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Abstract

Background: High-throughput sequencing data are dramatically increasing in volume. Thus, there is urgent need
for efficient tools to perform fast and integrative analysis of multiple data types. Enriched heatmap is a specific form
of heatmap that visualizes how genomic signals are enriched over specific target regions. It is commonly used and
efficient at revealing enrichment patterns especially for high dimensional genomic and epigenomic datasets.

Results: We present a new R package named EnrichedHeatmap that efficiently visualizes genomic signal
enrichment. It provides advanced solutions for normalizing genomic signals within target regions as well as offering
highly customizable visualizations. The major advantage of EnrichedHeatmap is the ability to conveniently generate
parallel heatmaps as well as complex annotations, which makes it easy to integrate and visualize comprehensive
overviews of the patterns and associations within and between complex datasets.

Conclusions: EnrichedHeatmap facilitates comprehensive understanding of high dimensional genomic and epigenomic
data. The power of EnrichedHeatmap is demonstrated by visualization of the complex associations between DNA
methylation, gene expression and various histone modifications.
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Background
With increasing accessibility and application of high
throughput sequencing methods, there is a rise in the
number of complex genomic and epigenomics studies.
Thus, methods for integrative analysis are urgently
required to provide comprehensive overviews of high
dimensional multi-omics dataset to better understand
biological systems [1]. Among them, effective visualization
methods are of special importance as it helps to give an
intuitive interpretation of the underlying data.
A common task for integrative visualization is to study

how various genomic signals are enriched over specific
genomic targets. Genomic signals can be represented as
numeric values associating genomic locations, e.g. reads

coverage in windows from whole genome sequencing
data, DNA methylation rates for CpG sites from whole
genome bisulfite sequencing data, or the intensities of
histone modification in peak regions from ChIP sequencing
data. The associated genomic signal values can also be
binary to represent the existence of genomic features in the
genome. While genomic targets are also genomic regions
where the enrichment patterns are visualized. In many
cases, genomic targets are gene-related features such as
transcription start sites (TSS) or gene body. Generally, it
can be any type of genomic features of interest, e.g. CpG
islands (CGIs) if the aim is to study the methylation change
at CGI borders. Current tools such as deeptools [2] and
ngs.plot [3] are broadly used and successful at revealing
potential enrichment patterns. However, they are limited at
handling more complex cases without using external
software, e.g. to summarize enrichment of signals difference
of histone modifications between two subgroups of
samples, or to visualize the correlation pattern between
DNA methylation and expression of associated genes
around TSS. Additionally, as stand-alone software tools,
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they are restricted to their built-in functionalities. For
example, deeptools only supports to order rows by simple
statistics such as row means in the heatmap, while it
depends on external software to calculate more specific
row orderings. Genomation [4] is an R package which
visualizes enrichment for multiple types of signals simul-
taneously, but the functionality is very limited and difficult
for more complex visualizations.
Here we present a new R package named EnrichedHeatmap

that provides advanced and extensible solutions for
summarizing and organizing enrichment heatmaps.
Compared to available tools, the major advantages of
EnrichedHeatmap are: 1) it is built on the framework
of ComplexHeatmap package [5], thus enriched heatmaps
can be flexibly combined with normal heatmaps and row
annotation graphics, which makes it easy to integrate
additional information to build complete overviews of the
associations in complex datasets; 2) ordering and sub-
grouping rows in heatmaps are important for highlighting
and comparing enrichment patterns. EnrichedHeatmap
supports ordering methods such as pre-calculated
orderings or flexible hierarchical clustering methods.
EnrichedHeatmap also proposes new methods based on
the closeness of signals regions relative to genomic targets
to visualize how consistently close the signals are enriched
to target regions. Also EnrichedHeatmap supports
splitting of rows in heatmaps into groups by broad
partitioning methods in R such as k-means or k-medoid
clustering, or simply by a pre-defined category variable; 3)
EnrichedHeatmap supports several methods to summarize
mean signals for different types of genomic signals,
depending on whether they are single point position-
based signals or region-based signals. It also supports row
smoothing to enhance the visual effect of the enrichment;
4) EnrichedHeatmap is capable of visualizing discrete
signals such as chromatin state segmentations from
ChromHMM [6]; 5) EnrichedHeatmap utilizes the GRanges
data structure [7] which is the base data structure for
handling genomic data in R and thus it can be seamlessly
integrated into Bioconductor workflows; The power of
EnrichedHeatmap is demonstrated by comprehensive
visualization of various epigenomic signals over gene TSS
to show the complex transcriptional regulation patterns.

