ) = 1 if event  occurs and 0 otherwise, αj and βrv 

are coefficients of clinical variable sij and imaging biomarker xirv, respectively, cr ∈ {0, 1} is 

the selection indicator for region r, and γrv ∈ {0, 1} is the selection indicator for voxel v in 

region r. Thus, the imaging biomarker xirv is excluded from the model if at least one of cr 

and γrv is zero.

We further denote by emk = (0, …, 0, 1, 0, …, 0)⊤ an m × 1 vector with the kth element of 1 

and all other elements of 0, by 0m = (0, …, 0)⊤ an all-zero vector of dimension m×1, by 
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1m = ∑k = 1
m emk an all-one vector, and by Im = ∑k = 1

m emkemk
⊤  an m × m identity matrix. 

Define Mr = (0Vr
⊤ , 1Vr

⊤ , 0Vr
⊤ )⊤ (of dimension V × 1) and M = (M1, ···, MR) (of dimension V × 

R), where Vr = ∑r′ = 1
r − 1 Vr′ and Vr = ∑r′ = r + 1

R Vr′. It follows that M represents an index map 

between voxels and regions; and model (1) can be rewritten in a compact form,

y = I[z ≥ 0n], z = Sα + X(λ ∘ β) + ε, (2)

with ε ~ N(0n, In). Here y = (y1, …, yn)⊤, z = (z1, …, zn)⊤, ε = (ε1, …, εn)⊤, xrv = (x1rv, …, 

xnrv)⊤, Xr = (xr1, …, xrVr), X = (X1, …, XR), sj = (s1j, …, snj)⊤, S = (1n, s1, …, sp), α = (α0, 

α1, …, αp)⊤, βr = (βr1, …, βrVr)
⊤, β = (β1

⊤, …, βR
⊤)⊤, c = (c1, …, cR)⊤, γr = (γr1, …, γrVr)

⊤, 

γ = (γ1
⊤, …, γR

⊤)⊤, and λ = (Mc) ∘ γ with “∘” representing the Hadamard product (or entry-

wise product) [36]. It is worth noting that λ, the V dimensional binary vector, defines the set 

of important voxels.

2.2 Prior Specifications

We assign the Gaussian priors to the regression coefficients in model (2),

α N(0p + 1, σα
2Ip + 1), β N(0V, σβ

2IV), (3)

where σα
2 and σβ

2 are the prior variances of the regression coefficients. Given a network 

configuration matrix W = {wij} for a multivariate binary random variable d = (d1, …, dm)⊤ 

∈ {0, 1}m, we denote by d ~ Ising(a, b, W) an Ising distribution with a sparsity parameter a 
and a smoothness parameter b and the probability mass function of d is proportional to 

exp a∑i = 1
m I[di = 0] + b∑i = 1

m ∑ j = 1
m wi jI[di = d j] . The prior specifications for c and γr are

c ∼ Ising(η1, ξ1, F),

γr ∼iid Ising(η2, ξ2, Lr), for r = 1, …, R,
(4)

where F = {fr′r} with fr′r ∈ ℝ representing the population-level functional connectivity 

between region r′ and region r and Lr = {lrv′v} with lrv′v ∈ {0, 1} indicating whether voxels 

v′ and v are neighbors in region r. In our case, F can be estimated separately from the R-

fMRI time series [37] or obtained from existing literature. For the hyper-prior specifications 

in (3) and (4), we have
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σβ
2 IG(aβ, bβ), ηk U(aη, bη),

ξk U(aξ, bξ), for k = 1, 2,
(5)

where IG(a, b) denotes an inverse gamma distribution with shape a and rate b, and U(a, b) 

represents a uniform distribution on region [a, b].

2.3 Standard Posterior Computation

In a standard MCMC algorithm for posterior computation of models (2)–(5), each parameter 

in z, c, γ, α and σβ
2 can be directly sampled from its full conditional. The sparsity and 

smoothness parameters in the Ising priors, ηk and ξk for k = 1, 2, can be updated using the 

auxiliary variable method by Møller et al. [38]. The details of the MCMC algorithm are 

provided in the supplementary materials.

In the case of high or ultra-high dimensional data, we suggest a block update of β. The full 

conditional of β is

π(β ∣ z, α, c, γ, σβ
2, S, X) ∝ ∏

r = 1

R
∏
v = 1

Vr
ϕ (βrv/σβ) exp − 1

2‖z − Sα − X {λ ∘ β}‖2 , (6)

where ϕ(·) is the standard normal density function and ||·|| denotes the Euclidean vector 

norm. Given λ, the block update entails drawing β1 (the coefficients corresponding to the 

selected predictors with λ = 1) and β0 (the coefficients corresponding to the unselected 

predictors with λ = 0) separately from

β1 N μβ1
, ∑β1

, β0 N (0m0
, σβ

2Im0
), (7)

where ∑β1
= σβ

−2Im1
+ Xλ

⊤Xλ
−1

, μβ1
= ∑βXλ

⊤(z − Sα), m1 = ||λ||2, m0 = V − m1, and Xλ 

includes the columns of X corresponding to the important voxels defined by λ. The 

computational complexity of computing Σβ1 is O(nm1
2). While m1 changes from one MCMC 

iteration to another, the posterior samples of m1 are likely concentrated on values 

substantially smaller than V when the true model is sparese, i.e., the number of important 

voxels is small. Of note, in practice, we can divide β1 and β0 into smaller pieces and updated 

each part individually.

Compared with the single-site Gibbs sampling approach [26], [27], the block update of β 
reduces the computational costs and improves Markov chains mixing and hence is more 

appealing for high-dimensional problems where the number of predictors is on the order of 
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thousands. However, for ultra-high dimensional problems such as imaging data in a standard 

brain space with around 200,000 voxels, this algorithm is still very inefficient. To address 

this challenge, we propose a novel multiresolution posterior computation approach.

3 MULTIRESOLUTION APPROACH

The basic steps of our multiresolution approach include first carefully constructing a 

sequence of brain region partitions from the pre-defined coarsest scale to the finest scale – 

the resolution in the observed data – and subsequently defining and fitting a sequence of 

auxiliary models for variable selection from the coarsest scale to the finest scale. The key 

idea is that the posterior samples on coarse scale variable selection are used to create a 

“smart” proposal for the MCMC posterior computation for the model in the next, finer scale, 

allowing the MCMC algorithm to explore the entire sample space for model selection more 

efficiently.