Implementation
Generally, the visualization of the signal enrichment over
genomic targets can be standardized into two major
steps where associations between genomic signals and
target regions are firstly normalized into matrices and
secondly the matrices are visualized as heatmaps with
methods specifically for ordering rows to strengthen the
pattern of enrichment. In this section, we describe the
implementation of EnrichedHeatmap in detail and highlight

the advantages and uniqueness of EnrichedHeatmap
compared to other available tools.

Normalize the associations
For a specific type of genomic signal (e.g. DNA methyla-
tion at CpG sites), associations to target regions are firstly
normalized into a matrix where rows correspond to target
regions e.g. gene-related regions and columns correspond
to genomic windows around the targets. Target regions
are extended upstream and/or downstream and the
flanking regions are split into small windows of equal size.
Each target is split into k windows as well with

k ¼ n1 þ n2ð Þ∙r= 1−rð Þ

where n1 is the number of upstream windows, n2 is the
number of downstream windows and r is the ratio of
target columns presented in the matrix. Note, due to the
unequal widths of target regions, widths of the windows
inside targets are different for different targets as well.
The default value of r is set as follows to ensures the
mean width of target windows is the same as the width
of upstream/downstream windows:

r ¼ μL= μL þ L1 þ L2ð Þ

where μL is the mean width of target regions. L1 and L2
are extensions of target regions in upstream and
downstream.
It is highly possible that multiple genomic signals

overlap to one single window e.g. multiple CpG sites
locating in one window, or one genomic signal spanning
multiple windows. To summarize mean signal in every
window, EnrichedHeatmap provides four averaging
methods to summarize the signals for the window
depending on whether the averaging is applied with
background or not. As illustrated in Fig. 1a, for a given
window (marked as red line), denote n as the number of
signal regions which overlap to the window (it is 5 in
Fig. 1a), wi as the width of the intersected segment
(black thick lines) for the ith signal region, and xi as
the value associated with the signal region. If there
is no value associated with the signal regions,
EnrichedHeatmap sets xi = 1 by default.
The “absolute” method denoted as va simply calculates

the mean value from all signal regions regardless of their
width:

va ¼
Pn

i¼1xi
n

The “weighted” method denoted as vw calculates the
mean value from all signal regions weighted by the width
of their intersections:
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vw ¼
Pn

i¼1xiwiPn
i¼1wi

“Absolute” and “weighted” methods are applied when
background values should not be taken into consideration.
For example, when summarizing mean DNA methylation
in a window, non-CpG background should always be
ignored, because methylation is only associated with
CpG sites.
The “w0” method denote as vw0 calculates the

weighted mean between the intersected segments and
un-intersected parts:

vw0 ¼
Pn

i¼1xiwi

W þW 0

where W is the sum of width of all intersected segments
(W ¼ Pn

i¼1wi ) and W′ is the sum of width of the non-
intersected parts. For example, the “w0” method can be
applied to summarize mean histone modification inten-
sity or mean CG content in a given window.
The “coverage” method denoted as vc is defined as the

mean signal averaged by the width of the window:

vc ¼
Pn

i xiwi

L

where L is the width of the window itself. Note when
xi = 1, vc is the mean base pair coverage for the signal
regions overlapped in the window. Since signal regions
may overlap to each other, thus L ≤ W +W′. When
signal regions do not overlap to each other, “w0”
method and “coverage” method are identical.
EnrichedHeatmap is capable of visualizing discrete

signals. For a list of signals with n levels, internally n
normalized matrices with “coverage” method are generated
where each matrix corresponds to the enrichment of signal
regions with one single signal level. When summarizing
from n matrices into one final matrix, the signal levels are
recoded with their numeric level orders, and for a single
window, the numeric order of the signal level which shows
maximum coverage is assigned to it. If none of the signal
region overlaps to this window, zero value is assigned.
EnrichedHeatmap has special visualization designed for
discrete signal enrichment and since the final matrix is
numeric, rows can be reordered by hierarchical clustering
or partitioned by k-means clustering. Examples of visualizing
discrete signals can be found in vignettes of the package.