3.1 Partition and Auxiliary Models

Suppose that we define K resolutions with resolution K being the target resolution in the 

observed data. At resolution k, the R brain regions are grouped into G(k) mutually exclusive 

partitions with 1 = G(0) < G(1) < G(2) < ··· < G(K) = R, where each partition is a collection of 

regions based on functional connectivity or spatial contiguity. The partitions at resolution k 

are nested within the partitions at resolution k−1. Let B(k) = (brg
(k)) be an R × G(k) matrix with 

brg
(k) ∈ {0, 1} indicating whether region r is located in partition g at resolution k, and 

B∼(k) = (b∼gg′
(k) ) be a G(k) × G(k−1) matrix with b

∼
gg′
(k) ∈ {0, 1} indicating whether partition g at 

resolution k is located in partition g′ at resolution k−1. We have B(k) 1G(k) = 1R due to 

mutually exclusive partitions at each resolution and B(k−1) = B(k)B̃(k) due to nested partitions 

across resolutions. In addition, B(K) =IR B̃(1) =1G(1), B̃(k) 1G(k−1) = 1G(k) and {B(k)}k = 1
K

 is 

uniquely determined by {B∼(k)}k = 1
K

. Figure 1 provides a detailed illustration on the partitions 

of a two-dimensional rectangle area in one slice of brain at three resolutions. Of note, B(k) 

defines the partitions at resolution k.

In a similar fashion, at resolution k, we divide region r with a total of Vr voxels into Hr
(k)

mutually exclusive subregions with 1 = Hr
(0) < Hr

(1) < Hr
(2) < … < Hr

(K) = Vr, where each 

subregion is a collection of contiguous voxels. The subregions in resolution k are nested 

within the subregions in resolution k−1. Let Ar
(k) = (arvh

(k) ) denote a Vr × Hr
(k) matrix with 

arvh
(k) ∈ {0, 1} indicating whether voxel v is located in subregion h at resolution k and let 

A∼r
(k) = (a∼rhh′

(k) ) denote an Hr
(k) × Hr

(k − 1) matrix with a∼rhh′
(k) ∈ {0, 1} indicating whether 

subregion h at resolution k is located in subregion h′ at resolution k−1. Similarly, we have 

Ar
(k)1

Hr
(k) = 1Vr

 due to mutually exclusive subregions at each resolution and 

Ar
(k − 1) = Ar

(k)A∼r
(k) due to subregions nested across resolutions. In addition, 
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Ar
(K) = IVr

, A∼r
(1) = 1

Hr
(1), A∼r

(k)1
Hr

(k − 1) = 1
Hr

(k), and {Ar
(k)}

k = 1
K

 is uniquely determined by 

{A∼r
(k)}

k = 1
K

. It follows that A(k) = diag{A1
(k), …, AR

(k)} defines the subregions at resolution k.

Given the partitions defined by B(k) and the subregions defined by A(k), denoted , which 

is given by

y = I[z(k) ≥ 0n],

z(k) = Sα(k) + X λ(k) ∘ β(k) + ε(k),
(8)

where z(k), α(k), β(k) and ε(k) have the same definitions and dimensions as z, α, β and ε in 

the target model (2). The binary indictor vector λ(k) = (MB(k)c(k)) ∘ (A(k) γ(k)), where 

c(k) = (cg
(k)) is of dimension G(k) × 1 with cg

(k) denoting the selection indicator for partition g; 

γr
(k) = (γrh

(k)) is of dimension Hr
(k) × 1 with γrh

(k) representing the selection indicator for 

subregion h; and γ(k) = (γ1
(k)⊤, …, γR

(k)⊤)
⊤

 is of dimension H(k) × 1 with H(k) = ∑r = 1
R Hr

(k). By 

this definition,  is equivalent to model (2) including the prior specifications in Section 

2.2. The main difference between  (k < K) and  is that variable selection is conducted 

at the partition level and the subregion level in  as opposed to the region level and the 

voxel level in , reflected by the definitions of the selection indicators in , i.e. {c(k), 

γ(k)}.

The dimensions of c(k) and γ(k) increase as the resolution k increases and eventually become 

equal to the dimensions of c and γ in the target model (2). In other words, the large number 

of latent indicators c and γ in the target model , are replaced by a smaller number of 

latent indicators c(k), γ(k) (k < K) in the auxiliary model  particularly in the initial 

resolutions. In ultra-high dimensional problems, this dimension reduction can be very 

significant and is exploited in our proposed sampling schemes in Sections 3.2 and 3.3 to 

allow for efficient posterior computations for the sequence of auxiliary models  (k < K) 

and the target model .

For prior specifications of  (k < K), we assign the same priors to α(k) and β(k) in (8) as α 
and β in (2). Denote by σβ

2(k) the prior variance for β(k). We assign independent identically 

distributed Bernoulli priors with a probability 0.5 to c(k) and γ(k). Given the above prior 

specifications, the posterior inclusion probability for each voxel or region is always positive 

in each auxiliary model.

3.2 Sequential Resolution Sampling

In the analysis of ultra-high dimensional imaging data, it is reasonable to assume that the 

signals (i.e., important voxels and regions) are sparse and the vast majority of voxels in the 

brain are not associated with the outcome. Typically, many of the unimportant voxels/
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regions, providing little information on prediction of disease risk, are included in the model 

at each iteration of a standard MCMC algorithm such as the one in Section 2.3, resulting in 

potentially intractable posterior computations and poor mixing. To construct an efficient and 

computationally feasible MCMC algorithm, one solution is to specify a good proposal 

distribution in the Metropolis–Hastings (M–H) step for voxel/region selection. Ideally, this 

proposal distribution should possess two properties:

P1: It assigns large probabilities for excluding unimportant voxels and including 

important voxels, which substantially reduces the number of selected voxels and 

simplifies computations in most MCMC iterations.

P2: It still assigns a positive probability for including each voxel in the model, 

ensuring that the simulated Markov chain is able to explore the entire sample space of 

the voxel selection.