a b c

Fig. 1 Implementation of EnrichedHeatmap. a Averaging model. The red line represents one window in the target regions or in the flanking regions
when normalizing genomic signals to target regions. Black lines represent genomic signals that overlap to the given window. b Comparison between
original methylation values and smoothed values. Grey color means no available methylation value associated for the window. Methylation data is
from lung tissue in Roadmap dataset. Only data on chromosome 21 is used. Note the two heatmaps are independent and have different orderings.
c Comparison between different row ordering methods. The three heatmaps correspond to ordering by enriched scores, by hierarchical clustering
with Euclidean distance and by hierarchical clustering with closeness distance. The genomic signals are regions showing significant negative
correlation between DNA methylation and expression of target genes
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EnrichedHeatmap supports smoothing of the average
signals in the normalized matrix by local regression [8]
or loess regression. It also imputes missing values by
smoothing when no background value is provided.
These functionalities particularly improve visualization
for genomic signals that might be sparse in some parts
of the genome, e.g. DNA methylation signals distal from
CpG islands. On the other hand, a lot of other methods
can be used to enhance EnrichedHeatmap only with a
complete matrix without missing values, e.g. hierarchical
clustering for row orderings. Figure 1b compares
original methylation and smoothed methylation signals
around gene TSS where rows are ordered by enriched
scores (The definition of enriched scores will be intro-
duced in a later section). It clearly shows smoothing
dramatically improves the row ordering and the visual
effect of the methylation heatmap. Since it can be
possible that no CpG site exists in certain windows
(window size is 50 bp in the two heatmaps in Fig. 1b)
thus with no methylation values associated, it results in
many grey grids in the first heatmap which represent
missing values, which significantly disturbs the visualization.
As a comparison, after smoothing and missing value
imputation, it gives a clean and continuous methylation
pattern in the heatmap. Although it might not be

biologically correct to assign methylation values to non-
CpG windows, it greatly improves the exploratory interpret-
ability of the data.
EnrichedHeatmap additionally supports a special

scenario which associates signals to targets by mappings
if the connections between signals and targets have
already been constructed. By default, EnrichedHeatmap
tries to overlap every signal region to every target region.
However, there can be prior knowledge of the relations
between signals and targets. In the example in Fig. 2
(this example will be discussed in detail in later section),
we have defined a type of region named “correlated
region” where it shows significant correlations between
DNA methylation and expression of the host gene, in
other words, there is already a gene associated to each
correlated region. When normalizing correlated regions
to gene TSS, it is possible that TSS of two genes are very
close, and thus, correlated regions can be wrongly
assigned to multiple genes if ignoring mappings between
correlated regions and genes.

Heatmap visualization
The normalized matrix is essentially a normal matrix
with extra enrichment parameters attached. EnrichedHeatmap
inherits and extends the ComplexHeatmap package, thus it

Fig. 2 Comprehensive visualization of associations between gene expression, DNA methylation and four histone modifications from Roadmap
dataset. In both top and bottom heatmap lists, rows correspond to same genes with different signals associated. Detailed explanation of data
processing and R code for the plot can be found in Additional file 1
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provides great flexibility to arrange heatmaps as well as
complex annotations, which is unique compared to other
tools. On top of enriched heatmaps is a special type of annota-
tion graphic which summarizes the enrichment across targets
and can be directly corresponded to the patterns in the
heatmap. An important feature of this annotation is it
supports to summarize the positive and negative signals
separately if signals to visualize are correlations or difference
between subgroups (e.g. heatmap “meth_corr” in Fig. 2).
Enrichment patterns are summarized separately if heatmaps
are split by rows by k-means clustering or any pre-defined par-
titioning variables. With the framework of ComplexHeatmap,
the enriched heatmaps can be concatenated with normal
heatmaps as well as row annotations simply by “+” operator:
EnrichedHeatmap(…) + Heatmap(…) + rowAn-

notation(…) + …

where the rows in all heatmaps and row annotations
correspond and the main heatmap can be chosen to globally
control the row ordering and subgrouping of all heatmaps.
Row ordering for the normalized matrix is crucial to

enhance the patterns of enrichment. Rows can be
ordered by certain types of scores calculated by rows (e.g.
row means) or by clustering methods implemented in
base or extended packages in R. EnrichedHeatmap
provides two additional row ordering methods:

1. Rows are ordered by enriched scores. For each row
in the normalized matrix, denote the vector for the
associated values as x and it is split into x1, x2 and
x3 which correspond to values in upstream of the
target, target itself and downstream of the target.
The corresponding lengths of the three sub-vectors
are denoted as n1, n2 and n3. The enriched score
denoted as se is calculated as the sum of x weighted
by the distance to target.

se ¼
Xn1

i¼1
x1i∙

i
n1

þ
Xn2

k¼1
x2k ∙ n2=2− k−n2=2j jj j

þ
Xn3

j¼1
x3 j∙

n3− jþ 1
n3

Generally, when there is more signal centred on the
target region, it has a higher enriched score.