In other words, we want to construct a “smart” proposal distribution that mimics the true 

posterior distribution, likely concentrating on a neighborhood of the true model with sparse 

signals and hence improving efficiency and mixing. To this end, we resort to the 

multiresolution auxiliary models  defined in Section 3.1, and develop a sequential 
resolution sampling (SRS) procedure. Specifically, we conduct the posterior computations 

for each auxiliary model  sequentially from resolution 1 to resolution K. At resolution 1, 

we use the standard MCMC algorithm for posterior simulation on model . At resolution 

k, for k = 2, …, K, we propose a resolution dependent MCMC algorithm for posterior 

simulation on model , referred to as the SRS–MCMC. The essential step is an M–H step 

for sampling selection indicators {c(k), γ(k)}, where the “smart” proposal distribution is 

constructed using the posterior distribution (samples) of {c(k−1), γ(k−1)} in  at 

resolution k − 1. Of note, using the SRS procedure, at resolution K, we can obtain posterior 

samples on voxel/region selection at the finest scale, i.e. our target resolution.

The SRS procedure is illustrated in Figures 1 and 2. Figure 1 presents an example where the 

location information of the important voxels is passed along from resolution 1 to resolution 

3, becoming more and more accurate. Figure 2 provides the details of the SRS procedure. 

Specifically, to construct the “smart” proposal distributions in the M–H step of the SRS– 

MCMC, we first introduce auxiliary variable selection indicators c̃(k−1) and γ̃(k−1) in  at 

resolution k,

c∼g′
(k − 1) = max cg

(k):b
∼

gg′
(k) = 1 ,

γ∼rh′
(k − 1) = max γrh

(k): a∼rhh′
(k) = 1 ,

(9)

for g′= 1, …, G(k−1), r = 1, …, R and h′ = 1, …, Hr
(k − 1). {c̃(k−1), γ̃(k−1)} are completely 

determined by {c(k), γ(k)} and can be considered as a “coarse-scale summary” of the 

variable selection indicators in . In particular, {c̃(k−1), γ̃(k−1)} in  are of the same 

dimension and structure as the variable selection indicators {c(k−1), γ(k−1)} in . The key 

idea is to use the posterior distribution of {c(k−1), γ(k−1)} in  as the proposal distribution 
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for {c̃(k−1), γ̃(k−1)} in , which subsequently is used to guide to the construction of the 

proposal distribution for {c(k), γ(k)} in . For the ease of illustration, we denote  = 

{c(k), γ(k), c̃(k−1), γ̃(k−1)} for all the latent indicators at resolution k.

The posterior distribution of the parameters and latent quantities in  is

π(z(k), α(k), β(k), σβ
2(k), c(k), γ(k), c∼(k − 1), γ∼(k − 1) ∣ S, X, y) = π(z(k), α(k), β(k), σβ

2(k), c(k), γ(k) ∣ S,
X, y) · π(c∼(k − 1) ∣ c(k))π(γ∼(k − 1) ∣ γ(k)),

(10)

where π(c̃(k−1) | c(k)) and π(γ̃(k−1) | γ (k)) are equal to 1 if (9) holds and 0 otherwise. In the 

SRS–MCMC, the updating scheme for {z(k), α(k), β(k), σβ
2(k)} given all other parameters is 

the same as the Gibbs sampling scheme for {z, α, β, σβ
2} for model (2); see the 

supplementary materials for details. However, the updating scheme for  is more elaborate 

and is described in detail as follows.

In the M-H step of the SRS-MCMC, we introduce the subscripts “*” and “o” to represent the 

proposed and current values of the corresponding parameters, respectively. Denote by “•” all 

other parameters {z(k), α(k), β(k)} and data {S, X, y}. A proposal distribution for updating 

ℒo
(k) is given by

T(ℒo
(k) ℒ∗

(k) ∣ • ) = H(c∗
(k), γ∗

(k) ∣ co
(k), γo

(k), c∼o
(k − 1), γ∼o

(k − 1), c∼∗
(k − 1), γ∼∗

(k − 1)) · Pk − 1
(c∼∗

(k − 1), γ∼∗
(k − 1) ∣ S, X, y) .

(11)

Here Pk−1(· | ·), specifying the sampling scheme for { c∼∗
(k − 1), γ∼∗

(k − 1)}, is the posterior 

distribution of the variable selection indicators {c(k−1), γ(k−1)} in  at resolution k−1, 

and H(· | ·) specifies the sampling scheme for { c∗
(k), γ∗

(k)} given the sampled 

{ c∼∗
(k − 1), γ∼∗

(k − 1)} from Pk−1(· | ·) and the current state of the Markov chain, i.e., . The 

sampling scheme based on decomposition (11) is illustrated in Figure 2b. One choice of H(· | 

·) that has performed well in our numerical studies is
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H(c∗
(k), γ∗

(k) ∣ co
(k), γo

(k), c∼o
(k − 1), γ∼o

(k − 1), c∼∗
(k − 1), γ∼∗

(k − 1))

= ∏
b
∼

gg′
(k) = 1

h(cg, ∗
(k) ∣ cg, o

(k) , c∼g′, ∗
(k − 1), c∼g′, o

(k − 1), νc)

· ∏
r = 1

R
∏

a∼rhh′
(k) = 1

h(γrh, ∗
(k) ∣ γrh, o

(k) , γrh′, ∗
(k − 1), γrh′, o

(k − 1), νγ)

(12)

where h(· | ·) is a probability mass function for binary random variable defined as 

h(x ∣ y, a, b, ν) = (1 − a)δ0(x) + a[(1 − b)ν1
x(1 − ν1)1 − x + bν2

x(1 − ν2)1 − x] for x ∈ {0, 1} with ν1, 

ν2 ∈ (0, 1) and a, b ∈ {0, 1}. In practice, we can choose a large value of ν2 to speed up the 

convergence, and in our numerical studies, we set ν1 = 0.5, ν2 = 1. Figure 2c presents a 

binary tree to illustrate the sampling scheme for cg, ∗
(k)  based on the h(· | ·) function and the 

sampling scheme for γrh, ∗
(k)  according to h(· | ·) is along the same lines.

In addition to the above M-H step, we suggest a moving step with full conditional updates 

for each element of {c(k), γ(k)} given {c̃(k−1), γ̃(k−1)} and all other parameters using Gibbs 

sampling. In this step, we merely need to update the selection for the fine-scale partitions/

subregions that are nested within the selected coarse-scale partitions/subregions. Thus, this 

step does not require extensive computations and it improves the mixing of the entire 

Markov chain. To recapitulate, the updating scheme in SRS-MCMC is as follows.