2. Rows are ordered by hierarchical clustering with
closeness distance. The column order in the
normalized matrix represents the spatial order of
windows located from upstream to downstream of
the target. EnrichedHeatmap defines the closeness
distance to measure how spatially close the signal
regions of two different targets are based on the
relative distance to targets. For any two rows in the
normalized matrix where the associated values are

denoted as x and y, the distance based on closeness
of signal regions in the two rows is defined as:

dcloseness ¼
Pn

i¼1

Pn
j¼1 i− jj j∙I i; jð ÞPn

i¼1

Pn
j¼1I i; jð Þ

I i; jð Þ ¼ 1; xi≠0 and y j≠0
0; else

�

Figure 1c compares row ordering by enriched scores,
hierarchical clustering with Euclidean distance and
hierarchical clustering with closeness distance. Note
dendrograms generated by hierarchical clustering for
rows in the latter two heatmaps are additionally
reordered by the enriched scores to place enrichment
patterns that are close to targets to the top of the
heatmap as much as possible. Generally, when the top
annotation which summarises mean enrichment across
targets is added to the heatmap as well, ordering rows
merely by enriched scores is not recommended because
it provides redundant information as the top enriched
annotation (left heatmap in Fig. 1c), and on the other
hand, it fails to reveal spatial clusters as the other two
methods. While hierarchal clustering with Euclidean
distance is good at clustering enrichment patterns, it
does not take column order into account, thus, it still
can be possible that two spatially close clusters are
separated in the heatmap (middle heatmap in Fig. 1c).
By using closeness distance, it clearly sorts and clusters
the enrichment patterns (right heatmap in Fig. 1c).

Results
Figure 2 visualizes complex associations between gene
expression, DNA methylation, and four histone modifi-
cations over gene TSS through a list of heatmaps by
using Roadmap dataset [9]. In the analysis, 27 samples
are separated into two subgroups that correspond to
embryonic cells and mature cells. Rows are split according
to differential expression and methylation pattern into
three clusters. In each row cluster, rows are clustered
based on the closeness of regions showing significant
negative correlation between methylation and gene
expression (we term them as “negCR”). For methylation
and each histone modification, three heatmaps are used to
illustrate the correlation to gene expression as well as the
distribution of the signal among samples (by mean signals
across all samples and mean signal differences between
two subgroups). All heatmaps and annotations are
arranged into two lines and rows in all heatmaps
correspond to same genes. The top 10 most significantly
differentially expressed genes between embryonic and
mature cells are marked on left of the expression heatmap.
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A detailed explanation of data processing and step-by-step
explanation of the R code can be found in Additional file 1.
Generally, genes in cluster 1 and 2 have high expression,

long gene length (annotation “Gene length”) and low
methylation over TSS (heatmap “meth_mean”) which
correspond well with the enrichment of CpG islands over
TSS (heatmap “CGI”), while genes in cluster 3 have low
expression, short gene length, and intermediate mean
methylation with almost no CGIs overlapping TSS. There
is enrichment for significant negative CRs (negCRs) down-
stream of TSS in cluster 1 and 2 (solid and dashed green
lines in annotation of “meth_corr” heatmap, the peaks of
the enrichment locate at approximately + 2 kb of TSS.)
while for cluster 3 genes, the enrichment of negCRs is
very close to TSS. By associating the heatmap “CGI”,
“meth_corr”, “meth_mean” and “meth_diff” together, we
can make the conclusion that for genes in cluster 1 and 2,
negCRs are enriched at the downstream border of CGI
over TSS with high methylation variability, and even for
cluster 3 genes there is also a trend that the negCRs are
enriched at close downstream of TSS. This gives rise to
the hypothesis that transcription factors can bind to chro-
matin in the gene body (in the lowly methylated negCRs)
and are prevented to bind or move further into the gene
body by DNA methylation after the negCRs.
H3K4me3 is a histone mark which is enriched at active

TSS or promoters. Heatmap “H3K4me3_mean” shows
strong enrichment of the mean signal over TSS for
cluster 1 and cluster 2 genes with high expression. Such
enrichment corresponds very well to the low TSS DNA-
methylation. Interestingly, strong positive correlation to
expression dominates in cluster 1 and the signals are
significantly higher in embryonic cells (heatmap
“H3K4me3_diff”). The peak for the enrichment of
correlation signals in cluster 1 (solid red line in
annotation of heatmap “H3K4me3_corr”) is broader than
the mean signals while it is very similar as the enrich-
ment peak for negCRs. For cluster 2 genes, the regions
showing positive correlations are enriched at down-
stream border of H3K4me3 peaks while directly at the
H3K4me3 peaks shows negative correlation although the
correlation signals are weak and signal difference is small.
Surprisingly, strong positive correlations dominate cluster
3 although the mean signals are very weak.
H3K4me1 is an active mark enriched at enhancers and

promoter flanking regions. Nevertheless, it shows negative
correlation at the TSS (solid and dashed green lines in anno-
tation of heatmap “H3K4me1_corr”), especially strong for
cluster 1. The peak for the negative correlation enrichment
correlates well with CGI and low TSS-methylation, however
the signals are low at TSS (heatmap “H3K4me1_mean”).
Flanking TSS is dominated by positive correlations and the
signal difference is comparably large in cluster 1 (solid
brown line in annotation of heatmap “H3K4me1_diff”).