Updating Scheme for {c(k), γ(k)} in SRS-MCMC

M-H Step: Set ℒo
(k) = ℒ∗

(k)

• Draw (c∼∗
(k − 1), γ∼∗

(k − 1)) Pk − 1( · ∣ S, X, y);

• Draw (c∗
(k), γ∗

(k)) H( · ∣ co
(k), γo

(k), c∼o
(k − 1), γ∼o

(k − 1), c∼∗
(k − 1), γ∼∗

(k − 1));

• Draw r ~ U[0, 1]. Set ℒ(k) = ℒ∗
(k) if r < R, where

R =
π(ℒ∗

(k) ∣ • )

π(ℒo
(k) ∣ • )

T(ℒ∗
(k) ℒo

(k) ∣ • )

T(ℒo
(k) ℒ∗

(k) ∣ • )
.

Moving Step: Full conditional updates of { cg
(k), γrh

(k)} via Gibbs sampling.

• For g′ with c∼g′
(k − 1) = 1 and g with b

∼
gg′
(k) = 1,

• if c[ − g]
(k) ≠ 0

G(k) − 1
 then draw cg

(k) π( · ∣ c[ − g]
(k) , γ(k), • ), else set cg

(k) = 1;

• for r with brg
(k) = 1, h′ with γ∼rh′

(k − 1) = 1 and h with a∼rhh′
(k) = 1,
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• if γr[ − h]
(k) ≠ 0

Hr
(k) − 1

, then draw γrh
(k) π( · ∣ γr[ − h]

(k) , γ[ − r]
(k) , c(k), • ), else set γrh

(k) = 1.

where c[ − g]
(k) = (c1

(k), …, cg − 1
(k) , cg + 1

(k) , …, c
G(k)
(k) )⊤, γr[ − h]

(k)

= (γr, 1
(k) , …, γr, h − 1

(k) , γr, h + 1
(k) , …γ

r, H(k)
(k) )⊤

, and 

γ[ − r]
(k) = (γ1

(k) ⊤, …, γr − 1
(k) ⊤, γr + 1

(k) ⊤, …, γR
(k) ⊤)⊤.

3.3 Fast Sequential Resolution Sampling

The SRS procedure in Section 3.2 provides a general framework for posterior computations 

for variable selection in a ultra-high dimensional feature space. The choice of auxiliary 

models over resolutions and the corresponding MCMC algorithms can be flexible as long as 

they reduce the total computational cost and improve the mixing of the Markov chains. As 

an example, we consider two modifications that can potentially further improve computation 

efficiency: 1) Gaussian quadrature approximation in the auxiliary models (k < K) that 

further reduces the number of parameters in the models and 2) a joint updating scheme for 

the regression coefficients and the selection indicators in . Combining both, we develop a 

fast sequential resolution sampling (fastSRS) algorithm.

3.3.0.1 Gaussian Quadrature Approximation in Auxiliary Models—The element-

wise representation of auxiliary model (8) at resolution k is given by

zi
(k) = α0

(k) + ∑
j = 1

p
α j

(k)si j + ∑
g = 1

G(k)

cg
(k) ∑

r = 1

R
brg

(k) ∑
h = 1

Hr
(k)

γrh
(k) ∑

v = 1

Vr
arvh

(k) βrv
(k)xirv + εi

(k) . (13)

To introduce an approximation to summation ∑v = 1
Vr arvh

(k) βrv
(k)xirv, we first define two 

integrable functions βr
(k)( · ) and xir(·) defined on  with constraints that βr

(k)(sv) = βrv
(k) and 

xir
(k)(sv) = xirv, where the coordinate sv ∈  represents the location of voxel v. Denote by 𝒮rh

(k)

the compact domain of subregion h in region r. Let δs represent the volume of a voxel in the 

brain. Based on the definition of the Riemann integral, we have

∫
𝒮rh

(k)βr
(k)(s)xir(s)ds ≈ δs ∑

v = 1

Vr
arvh

(k) βrv
(k)xirv . (14)

When δs is small, this approximation is accurate. If both βr
(k)( · ) and xir(·) are smooth over , 

we can further approximate the integral using Gaussian quadrature on a set of sparse grids 

given by
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∫
𝒮r, h

(k) βr
(k)(s)xir(s)ds ≈ ∑

v ∈ 𝒬r, h
(k)

wrvh
(k) βrv

(k)xirv,

∑
v ∈ 𝒬rh

(k)
wrvh

(k) βrv
(k)xirv = δs ∑

v = 1

Vr
qrvh

(k) βrv
(k)xirv

(15)

where wrvh
(k)  is the weight and 𝒬rh

(k) is a set of voxel indices of the sparse grid points on 𝒮rh
(k)

based on the Smolyak’s construction rule [39]. The term qrvh
(k) = wrvh

(k) /δs if v ∈ 𝒬rh
(k), qrvh

(k) = 0, 

otherwise. Combining (14) and (15), we can replace arvh
(k)  by qrvh

(k)  in (13) to construct 

auxiliary models  based on Gaussian quadrature approximation.

Of note, we only need to conduct such approximation at coarse scale resolutions to reduce 

computation when each subregion contains a large number of voxels. With ∑r = 1
R ∑h = 1

Hr
(k)

𝒬rh
(k)

approaching V as the resolution increases, the saving in computational costs vanishes and it 

is recommended to use the original model (8) for fine scale resolutions. Since the auxiliary 

models are only used to guide the construction of the proposal distributions and our target 

model  remains unchanged, such an approximation is still valid.

3.3.0.2 Joint Updating Scheme—We introduce an auxiliary variable defined as

β
∼

rv
(k) = γrh

(k)βrv
(k), (16)

for r = 1, …, R, and v, h with arvh
(k) = 1. Define 

β
∼

rh
(k) = (β

∼
rv
(k), arvh

(k) = 1)
⊤

, β
∼

r
(k) = (β

∼
r1
(k) ⊤, …, β

∼
rHr

(k)
(k) ⊤ )

⊤
 and β

∼(k) = (β
∼

1
(k) ⊤, …, β

∼
R
(k) ⊤)

⊤
. It follows 

that β(̃k) is completely determined by γ(k) and β(k) and the joint posterior distribution of all 

parameters is given by

π(z(k), α(k), β(k), σβ
2(k), ℒ(k), β

∼(k) ∣ S, X, y)

= π(z(k), α(k), β(k), σβ
2(k), c(k), γ(k) ∣ S, X, y)

π(c∼(k − 1) ∣ c(k))π(β
∼(k) ∣ γ(k), β(k))π(γ∼(k − 1) ∣ γ(k)),

(17)

where π(β̃(k) | γ(k), β(k)) = 1 if (16) holds and zero otherwise. Furthermore, for r = 1, …, R 

and h = 1, …, Hr
(k), π(βrh

(k) ∣ γrh
(k) = 1, S, X, y) = π(β

∼
rh
(k) ∣ γrh

(k) = 1, S, X, y) and 
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π(βrh
(k) ∣ γrh

(k) = 0, S, X, y) = π(βrh
(k)), implying that the marginal posterior distribution of β(k) is 

determined by the marginal posterior distribution of {β̃(k), γ(k)} and its prior. Thus, we 

integrate out β(k) in (17) and focus on π(z(k), α(k), σβ
2(k), ℒ(k), β

∼(k) ∣ S, X, y), leading to the 

target distribution of the fastSRS-MCMC algorithm. Compared to the SRS-MCMC 

algorithm, the updating scheme for {z(k), α(k), σβ
2(k)} is the same but the sampling scheme 

for  and β(̃k) needs to be modified. For an M-H step, we choose the following proposal 

distribution

T∼[{β
∼

o
(k), ℒo

(k)} {β
∼

∗
(k), ℒ∗

(k)} ∣ • ] = T(ℒo
(k) ℒ∗

(k) ∣ • ) H∼(β
∼

∗
(k) ∣ β

∼
o
(k), γ∗

(k), γo
(k)), (18)

where T(· → · | •) is the proposal distribution in SRS-MCMC in Section 3.2. The function 

H̃(· | ·) is decomposed as

H∼(β
∼

∗
(k) ∣ β

∼
o
(k), γ∗

(k), γo
(k) = ∏

r = 1

R
∏
h = 1

Hr
(k)

h∼(β
∼

rh ∗
(k) ∣ β

∼
rh, o
(k) , γrh, ∗

(k) , γrh, o
(k) , σβ

2(k)), (19)

Here, h̃(· | ·) is a probability density function for a d-dimensional random vector h̃(u | v, a, b, 

σ2) = (1 − a)δ0(u)+a[(1 − b)ϕ(u; 0, σ2I)+bδv(u)], where u, v ∈ ℝd (d > 1), a, b ∈ {0, 1}, σ2 

> 0, and ϕ(·; μ, Σ) denotes a normal density function with mean μ and covariance Σ. Figure 3 

illustrates the sampling scheme for β
∼

rh, ∗
(k)  based on h̃(· | ·), which depends on 

βrh, o
(k) , γrh, ∗

(k) , γrh, o
(k) , and σβ

2(k).

In addition to the M-H step, we suggest a moving step to improve the mixing by updating 

{c(k), γ(k), β̃(k)} given c̃(k−1) and γ(̃k−1). The moving step for c(k) is the same as the SRS-

MCMC in Section 3.2. For {β̃(k), γ(k)}, we consider a block updating scheme. For h′ with 

γ∼rh′
(k − 1) = 1, denote by β

∼
rh′
(k) = (β

∼
rh
(k) ⊤: a∼rhh′

(k) = 1)
⊤

 and γrh′
(k) = (γrh

(k) ⊤: a∼rhh′
(k) = 1)⊤ the collection 

of the regression coefficients and the collection of the selection indicators in  for 

subregion h′ at resolution k − 1, respectively. Similarly, define 

β
∼

rh′1
(k) = (β

∼
rh
(k) ⊤:γrh

(k) = 1, a∼rhh′
(k) = 1)

⊤
 and β

∼
rh′0
(k) = (β

∼
rh
(k) ⊤:γrh

(k) = 0, a∼rhh′
(k) = 1)

⊤
. The updating 

scheme for { β
∼

rh′
(k), γrh′

(k)} is based on the following decomposition of the joint full conditional 

distributions:

π(β
∼

rh′
(k), γrh′

(k) ∣ • ) = π(γrh′
(k) ∣ • )π(β

∼
rh′1
(k) ∣ γrh′

(k), • )π(β
∼

rh′0
(k) ∣ γrh′

(k), • ), (20)

The details of (20) are provided in the supplementary materials. The updating scheme for the 

fastSRS-MCMC is summarized as follows.
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Updating Scheme for {c(k), γ(k), β̃(k)} in fastSRS-MCMC

M-H Step: Set {ℒo
(k), β

∼
o
(k)} = {ℒ(k), β

∼(k)}

• Draw ℒ∗
(k) T(ℒo

(k) · ∣ • );

• Draw β
∼

∗
(k) H∼( · ∣ β

∼
o
(k), γ∗

(k), γo
(k));

• Draw r ~ U[0, 1]. Set {ℒ(k), β
∼(k − 1)} = {ℒ∗

(k), β
∼

∗
(k − 1)} if r < R, where

R =
π(ℒ∗

(k), β
∼

∗
(k) ∣ • )

π(ℒo
(k), β

∼
o
(k) ∣ • )

·
T∼[{ℒ∗

(k), β
∼

∗
(k)} {ℒo

(k), β
∼

o
(k)} ∣ • ]

T∼[{ℒo
(k), β

∼
o
(k)} {ℒ∗

(k), β
∼

∗
(k)} ∣ • ]

.

Moving Step: Full conditional updates of { cg
(k), γrh′

(k), β
∼

rh′
(k)} via Gibbs sampling.

• For g′ with c∼g′
(k − 1) = 1 and g with b

∼
gg′
(k) = 1,

• if c[ − g]
(k) ≠ 0

G(k) − 1
 then draw cg

(k) π( · ∣ c[ − g]
(k) , γ(k), • ), else set cg

(k) = 1;

• for r with brg
(k) = 1, h′ with γ∼rh′

(k − 1) = 1, draw { β
∼

rh′
(k), γrh′

(k)} based on (20).

4 APPLICATION

We analyze the motivating ABIDE study introduced in Section 1.1 using the SRS procedure. 

Our goal is to identify important voxel-wise image biomarkers that are predictive of the 

ASD risk. After removing missing observations, our analysis includes 831 subjects 

aggregated from 14 different sites. For each subject, the voxel-wise fALFF values are 

computed for each of 185,405 voxels over 116 regions in the brain. In addition, three clinical 

variables, age at scan, sex and IQ, are included in the analysis. Since we observe no 

substantial differences in the fALFF values and the number of ASDs/TDs between different 

study sites, site is not included in our analysis, consistent with a previous analysis of the data 

[1].