H3K27ac is also an active mark enriched in both active
enhancers and promoters, and it generally shows
positive correlations to expression in all three clusters
(heatmap “H3K27ac_corr”). Interestingly the mean
signals are the strongest in cluster 2 and mature cells
have significantly higher signal intensity than embryonic
cells (dashed blue line in annotation of heatmap
“H3K27ac_diff”). The peak for the correlation signal
enrichment is comparably broader than other marks.
H3K27me3 is a repressive mark and it generally shows

negative correlation around TSS at relatively low level,
excluding cluster 1 where there are no dominant
correlation patterns (heatmap “H3K27me3_corr”). The
signals are lower and sparser compared to other marks.

Discussion
The heatmap visualization provides an intuitive way of
showing the spatial associations between genomic
signals and target regions. Here we have developed
the EnrichedHeatmap package which facilitates the
discovery of enrichment pattern of such associations.
EnrichedHeatmap is capable of processing continuous
signals, binary signals and discrete signals, and it provides
different normalization methods for different types of
genomic signals. More importantly, EnrichedHeatmap
allows associating multiple sources of information through
parallel heatmaps and annotations in an easy and modular
way, which greatly facilitates the integrative analysis with
multiple omic datasets.
The parallel heatmap visualization brings difficulty of

setting proper row orders to discover patterns in all
heatmaps simultaneously. Most of the available tools
simply order rows based on the row means of the
normalized matrix, which actually loses the information
of how spatially similar the signal regions distribute in
different target regions. Here we recommend ordering
rows by hierarchical clustering on the normalized matrix
as it highlights similar patterns for the signal regions
that locate in spatially similar neighborhood of their
associated target regions. Another difficulty raised is
since there are multiple heatmaps that contain different
data types, selecting a main heatmap to perform
hierarchical clustering is also crucial for better displaying
the association patterns. The solution to this problem
depends on what key message users want to present. In
Fig. 2, the hierarchical clustering is applied on the
negCR matrix because the key message of the
visualization is to show the association pattern between
DNA methylation and gene expression around gene
TSS. Moreover, since columns in the normalized matrix
correspond to spatial distance to target regions, only
clustering rows on subset of matrix which shows strong
enrichment patterns helps to give a clearer view of the
underlying pattern. E.g. in the vignette along with the
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package where the association between chromatin states
and gene TSS is visualized, the row clustering is only
applied to the subset of matrix which corresponds to 1 kb
upstream and downstream of gene TSS because we observe
there are very strong and consistent enrichment of active
and bivalent TSS states in it while in flanking regions the
chromatin states are more diverse and inconsistent.
Splitting rows in heatmaps helps to enhance the

distinct patterns in different categories of target regions.
EnrichedHeatmap allows splitting rows either by
categorical variables or by k-means clustering. Generally
speaking, the choice of how to split rows should be
biological meaningful. In Fig. 2, rows of all heatmaps are
split according to the methylation in 1 kb upstream and
2 kb downstream of gene TSS because we observe the
methylation shows distinct difference and in the content
of the analysis, methylation difference at gene TSS is
always a dominant mark of transcription regulation.

Conclusions
The EnrichedHeatmap package provides a flexible and
powerful way to simultaneously visualize enrichment of
various genomic signals over target regions. We believe
it will be a useful tool for R/Bioconductor workflows to
allow for more comprehensive understanding of high
dimensional genomic and epigenomic data.

Availability and requirements
Project name: EnrichedHeatmap
Project home page: http://bioconductor.org/packages/

EnrichedHeatmap/, https://github.com/jokergoo/Enriched
Heatmap
Operation systems: Platform independent
Programming language: R (> = 3.3.0)
License: GPL (> = 2)
Restrictions to use by non-academics: None

Additional files

Additional file 1: Data and source code for producing Figs. 1 and 2.
(GZ 45195 kb)

Abbreviations
CGI: CpG islands; CR: Correlated regions; negCR: Significantly negatively
correlated regions; TSS: Transcription start sites
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