A region-wise functional connectivity network is constructed based on the correlations 

between the regional R-fMRI time series that are summarized from voxel-wise R-fMRI time 

series using a singular value decomposition approach [37]. The neighborhood of each voxel 

is defined as the set of closest voxels from six different directions (top, bottom, front, back, 

left, and right) in terms of the Euclidean distance; voxels are connected to their neighbors in 

the spatial dependence network. These two levels of structural information are incorporated 

using the Ising priors for selection indicators c and γ. For other prior specifications, we set 

σα
2 = 20, leading to a fairly flat prior on α, and set aβ = 5 and bβ = 10, leading to a less-

informative prior on σβ
2; we specify the range of the uniform distribution priors for the 

sparsity parameters in the two levels of Ising model as [aη, bη] = [−5, 5] and for the 

smoothness parameters as [aξ, bξ] = [0, 5].
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In light of the brain anatomy, brain partitions and corresponding subregions at eleven 

resolutions are used to construct auxiliary multiresolution models, {  : k = 1, …, 11}. We 

utilize the fastSRS-MCMC in Section 3.3 to conduct the posterior inference. For each 

resolution, we run five MCMC chains with random initial values for 2,000 iterations with 

1,000 burnin. The MCMC convergence is assessed by the GR method [40]. For all 

resolutions, the potential scale reduction factors (PSRF) for the log-likelihood over 1,000 

iterations after burn-in are less than 1.1, suggesting convergence.

Similar to other works in imaging data analysis, we assume that the true signals are sparse. 

After obtaining the posterior samples of the model at the finest scale resolution, the 

threshold for variable selection is set to 99%, 98% or 97% quantiles of the posterior 

inclusion probabilities (ranging from 0.000 to 0.380) for all voxels, equivalent to selecting 

top 1%, 2% and 3% voxels. The selection results based on different thresholds are 

summarized in Table 1. For all thresholds, the selected voxels are mainly located in two 

regions: the right postcentral gyrus (PoCG-R) and the right inferior frontal gyrus (triangular 

part) (IFGtriang-R). With a threshold of 97%, our approach selects 2, 381 and 1, 424 voxels 

in the PoCG-R and the IFGtriang-R, respectively. Most of them are spatially clustered and 

contiguous within a region, as shown in Figure 4a. The PoCG is known as the center of the 

brain for sending and receiving the message and its volume has been shown significantly 

larger in autism patients compared with controls [41]. The IFGtriang is well known for its 

dominant roles in the cognitive control of language and memory [42], [43]. More recently, 

several recent task-related fMRI studies [44] showed that autism patients exhibited reduced 

brain activities in the IFGtriang-R. Our results further suggest that the resting state brain 

activities (reflected by the fALFF) in the PoCG-R and the IFGTriang-R along with other 

four regions are highly predictive of the ASD risk. Figure 4b presents the posterior means of 

the regression coefficients for the selected voxels, interestingly, showing both large positive 

values (red voxels) and large negative values (blue voxels) in the selected regions, especially 

the IFGtriang-R. Di Martino et al. [1] reported a negative association of the fALFF in a 

similar region (the right middle frontal gyrus) with the ASD, suggesting that there may be an 

anti-correlated brain network [45] located in this region that is predictive of the ASD risk. 

The posterior means with 95% credible intervals of regression coefficients for age, sex and 

IQ are respectively −0.132 (−0.580, 0.352), −0.956 (−2.048, −0.004) and −1.504 (−1.848, 

−1.133), indicating that age is not significantly associated with the ASD, while patients with 

low IQ and males have a relatively high ASD risk. These findings have the potential to help 

neuroscientists and epidemiologists better understand the autism etiology.

To evaluate the goodness of fit of our model, we perform a posterior predictive assessment 

[46] based on the χ2 discrepancy and obtain a posterior predictive p-value of 0.850, 

indicating a good fit. To assess the performance on the ASD risk prediction, we use a tenfold 

cross-validation approach based on the important sampling method [47]. Table 1 shows that 

both sensitivity and specificity are greater than 0.9 for all three thresholds, indicating a 

strong predictive power of our method.

As a comparison, we also analyze the ABIDE data using an alternative approach, namely, 

SIS+LASSO, implemented by R packages SIS and gl1ce. This approach first identifies a set 

of potentially important voxels via the SIS method [48] for a probit regression model, and 
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then applies the LASSO [6] to the same model using only the voxels selected in the first 

step. This approach selects only 99 important voxels, most of which are not located in the 

regions identified by our method. More notably, when evaluated via a ten-fold cross-

validation, the SIS+LASSO approach achieves a considerably lower prediction sensitivity 

(0.705) and specificity (0.701) compared to our method, suggesting the superiority of our 

method in the prediction of the ASD risk.

5 SIMULATION STUDIES

We conduct simulation studies to evaluate the variable selection performance of the 

proposed methods compared with other methods for high and ultrahigh dimensional 

problem. In Section 5.1, focusing on a high dimensional case (1,600 voxels), we compare 

three posterior computation algorithms: the standard sampling method (SS) described 

Section 2.3 and the two proposed approaches (SRS and fastSRS) in terms of selection 

accuracy, computational time and ESS. To assess the effect of ν2, for the SRS approach, we 

consider both cases ν2 = 0.9 and ν2 = 1. In Sections 5.2 and 5.3, we simulate ultra-high 

dimensional imaging data in light of the ABIDE data in Section 4; and we compare the 

proposed method with a widely used method, SIS+LASSO, as described in Section 4 for the 

setting when the number of true important voxels is smaller than the sample size (Simulation 

2).

All the hyper-prior specifications follow those in Section 4. Similarly, all the MCMC 

simulations are performed under multiple chains with random initials. The convergence is 

confirmed by the GR method, where the PSRF is close to one for each of the simulations. 

All algorithms are implemented in Matlab. All the simulations are run on a PC with 3.4 GHz 

CPU, 8GB Memory and Windows System.

5.1 Simulation 1

We focus on a 40 × 40 two-dimensional square with 1,600 voxels (Figure 5). It consists of 

four regions (regions 1 – 4) each of which contains 400 voxels, i.e. R = 4, Vr = 400, for r = 

1, …, 4. We set n = 100 and jointly simulate imaging biomarkers {xirv}
r = 1
R

v = 1

Vr
 from a zero 

mean Gaussian process with an exponential kernel (variance 0.5, correlation 36). We further 

set 35 and 50 voxels in regions 1 and 4 to be the true signals (red voxels in Figure 5) with 

the coefficients drawn from Gaussian processes with mean 5 and −6 (variance 0.2, 

correlation parameter 50). For each of the three algorithms, we run 3,000 iterations with 

1,000 burn-in.

Table 2 presents the variable selection sensitivity and specificity under different thresholds, 

the area under the curve (AUC), the effective computing time, the resolution related 

computing time, and the ESS per minute for each algorithm. Comparing among different 

algorithms, while showing a similar performance of feature selection accuracy, the proposed 

algorithms (SRS and fastSRS) require a substantially lower computational cost compared to 

the standard method and this difference is expected to become more pronounced as the 

number of variables increases. In addition, as shown in Table 2, the ESS per minute for the 

fastSRS algorithm is around 60 times and 680 times greater than that of the algorithms SRS 
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and SS respectively, consistent with our expectation that the fastSRS substantially improves 

the mixing of the Markov chains compared with the other two methods. The comparison 

between the SRS algorithm under different ν2 values suggests the satisfactory performance 

by setting ν2 = 1, which is adopted in the fastSRS algorithm.

To study the impact of Ising priors (4) on the variable selection results, we also implement 

the fastSRS algorithm with Ising priors replaced by the independent Bernoulli priors, and 

the results are shown in Table 3 belonging to the “Strong Signal”. From the results, we can 

see that the benefit of Ising priors is marginal based on current simulation setting. Therefore, 

we decrease the signal strength by changing the means of the coefficients of true signals to 2 

and −3, and the results based on the new simulated data are listed below the “Weak Signal” 

in Table 3. As we can see, when signal gets weaker, adding Ising priors improves the 

variable selection accuracy, which is expected due to the incorporation biological and 

structural information.

The comparable feature selection performance of the three algorithms indicates that our 

multiresolution approach is a useful tool to improve computational efficiency and accelerate 

the MCMC convergence. When the data dimension is very high, the standard sampling 

suffers from intensive or even intractable computation. In contrast, both the SRS and the 

fastSRS are still computationally feasible and have a good performance on feature selection, 

while the fastSRS provides a more appealing ESS. Thus, in the subsequent simulations, we 

only conduct posterior inference using the fastSRS, similar to Section 4.

5.2 Simulation 2

We consider an ultra-high dimensional case in simulation 2 and compare the proposed 

fastSRS method with the SIS+LASSO approach in terms of variable selection accuracy. We 

simulate 50 data sets with a sample size of 831 based on the ABIDE data. In each data set, 

the imaging biomarkers are generated by permuting the original ABIDE data (X) over 

regions, i.e., Xirv
∗ = Xζirrv for r = 1, …, R and v = 1, …, Vr, where Xirv

∗  are the observed 

imaging biomarkers in a data set and (ζ1r, …, ζnr) is one permutation of (1, …, n). As such, 

we maintain the correlations of fALFF values between voxels within each region. We choose 

371 and 241 spatially contiguous voxels in two regions (IFGtriang-R and PoCG-R) that are 

detected in Section 4 as the true signals. The voxel-wise regression coefficients are drawn 

from N(7, 0.1) and N(5, 0.1) for the important voxels in the IFGtriang-R and the PoCG-R 

respectively, and are set to be zero for all other voxels. The fastSRS is run for 2,000 

iterations with 1,000 burn-in. The SIS and the LASSO are implemented by R packages SIS 

and gl1ce.

Table 4 summarizes the number of true positives (TP), the number of true negatives (TN), 

sensitivity and specificity for different variable selection methods. Without pre-specifying 

the number of selected variables for SIS, the SIS function in the SIS package selects a small 

number of voxels (around 30), which is far smaller than the number of important voxels. To 

improve the performance of the SIS+LASSO, we specify the number of selected variables in 

SIS to be 700 for all simulations – larger than the number of true important voxels – and 

then apply the LASSO based on these 700 pre-selected variables. From Table 4, our methods 
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show a substantially better performance compared to the SIS+LASSO approach in terms of 

the variable selection accuracy.

5.3 Simulation 3

In this simulation, we directly use the voxel-wise fALFF values over the whole brain (116 

regions and 185,405 voxels) from the ABIDE data for all 831 subjects as well as the region-

wise functional connectivity and voxel-wise spatial correlation information. Similar to 

simulation 2, the true important voxels are set to be located in the two regions (IFGtriang-R 

and PoCG-R) as detected in Section 4, containing 852 and 1,090 spatially contiguous voxels, 

respectively. The voxel-wise regression coefficients are drawn from N(3, 0.1) and N(2, 0.1) 

for the signals in IFGtriang-R and PoCG-R, respectively, and are set to be zero for all other 

voxels. The fastSRS-MCMC is run for 2,000 iterations with 1,000 burn-in. Of note, different 

from simulation 2, the number of important voxels is larger than the sample size in this 

simulation.

The variable selection accuracy under three thresholds are summarized in Table 5. The 

results suggest that our method achieves very high variable selection accuracy: both 

sensitivity and specificity are close to one for thresholds of 97% and 98%. Also, we obtain a 

very good receiver operating characteristic (ROC) curve by varying the threshold between 

1% and 99% as shown in Figure 6. Such satisfactory performance not only shows the 

feasibility of the proposed method in an ultra-high dimensional case, but also lends credence 

to the selection results in the data application as the setting in the current simulation mimics 

the setting in the real data. The computational time for the whole posterior simulation is 2.77 

hours, which is remarkable for such ultra-high dimensional data.

6 Discussion

In this work, motivated by the analysis of imaging data, we present a novel Bayesian 

multiresolution approach for variable selection in an ultra-high dimensional feature space. 

Our approach is computationally feasible and efficient; and it can incorporate multi-level 

structural information into feature selection, leading to biologically more interpretable 

results and improved performance. As shown in our numerical studies, it works especially 

well when the true important voxels are sparse and spatially clustered.

Our approach performs variable selection by applying a threshold to the estimated posterior 

inclusion probabilities. We show that the selection accuracy can be very high for a set of 

different thresholds that are determined by the quantiles of the estimated inclusion 

probabilities. One interesting question would be a principled approach on how to choose an 

optimal threshold to obtain the highest variable selection accuracy. Liang et al. [49] has 

developed a multiple test-based sure variable screening procedure using marginal posterior 

inclusion probabilities for the generalized linear models. This approach enjoys good 

theoretical properties and potentially can be extended to our approach for determining an 

optimal threshold.

The current multiresolution approach is developed based on the commonly used latent 

indicator approach in a Bayesian modeling framework. The bottleneck of its posterior 
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computation lies in the inefficiency in sampling multi-level high dimensional latent selection 

indicators. One direction of extending our work that may further reduce computational time 

is to develop parallel computing algorithms for jointly updating high dimensional latent 

indicators and implement them using the popular General-Purpose computation on Graphics 

Process Unit (GPGPU) technique [50]. Also, the Bayesian shrinkage approach as a different 

strategy for variable selection has also attracted much attention recently [51], [52], [53], 

[54], [55]. This method is closely related to penalized likelihood approaches and it imposes 

a “weak” sparsity prior assumption that ensures a high probability on the model parameters 

being close to zero rather than a positive probability of being exactly zero. It avoids 

introducing latent indictors and the aforementioned complication in posterior computations. 

Thus, another potentially interesting extension of our work is to develop a multiresolution 

variable selection procedure using Bayesian shrinkage methods.

The Matlab code is available at https://sites.google.com/site/yizezhaoweb/ or by request 

from the authors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An example of multiresolution partitions and variable selection. Suppose a rectangle area in 

one axial slice cutting through brain that contains 64 regions (R = 64) is of interest. We 

consider three resolutions (K = 3). Three images in the right, middle, and left panels are 

labeled with the partition indices for the nested partitions at resolutions 3, 2 and 1 

respectively. At the highest resolution (Resolution 3) there are 64 partitions (G(3) = 64) with 

each partition including only one region and the partition indices are the same as the region 

indices, thus B(3) = I64. Resolution 2 has 16 partitions (G(2) = 16) where each partition g 
contains four regions indexed by 4g − 3, 4g − 2, 4g − 1 and 4g, for g = 1, …, 16, indicating 

B̃(3) = B(2) = I16 ⊗ 14, where ⊗ is Kronecker product. Resolution 1 has four partitions (G(1) 

= 4) where each partition g′ contains four finer-scale partitions at resolution 2 indexed by 4g
′ − 3, 4g′ − 2, 4g′ − 1 and 4g′, for g′ = 1, …, 4, resulting in B̃(2) = I4 ⊗ 14; thus it 

contains 16 regions indexed by 16g′ − 15, 16g′ − 14, …, 16g′, for g′ = 1, …, 16, leading 

to B(1) = I4 ⊗ 116. Suppose the true important voxels (yellow) are located in regions 39, 40 

and 41. Valid posterior inferences for models at different resolutions produce high posterior 

inclusion probabilities of imaging biomarkers in the corresponding partitions (red) at all 

resolutions.
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Fig. 2. 
Illustration of sequential resolution sampling. (a) Initially, we utilize the standard MCMC 

algorithm to produce the posterior distribution of the selection indicators in  at resolution 

1, i.e. P1(· | S, X, y), which is then used to guide the construction of the proposal function in 

the SRS-MCMC algorithm to produce P2(· | S, X, y) for  at resolution 2. This procedure 

is performed sequentially until resolution K to generate the posterior distribution PK(· | S, X, 

y) for our target model . (b) Decomposition of the proposal function T(· → · | •) (red) 

includes two steps for drawing a proposed sample. Step 1 (green): draw { c∼∗
(k − 1), γ∼∗

(k − 1)} 

from the posterior distribution Pk−1(· | ·) under the model  at resolution k−1. Step 2 

(blue): sample { c∗
(k − 1), γ∗

(k − 1)} given { c∼∗
(k − 1), γ∼∗

(k − 1)} in step 1 and the current state of 

the Markov chain using H(· | ·). (c) A binary tree represents the sampling scheme for cg, ∗
(k)

based on the probability mass function h(· | ·). It is determined by cg′, ∗
(k)  and c∼g′, o

(k)  for g′ 

satisfying b
∼

gg′
(k) = 1, and cg, o

(k) .
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Fig. 3. 

A binary tree to illustrate the sampling scheme of β
∼

rh, ∗
(k)  via h̃(· | ·).
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Fig. 4. 
Five real brain Sagittal (right) slices (X = 40, 44, 50; 54, 60 mm) cutting through two 

regions: IFGtriang-R and PoCG-R.
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Fig. 5. 
Simulation 1 design: two-dimensional square with four regions labeled with texts. Important 

voxels (red) are located in regions 1 and 4.
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Fig. 6. 
Receiver operating characteristic (ROC) curve for variable selection using fastSRS-MCMC 

in simulation 3
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TABLE 1

Selection results and prediction accuracy for the ASD risk. The six selected AAL regions are the right 

postcentral gyrus (PoCG-R), the right inferior frontal gyrus triangular part (IFGtriang- R), the right median 

cingulate and paracingulate gyri (DCG-R), the right superior frontal gyrus (SFGmed-R), the supplementary 

motor area (SMA-R) and the right heschl gyrus (HES-R). Nvoxel is the total number of selected voxels. P-Sens 

and P-Spec represent sensitivity and specificity in prediction of the ASD risk via a ten-fold cross validation

Threshold Selected AAL Regions Nvoxel P-Sens P-Spec

99% IFGtriang-R, PoCG-R, DCG-R, 1,779 0.938 0.918

98% IFGtriang-R, PoCG-R, DCG-R, 3,494 0.927 0.921

97% IFGtriang-R, PoCG-R, DCG-R, SFGmed-R, SMA-R, HES-R 5,160 0.901 0.932
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TABLE 3

Variable selection accuracy for the Ising prior model and independent Bernoulli prior model

Threshold fastSRS (With Ising Prior) fastSRS (Without Ising Prior)

Strong Signal

Sensitivity/Specificity

95% 0.671/0.985 0.600/0.981

90% 0.847/0.941 0.824/0.940

85% 0.965/0.895 0.953/0.895

80% 1.000/0.844 1.000/0.845

AUC 0.979 0.972

Weak Signal

Sensitivity/Specificity

95% 0.188/0.958 0.282/0.963

90% 0.388/0.926 0.353/0.914

85% 0.824/0.888 0.706/0.882

80% 1.000/0.846 0.824/0.835

AUC 0.938 0.901
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TABLE 5

Variable selection accuracy for different thresholds using fastSRS-MCMC in simulation 3

Threshold Sensitivity Specificity

99% 0.696 0.997

98% 0.986 0.990

97% 1.000 0.982
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